
1

Billing Code: 5001-06

DEPARTMENT OF DEFENSE

Office of the Secretary

Notice of Intent to Grant an Exclusive License; Integrata Security, LLC

AGENCY: National Security Agency, DoD.

ACTION: Notice.

SUMMARY: The National Security Agency hereby gives notice of its intent to grant

Integrata Security, LLC a revocable, non-assignable, exclusive, license to practice the

following Government-Owned invention as described in U.S. Patent No.8,069,483

entitled: “Device for and Method of Wireless Intrusion Detection,” issued by the U.S.

Patent & Trademark Office on November 29, 2011, and any related non-provisional

patent application and all Letters Patent issuing thereon, and any continuation,

continuation-in-part or division of said non-provisional patent application and any reissue

or extension of said Letters Patent.

The above-mentioned invention is assigned to the United States Government as

represented by the National Security Agency.

DATES: Anyone wishing to object to the grant of this license has fifteen (15) days

from the date of this notice publication to file written objections along with any

supporting evidence, if any.

ADDRESSES: Written objections are to be filed with the National Security

Agency Technology Transfer Program, 9800 Savage Road, Suite 6848, Fort George G.

Meade, MD 20755-6848.

2

FOR FURTHER INFORMATION CONTACT: Marian T. Roche, Director,

Technology Transfer Program, 9800 Savage Road, Suite 6848, Fort George G. Meade,

MD 20755-6848, telephone (443) 634-3514.

Dated: April 24, 2013.

Aaron Siegel,

Alternate OSD Federal Register Liaison Officer, Department of Defense.

[FR Doc. 2013-10061 Filed 04/29/2013 at 8:45 am; Publication Date: 04/30/2013]

 (1 of 1)

United States Patent 8,069,483

Matlock November 29, 2011

Abstract

A device for and method of detecting intrusion into a wireless network that includes a
configuration file, a rules files, a main processor, a set packet processor, an initialize
preprocessor, a parse rules file, an interface thread unit, a process packet unit, a
decoder, a preprocess unit connected to the process packet unit; at least one
preprocessor consisting of a rogue access point and transmit channel preprocessor, a
NETSTUMBLER preprocessor, a MAC spoofing preprocessor, a DEAUTH flood
preprocessor, an AUTH flood preprocessor, a rogue client preprocessor, a bridged
network preprocessor, a rogue client valid access point preprocessor, valid client rogue
access point preprocessor, an ad-hoc network preprocessor, a wrong channel
preprocessor, a cloaking policy violation preprocessor, an encryption policy violation
preprocessor, and a null SSID association policy violation preprocessor; and a
detector.

Inventors: Matlock; Kristen L. (Washington, DC)

Assignee: The United States States of America as represented by the Director
of the National Security Agency (Washington, DC)
N/A (

Family ID: 44994438

Appl. No.: 11/602,430

Filed: October 19, 2006

Current U.S. Class: 726/23 ; 713/154; 726/13

Current International Class: H04L 29/14 (20060101); G06F 21/20 (20060101)

Current CPC Class: H04W 12/00 (20130101); H04W 12/12 (20130101)

Field of Search: 726/22,23,24,25,26 713/153,154

References Cited [Referenced By]

U.S. Patent Documents

7042852 May 2006 Hrastar

7058796 June 2006 Lynn et al.

7086089 August 2006 Hrastar et al.

7089586 August 2006 Kilgore

2003/0135762 July 2003 Macaulay

2003/0217289 November 2003 Ammon et al.

2003/0237000 December 2003 Denton et al.

2004/0028001 February 2004 Billhartz

2004/0107219 June 2004 Rosenberger

2004/0162995 August 2004 Muaddi et al.

2004/0235453 November 2004 Chen et al.

2005/0037733 February 2005 Coleman et al.

2005/0054326 March 2005 Rogers

2005/0136891 June 2005 Wang et al.

2005/0144544 June 2005 Gariador et al.

2005/0202800 September 2005 Wang

2005/0213553 September 2005 Wang

2006/0002331 January 2006 Bhagwat et al.

2006/0085543 April 2006 Hrastar et al.

2006/0150250 July 2006 Lee et al.

2006/0193299 August 2006 Winget et al.

2006/0193300 August 2006 Rawat et al.

2006/0197702 September 2006 Jones

2006/0200862 September 2006 Olson et al.

2008/0043686 February 2008 Sperti et al.

Other References

Applicant Admitted prior Art, Figures 1 and 2 of the disclosed drawings. cited
by examiner.

Primary Examiner: Dinh; Minh
Assistant Examiner: Okeke; Izunna
Attorney, Agent or Firm: Morelli; Robert D.

Claims

What is claimed is:

1. A device for detecting intrusion into a wireless network, comprising: a) a
configuration file unit; b) a rules files unit; c) a main processing unit connected to the
configuration files unit and rules file unit; d) a set packet preprocessor unit connected
to the main processing unit; e) an initialize preprocessors unit connected to the main
processing unit; f) a parse rules file unit connected to the main processing unit; g) an
interface thread unit connected to the main processing unit; h) a process packet unit
connected to the interface thread unit; i) a decode unit connected to the process
packet unit; j) a preprocess unit connected to the process packet unit; k) a plurality of
preprocessors connected to the preprocess unit, including a rogue access point and
transmit channel preprocessor, a NETSTUMBLER preprocessor, a MAC spoofing
preprocessor, a DEAUTH flood preprocessor, an AUTH flood preprocessor, a rogue
client preprocessor, a bridged network preprocessor, a rogue client valid access point
preprocessor, valid client rogue access point preprocessor, an ad-hoc network
preprocessor, a wrong channel preprocessor, a cloaking violation preprocessor, an
encryption violation preprocessor, and a null SSID violation preprocessor; and l) a
detect unit connected to the preprocess unit and the process packet unit.

2. A method of simultaneous intrusion detection on a plurality of computer
communications, comprising: a) initializing on a computing device a configuration file; b)
initializing on the computing device a rules files; c) controlling on the computing device
the intrusion detection method using a main processor; d) setting on the computing
device packet preprocessors; e) initializing on the computing device preprocessors; f)
parsing on the computing device the rules file; g) creating on the computing device an
interface thread that include all packets transmitted on all channels; h) processing on
the computing device the packets by decoding the packets and preprocessing on the
computing device the packets using a plurality of preprocessors, including a rogue
access point and transmit channel preprocessor, a NETSTUMBLBR preprocessor, a
MAC spoofing preprocessor, a DEAUTH flood preprocessor, an AUTH flood
preprocessor, a rogue client preprocessor, a bridged network preprocessor, a rogue
client valid access point preprocessor, valid client rogue access point preprocessor, an
ad-hoc network preprocessor, a wrong channel preprocessor, a cloaking violation
preprocessor, an encryption violation preprocessor, and a null SSID violation
preprocessor; and i) detecting on the computing device intrusion based on the results

of the last step.

3. The method of claim 2, wherein the step of preprocessing on the computing device a
packet using a rogue access point and transmit channel preprocessor is comprised of
the steps of: a) determining on the computing device a frame type of the packet; b)
determining on the computing device if the frame type contains a basic service set
identifier (BSSID) or is an acknowledgement message (ACK); c) if the frame does not
contain a BSSID and is not an ACK then setting on the computing device global
variable Transmit_Channel equal to zero and returning to step (h) in claim 2; d) if the
frame contains a BSSID or is an ACK then determining on the computing device if the
packet is a beacon frame or a probe response; e) if either frame type is identified then
identifying on the computing device the BSSID and the channel in its header; f)
determining on the computing device if the BSSID is in a rogue AP list; g) if the BSSID
is not in the rogue AP list then determining on the computing device if the BSSID is on
a valid AP list; h) if the BSSID is not on the valid AP list then adding on the computing
device the BSSID and its channel to the rogue AP list, setting on the computing device
global variable Transmit_Channel equal to the BSSID channel, and returning to step (h)
in claim 2; i) if the BSSID is in the rogue AP list or the BSSID is not in the rogue AP list
but is in the valid AP list then updating on the computing device the channel information
in the corresponding rogue and valid AP list entry, setting on the computing device
global variable Transmit_Channel equal to the BSSID channel, and returning to step (h)
in claim 2; j) if the frame is neither a beacon frame nor a probe response then finding
on the computing device the BSSID in the header; k) determining on the computing
device if the BSSID or destination address is in a rogue AP list; l) if the BSSID or the
destination address are in the rogue AP list then determining on the computing device
its channel in the rogue AP list, setting on the computing device global variable
Transmit_Channel equal to the BSSID channel, and returning to step (h) in claim 2; m)
if the BSSID and the destination address are not in the rogue AP list then determining
on the computing device if the BSSID or destination address are on the valid AP list; n)
if the BSSID and the destination address are on the valid AP list then determining on
the computing device the BSSID channel in the valid AP list, setting on the computing
device the global variable Transmit_Channel equal to the BSSID channel, and returning
to step (h) in claim 2; and o) if the BSSID and the destination address are not on the
valid AP list then adding on the computing device the BSSID to the rogue AP list with
channel equal to zero, setting on the computing device the global variable
Transmit_Channel equal to zero, and returning to step (h) in claim 2.

4. The method of claim 2, wherein the step of preprocessing on the computing device a
packet using a rogue client preprocessor is comprised of the steps of: a) determining
on the computing device a frame type of the packet; b) determining on the computing
device if the frame type contains a source address; c) if the frame type does not
contain a source address then returning to step (h) in claim 2; d) if the frame contains a
source address then finding on the computing device the source address in its header;

e) determining on the computing device if the packet is from an access point; f) if the
packet is from an access point then returning to step (h) in claim 2; g) determining on
the computing device if the source address is in a rogue client list; h) if the source
address is not on the rogue client list then determining on the computing device if the
source address is on a valid client list; i) if the source address is on the valid client list
then returning to step (h) in claim 2; j) if the packet is not on the valid client list then
adding on the computing device the source address to the rogue client list, generating
on the computing device an alert message to indicate that a rogue client has been
detected, and returning to step (h) in claim 2; k) if the source address is on the rogue
client list then determining on the computing device if a user-defined time period has
expired; l) if the user-definable time-period has not expired then returning to step (h) in
claim 2; and m) if the user-definable time-period has expired then adding on the
computing device the source address to the rogue client list, generating on the
computing device an alert message to indicate that a rogue client had been detected,
and returning to step (h) in claim 2.

5. The method of claim 2, wherein the step of preprocessing on the computing device a
packet using a bridged network preprocessor is comprised of the steps of: a) finding on
the computing device a frame type of the packet; b) determining on the computing
device if the frame contains a source address; c) if the frame type does not contain a
source address then returning to step (h) in claim 2; d) if the frame contains a source
address then determining on the computing device if the frame is a data frame; e) if the
frame is not a data frame then returning to step (h) in claim 2; f) if the frame is a data
frame then determining on the computing device if to_ds and from_ds are each set to
one; g) if to_ds and from_ds are not both set to one then returning to step (h) in claim
2; h) if to_ds and from_ds are each set to one then determining on the computing
device if the source and destination addresses are on an alert list; l) if the source and
destination addresses are on the alert list then determining on the computing device if
a user-definable time-period has expired; j) if the user-definable time-period has not
expired then returning to step (h) in claim 2; and k) if either the user-definable
time-period has expired or if the source and destination addresses are not on the alert
list then adding on the computing device the source and destination addresses to the
alert list, generating on the computing device an alert that indicates that a bridged
network has been detected, and returning to step (h) in claim 2.

6. The method of claim 2, wherein the step of preprocessing on the computing device a
packet using a rogue client valid access point preprocessor is comprised of the steps
of: a) finding on the computing device a frame type of the packet; b) determining on the
computing device if the frame contains a source address; c) if the frame does not
contain a source address then returning to step (h) in claim 2; d) if the frame contains a
source address then determining on the computing device if the frame is an
authentication request; e) if the frame is an authentication request then determining on
the computing device if the source address is on a rogue client list; f) if the frame is not

an authentication request then returning to step (h) in claim 2; g) if the source address
is not on the rogue client list then determining on the computing device if the source
address is on the valid client list; h) if the source address is on the valid client list then
returning to step (h) in claim 2; i) if the source address is either on the rogue client list
or not on the rogue client list or the valid client list then determining on the computing
device if the destination access point address is valid; j) if the destination access point
address is not valid then returning to step (h) in claim 2; k) if the destination access
point address is valid then determining on the computing device if the source address
is on a bad authentication request list; l) if the source address is on the bad
authentication request list then returning to step (h) in claim 2; and m) if the source
address is not on the bad authentication request list then adding on the computing
device the source address to the bad authentication request list, generating on the
computing device an alert to indicate that an unauthorized client is attempting to
connect to a valid access point, and returning to step (h) in claim 2.

7. The method of claim 2, wherein the step of preprocessing on the computing device a
packet using valid client rogue access point preprocessor is comprised of the steps of:
a) determining on the computing device a frame type of the packet; b) determining on
the computing device if the frame contains a source address; c) if the frame does not
contain a source address then returning to step (h) in claim 2; d) if the frame contains a
source address then determining on the computing device if the tame is an
authentication request; e) if the frame is not an authentication request then returning to
step (h) in claim 2; f) if the frame is an authentication request then determining on the
computing device if the source address is on a rogue client list; g) if the source address
is on a rogue client address then returning to step (h) in claim 2; h) if the source
address is not on a rogue client address then determining on the computing device if
the source address is on a valid client list; i) if the source address is not on the valid
client list then returning to step (h) in claim 2; j) if the source address is on the valid
client list then determining on the computing device if the destination address is rogue;
k) if the destination address is not rogue then returning to step (h) in claim 2; l) if the
destination address is rogue then determining on the computing device if the source
address is on a bad authentication request list; m) if the source address is on a bad
authentication request list then returning to step (h) in claim 2; and n) if the source
address is not on the bad authentication request list then adding on the computing
device the source address to the bad authentication request list, generating on the
computing device an alert to indicate that an authorized client is attempting to connect
to a rogue access point, and returning to step (h) in claim 2.

8. The method of claim 2, wherein the step of preprocessing on the computing device a
packet using an ad-hoc network preprocessor is comprised of the steps of: a)
determining on the computing device a frame type of the packet; b) determining on the
computing device if the frame contains a source address; c) if the frame does not
contain a source address then returning to step (h) in claim 2; d) if the frame contains a

source address then determining on the computing device if the frame is a beacon or a
probe response; e) if the frame is a beacon or probe response than determining on the
computing device if ESS is equal to zero and IBSS is equal to one; f) if ESS is not
equal to zero or IBSS is not equal to one then returning to step (h) in claim 2; g) if ESS
is equal to zero and IBSS is equal to one then adding on the computing device the
source address to the ad-hoc beacon alert list, generating an ad-hoc beacon detected
alert, and returning to step (h) in claim 2; h) if the frame is neither a beacon nor a probe
request then determining on the computing device if the frame is a data frame; i) if the
frame is not a data frame then returning to step (h) in claim 2; j) if the frame is a data
frame then determining on the computing device if to_ds and from_ds are each set to
zero; k) if to_ds and from_ds are not both set to zero then returning to step (h) in claim
2; l) if to_ds and from_ds are each set to zero then determining on the computing
device if the source and destination addresses are on an active ad-hoc network alert
list; m) if the source and destination addresses are on the active ad-hoc network alert
list then returning to step (h) in claim 2; n) if the source and destination addresses are
not on the active ad-hoc network alert list then adding on the computing device the
source and destination addresses to the alert list and generating on the computing
device an active ad-hoc network detected alert; o) determining on the computing device
if the source address is on a valid client list; p) if the source address is not on the valid
client list then determining on the computing device if the destination address is on the
valid client list; q) if the destination address is not on the valid client list then returning
to step (h) in claim 2; r) if the destination address is on the valid client list then
generating on the computing device an authorized client in ad-hoc conversation with
rogue client alert, and returning to step (h) in claim 2; s) if the source address is on the
valid client list then determining on the computing device if the destination address is
on the valid client list; t) if the destination address is not on the valid client list then
generating on the computing device an authorized client in ad-hoc conversation with
rogue client alert, and returning to step (h) in claim 2; and u) if the destination address
is on the valid client list then returning to step (h) in claim 2.

9. The method of claim 2, wherein the step of preprocessing on the computing device a
packet using a wrong channel preprocessor is comprised of the steps of: a)
determining on the computing device a frame type of the packet; b) determining on the
computing device if the frame contains a source address; c) if the frame does not
contain a source address then returning to step (h) in claim 2; d) if the frame contains a
source address then determining on the computing device the source address in its
header; e) determining on the computing device if the source address is in a valid client
list; f) if the source address is not in the valid client list then determining on the
computing device if the source address is in a valid access point list; g) if the source
address is not in the valid access point list then returning to step (h) in claim 2; h) if the
source address is in the valid client list or not in the valid client list but in the valid
access point list then determining and recording on the computing device the
designated operating channel; i) determining on the computing device if the source

address is in a wrong channel alert list; j) if the source address is in the wrong channel
alert list then returning to step (h) in claim 2; k) if the source address is not in the
wrong channel alert list then determining on the computing device if a transmit channel
on which the packet was transmitted is a designated operating channel for the source
address; l) if the transmit channel is equal to the designated operating channel then
returning to step (h) in claim 2; and m) if the transmit channel is not equal to the
designated operating channel then adding on the computing device the source address
to the wrong channel alert list, generating a device operating on the wrong channel
alert, and returning to step (h) in claim 2.

10. The method of claim 2, wherein the step of preprocessing on the computing device
a packet using a cloaking violation preprocessor is comprised of the steps of: a)
determining on the computing device a frame type of the packet; b) determining on the
computing device if the frame is a beacon; c) if the frame is not a beacon then returning
to step (h) in claim 2; d) if the frame is a beacon then determining on the computing
device if cloaking_required is equal to a one; e) if cloaking_required is not equal to a
one then returning to step (h) in claim 2; f) if cloaking_required is equal to a one then
determining on the computing device if SSID is null; g) if SSID is null then returning to
step (h) in claim 2; h) if SSID is not null then determining on the computing device if the
source address of the packet is on a cloaking policy alert list; i) if the source address of
the packet is on the cloaking policy alert list then returning to step (h) in claim 2; and j)
if the source address of the packet is not on the cloaking policy alert list then adding on
the computing device the source address to the cloaking policy alert list, generating on
the computing device a SSID cloaking policy violation detected alert, and returning to
step (h) in claim 2.

11. The method of claim 2, wherein the step of preprocessing on the computing device
a packet using an encryption violation preprocessor is comprised of the steps of: a)
determining on the computing device a frame type of the packet; b) determining on the
computing device if the frame is a probe response or a beacon frame; c) if the frame is
neither a probe response nor a beacon frame then determining on the computing
device if the frame is a data frame or an authentication frame; d) if the frame is neither
a data frame nor an authentication frame then returning to step (h) in claim 2; e) if the
frame is a probe response, beacon frame, data frame, or authentication frame then
determining on the computing device if encryption_required is set to a one; f) if
encryption . . . required is not set to a one then returning to step (h) in claim 2; g) if
encryption_required is set to a one and the frame is a data frame or an authentication
frame then determining on the computing device if wep is a one; h) if wep is a one then
returning to step (h) in claim 2; i) if wep is not a one then determining on the computing
device if the source address of the packet is on an encryption policy alert list; j) if the
source address of the packet is on the encryption policy alert list then returning to step
(h) in claim 2; k) if the source address of the packet is not on the encryption policy alert
list then adding on the computing device the source address to the encryption policy

alert list, generating on the computing device an encryption policy violation detection
alert, and returning to step (h) in claim 2; l) if encryption_required is set to a one and
the frame is a beacon or a probe response frame then determining on the computing
device if a privacy field is set to a one; m) if the privacy field is set to a one then
returning to step (h) in claim 2; n) if the privacy field is not set to a one then determining
on the computing device if the source address is on the encryption policy alert list; o) if
the source address is on the encryption policy alert list then returning to step (h) in
claim 2; and p) if the source address is not on the encryption policy alert list then
adding on the computing device the source address to the encryption policy alert list,
generating on the computing device an encryption policy violation detection alert, and
returning to step (h) in claim 2.

12. The method of claim 2, wherein the step of preprocessing a packet using a null
SSID violation preprocessor is comprised of the steps of a) determining on the
computing device a frame type of the packet; b) determining on the computing device if
the frame is a probe request; c) if the frame is a probe request then determining on the
computing device if null_ssid_assoc is set to a zero; d) if null_ssid_assoc is not set to a
zero then returning to step (h) in claim 2; e) if null_ssid_assoc is set to a zero then
determining on the computing device if SSID is null; f) if SSID is not null then returning
to step (h) in claim 2; g) if SKID is set to null then determining on the computing device
if the source address of the packet is in a broadcast probe request senders list; h) if
the source address of the packet is in the broadcast probe request senders list then
returning to step (h) in claim 2; i) if the source address of the packet is not in the
broadcast probe request senders list then adding on the computing device the source
address to the broadcast probe request senders list and returning to step (h) in claim 2;
j) if the frame is not a probe request then determining on the computing device if the
frame is a probe response; k) if the frame is a probe response then determining on the
computing device a destination address in its header; l) determining on the computing
device if the destination address is in the broadcast probe request senders list; m) if
the destination address is not in the broadcast probe request senders list then
returning to step (h) in claim 2; n) if the destination address is on the broadcast probe
request senders list then determining on the computing device if the source address is
on a broadcast probe alert list; o) if the source address is on the broadcast probe alert
list then returning to step (h) in claim 2; p) if the source address is not on the broadcast
probe alert list then adding on the computing device the source address to the
broadcast probe alert list, generating on the computing device a Null SSID association
alert, and returning to step (h) in claim 2; q) if the frame is not a probe response then
determining on the computing device if the frame is an association request; r) if the
frame is an association request then determining on the computing device if
null_ssid_assoc is set to a zero; s) if null_ssid_assoc is not set to a zero then returning
to step (h) in claim 2; t) if null_ssid_assoc is set to a zero then determining on the
computing device if SSID is set to null; u) if SSID is not set to null then returning to
step (h) in claim 2; v) if SSID is set to null then determining on the computing device if

the source address is on a broadcast association request senders list; w) if the source
address is on the broadcast association request senders list then returning to step (h)
in claim 2; x) if the source address is not on the broadcast association request senders
list then adding on the computing device the source address to the broadcast
association request senders list, and returning to step (h) in claim 2; y) if the frame is
not an association request then determining on the computing device if the frame is an
association response; z) if the frame is not an association response then returning to
step (h) in claim 2; aa) if the frame is an association response then determining on the
computing device a destination address in its header; bb) determining on the
computing device if the destination address is on the broadcast association request
senders list; cc) if the destination address is not on the broadcast association request
senders list then returning to step (h) in claim 2; dd) if the destination address is on the
broadcast association request senders list then determining on the computing device if
the source address is on a broadcast association alert list; ee) if the source address is
on the broadcast association alert list then returning to step (h) in claim 2; and ff) if the
source address is not on the broadcast association alert list then adding on the
computing device the source address to the broadcast association alert list, generating
on the computing device a Null SSID association alert, and returning to step (h) in
claim 2.

13. The method of claim 3, wherein the step of preprocessing on the computing device
a packet using a rogue client preprocessor is comprised of the steps of a) determining
on the computing device a frame type of the packet; b) determining on the computing
device if the frame type contains a source address; c) if the frame type does not
contain a source address then returning to step (h) in claim 2; d) if the frame contains a
source address then finding on the computing device the source address in its header;
e) determining on the computing device if the packet is from an access point; f) if the
packet is from an access point then returning to step (h) in claim 2; g) determining on
the computing device if the source address is in a rogue client h) if the source address
is not on the rogue client list then determining on the computing device if the source
address is on a valid client list; i) if the source address is on the valid client list then
returning to step (h) in claim 2; j) if the packet is not on the valid client list then adding
on the computing device the source address to the rogue client list, generating on the
computing device an alert message to indicate that a rogue client has been detected,
and returning to step (h) in claim 2; k) if the source address is on the rogue client list
then determining on the computing device if a user-defined time period has expired; l) if
the user-definable time-period has not expired then returning to step (h) in claim 2; and
m) if the user-definable time-period has expired then adding on the computing device
the source address to the rogue client list, generating on the computing device an alert
message to indicate that a rogue client had been detected, and returning to step (h) in
claim 2.

14. The method of claim 13, wherein the step of preprocessing on the computing

device a packet using a bridged network preprocessor is comprised of the steps of: a)
finding on the computing device a frame type of the packet; b) determining on the
computing device if the frame contains a source address; c) if the frame type does not
contain a source address then returning to step (h) in claim 2; d) if the frame contains a
source address then determining on the computing device if the frame is a data frame;
e) if the frame is not a data frame then returning to step (h) in claim 2; f) if the frame is
a data frame then determining on the computing device if to_ds and from_ds are each
set to one; g) if to_ds and from_ds are not both set to one then returning to step (h) in
claim 2; h) if to_ds and from_ds are each set to one then determining on the computing
device if the source and destination addresses are on an alert list; i) if the source and
destination addresses are on the alert list then determining on the computing device if
a user-definable time-period has expired; j) if the user-definable time-period has not
expired then returning to step (h) in claim 2; and k) if either the user-definable
time-period has expired or if the source and destination addresses are not on the alert
list then adding on the computing device the source and destination addresses to the
alert list, generating on the computing device an alert that indicates that a bridged
network has been detected, and returning to step (h) in claim 2.

15. The method of claim 14, wherein the step of preprocessing on the computing
device a packet using a rogue client valid access point preprocessor is comprised of
the steps of: a) finding on the computing device a frame type of the packet; b)
determining on the computing device if the frame contains a source address; c) if the
frame does not contain a source address then returning to step (h) in claim 2; d) if the
frame contains a source address then determining on the computing device if the frame
is an authentication request; e) if the frame is an authentication request then
determining on the computing device if the source address is on a rogue client list; f) if
the frame is not an authentication request then returning to step (h) in claim 2; g) if the
source address is not on the rogue client list then determining on the computing device
if the source address is on the valid client list; h) if the source address is on the valid
client list then returning to step (b) in claim 2; i) if the source address is on the rogue
client list or not on the rogue client list or the valid client list then determining on the
computing device if the destination access point address is valid; j) if the destination
access point address is not valid then returning to step (h) in claim 2; k) if the
destination access point address is valid then determining on the computing device if
the source address is on a bad authentication request list; l) if the source address is on
the bad authentication request list then returning to step (h) in claim 2; and m) if the
source address is not on the bad authentication request list then adding on the
computing device the source address to the bad authentication request list, generating
on the computing device an alert to indicate that an unauthorized client is attempting to
connect to a valid access point, and returning to step (h) in claim 2.

16. The method of claim 15, wherein the step of preprocessing on the computing
device a packet using valid client rogue access point preprocessor is comprised of the

steps of: a) determining on the computing device a frame type of the packet; b)
determining on the computing device if the frame contains a source address; c) if the
frame does not contain a source address then returning to step (h) in claim 2; d) if the
frame contains a source address then determining on the computing device if the frame
is an authentication request; e) if the frame is not an authentication request then
returning to step (h) in claim 2; f) if the frame is an authentication request then
determining on the computing device if the source address is on a rogue client list; g) if
the source address is on a rogue client address then returning to step (h) in claim 2; h)
if the source address is not on a rogue client address then determining on the
computing device if the source address is on a valid client list; i) if the source address
is not on the valid client list then returning to step (h) in claim 2; j) if the source address
is on the valid client list then determining on the computing device if the destination
address is rogue; k) if the destination address is not rogue then returning to step (h) in
claim 2; l) if the destination address is rogue then determining on the computing device
if the source address is on a bad authentication request list; m) if the source address is
on a bad authentication request list then returning to step (h) in claim 2; and n) if the
source address is not on the bad authentication request list then adding on the
computing device the source address to the bad authentication request list, generating
on the computing device an alert to indicate that an authorized client is attempting to
connect to a rogue access point, and returning to step (h) in claim 2.

17. The method of claim 16, wherein the step of preprocessing on the computing
device a packet using an ad-hoc network preprocessor is comprised of the steps of: a)
determining on the computing device a frame type of the packet; b) determining on the
computing device if the frame contains a source address; c) if the frame does not
contain a source address then returning to step (h) in claim 2; d) if the frame contains a
source address then determining on the computing device if the frame is a beacon or a
probe response; e) if the frame is a beacon or probe response then determining on the
computing device if ESS is equal to zero and IBSS is equal to one; f) if ESS is not
equal to zero or IBSS is not equal to one then returning to step (h) in claim 2; g) if ESS
is equal to zero and IBSS is equal to one then adding on the computing device the
source address to the ad-hoc beacon alert list, generating on the computing device an
ad-hoc beacon detected alert, and returning to step (h) in claim 2; h) if the frame is
neither a beacon nor a probe request then determining on the computing device if the
frame is a data frame; i) if the frame is not a data frame then returning to step (h) in
claim 2; j) if the frame is a data frame then determining on the computing device if
to_ds and from_ds are each set to zero; k) if to_ds and from_ds are not both set to
zero then returning to step (h) in claim 2; l) if to_ds and from_ds are each set to zero
then determining on the computing device if the source and destination addresses are
on an active ad-hoc network alert list; m) if the source and destination addresses are
on the active ad-hoc alert list then returning to step (h) in claim 2; n) if the source and
destination addresses are not on the active ad-hoc network alert list then adding on the
computing device the source and destination addresses to the alert list and generating

on the computing device an active ad-hoc network detected alert; o) determining on the
computing device if the source address is on a valid client list; p) if the source address
is not on the valid client list then determining on the computing device if the destination
address is on the valid client list; q) if the destination address is not on the valid client
list then returning to step (h) in claim 2; r) if the destination address is on the valid
client list then generating on the computing device an authorized client in ad-hoc
conversation with rogue client alert, and returning to step (h) in claim 2; s) if the source
address is on the valid client list then determining on the computing device if the
destination address is on the valid client list; t) if the destination address is not on the
valid client list then generating on the computing device an authorized client in ad-hoc
conversation with rogue client alert, and returning to step (h) in claim 2; and u) if the
destination address is on the valid client list then returning to step (h) in claim 2.

18. The method of claim 17, wherein the step of preprocessing on the computing
device a packet using a wrong channel preprocessor is comprised of the steps of: a)
determining on the computing device a frame type of the packet; b) determining on the
computing device if the frame contains a source address; c) if the frame does not
contain a source address then returning to step (h) in claim 2; d) if the frame contains a
source address then determining on the computing device the source address in its
header; e) determining on the computing device if the source address is in a valid client
list; f) if the source address is not in the valid client list then determining on the
computing device if the source address is in a valid access point list; g) if the source
address is not in the valid access point list then returning to step (h) in claim 2; h) if the
source address is in the valid client list or not in the valid client list but in the valid
access point list then determining and recording on the computing device the
designated operating channel; i) determining on the computing device if the source
address is in a wrong channel alert list; j) if the source address is in the wrong channel
alert list then returning to step (h) in claim 2; k) if the source address is not in the
wrong channel alert list then determining on the computing device if a transmit channel
on which the packet was transmitted is a designated operating channel for the source
address; l) if the transmit channel is equal to the designated operating channel then
returning to step (h) in claim 2; and m) if the transmit channel is not equal to the
designated operating channel then adding on the computing device the source address
to the wrong channel alert list, generating on the computing device a device operating
on the wrong channel alert, and returning to step (h) in claim 2.

19. The method of claim 18, wherein the step of preprocessing on the computing
device a packet using a cloaking violation preprocessor is comprised of the steps of a)
determining on the computing device a frame type of the packet; b) determining on the
computing device if the frame is a beacon; c) if the frame is not a beacon then returning
to step (h) in claim 2; d) the frame is a beacon then determining on the computing
device if cloaking_required is equal to a one; e) if cloaking_required is not equal to a
one then returning to step (h) in claim 2; f) if cloaking_required is equal to a one then

determining on the computing device if SSID is null; g) if SSID is null then returning to
step (h) in claim 2; h) if SSID is not null then determining on the computing device if the
source address of the packet is on a cloaking policy alert list; i) if the source address of
the packet is on the cloaking policy alert list then returning to step (h) in claims 2; and
j) if the source address of the packet is not on the cloaking policy alert list then adding
on the computing device the source address to the cloaking policy alert list, generating
on the computing device a SSID cloaking policy violation detected alert, and returning
to step (h) in claim 2.

20. The method of claim 19, wherein the step of preprocessing on the computing
device a packet using an encryption violation preprocessor is comprised of the steps
of: a) determining on the computing device a frame type of the packet; b) determining
on the computing device if the frame is a probe response or a beacon frame; c) if the
frame is neither a probe response nor a beacon frame then determining on the
computing device if the frame is a data frame or an authentication frame; d) if the frame
is neither a data frame nor an authentication frame then returning to step (h) in claim 2;
e) if the frame is a probe response, beacon frame, data frame, or authentication frame
then determining on the computing device if encryption_required is set to a one; f) if
encryption_required is not set to a one then returning to step (h) in claim 2; g) if
encryption_required is set to a one and the frame is a data frame or an authentication
frame then determining on the computing device if wep is a one; h) if wep is a one then
returning to step (h) in claim 2; i) if wep is not a one then determining on the computing
device if the source address of the packet is on an encryption policy alert list; j) if the
source address of the packet is on the encryption policy alert list then returning to step
(h) in claim 2; k) if the source address of the packet is not on the encryption policy list
then adding on the computing device the source address to the encryption policy alert
list, generating on the computing device an encryption policy violation detection alert,
and returning to step (h) in claim 2; l) if encryption_required is set to a one and the
frame is a beacon frame or a probe response frame then determining on the computing
device if a privacy field is set to a one; m) if the privacy field is set to a one then
returning to step (h) in claim 2; n) if the privacy field is not set to a one then determining
on the computing device if the source address is on the encryption policy alert list; o) if
the source address is on the encryption policy alert list then returning to step (h) in
claim 2; and p) if the source address is not on the encryption policy alert list then
adding on the computing device the source address to the encryption policy alert list,
generating on the computing device an encryption policy violation detection alert, and
returning to step (h) in claim 2.

21. The method of claim 20, wherein the step of preprocessing on the computing
device a packet using a null SSID violation preprocessor is comprised of the steps of:
a) determining on the computing device a frame type of the packet; b) determining on
the computing device if the frame is a probe request; c) if the frame is a probe request
then determining on the computing device if null_ssid_assoc is set to a zero; d) if

null_ssid_assoc is not set to a zero then returning to step (h) in claim 2; e) if
null_ssid_assoc is set to a zero then determining on the computing device if SSID is
null; f) if SSID is not null then returning to step (h) in claim 2; g) if SSID is set to null
then determining on the computing device if the source address of the packet is in a
broadcast probe request senders list; h) if the source address of the packet is in the
broadcast probe request senders list then returning to step (h) in claim 2; i) if the
source address of the packet is not in the broadcast probe request senders list then
adding on the computing device the source address to the broadcast probe request
senders list and returning to step (h) in claim 2; j) if the frame is not a probe request
then determining on the computing device if the frame is a probe response; k) if the
frame is a probe response then determining on the computing device a destination
address in its header; l) determining on the computing device if the destination address
is in the broadcast probe request senders list; m) if the destination address is not in the
broadcast probe request senders list then returning to step (h) in claim 2; n) if the
destination address is on the broadcast probe request senders list then determining on
the computing device if the source address is on a broadcast probe alert list; o) if the
source address is on the broadcast probe alert list then returning to step (h) in claim 2;
p) if the source address is not on the broadcast probe alert list then adding on the
computing device the source address to the broadcast probe alert list, generating on
the computing device a Null SSID association alert, and returning to step (h) in claim 2;
q) if the frame is not a probe response then determining on the computing device if the
frame is an association request; r) if the frame is an association request then
determining on the computing device if null_ssid_assoc is set to a zero; s) if
null_ssid_assoc is not set to a zero then returning to step (h) in claim 2; t) if
null_ssid_assoc is set to a zero then determining on the computing device if SSID is
set to null; u) if SSID is not set to null then returning to step (h) in claim 2; v) if SSID is
set to null then determining on the computing device if the source address is on a
broadcast association request senders list; w) if the source address is on the
broadcast association request senders list then returning to step (h) in claim 2; x) if the
source address is not on the broadcast association request senders list then adding on
the computing device the source address to the broadcast association request senders
list, and returning to step (h) in claim 2; y) if the frame is not an association request
then determining on the computing device if the frame is an association response; z) if
the frame is not an association response then returning to step (h) in claim 2; aa) if the
frame is an association response then determining on the computing device a
destination address in its header; bb) determining on the computing device if the
destination address is on the broadcast association request senders list; cc) if the
destination address is not on the broadcast association request senders list then
returning to step (h) in claim 2; dd) if the destination address is on the broadcast
association request senders list then determining on the computing device if the source
address is on a broadcast association alert list; ee) if the source address is on the
broadcast association alert list then returning to step (h) in claim 2; and ff) if the source
address is not on the broadcast association alert list then adding on the computing

device the source address to the broadcast association alert list, generating on the
computing device a Null SSID association alert, and returning to step (h) in claim 2.

Description

FIELD OF INVENTION

The present invention relates, in general, to electrical computers and digital processing
systems support and, in particular, to security of computer networks.

BACKGROUND OF THE INVENTION

A computer can communicate via a local area network (LAN) without being physically
connected to the LAN. This is achieved by the computer broadcasting messages to,
and receiving messages from, the LAN using radio frequency (RF) energy. Such
capability is commonly referred to as wireless fidelity or Wi-Fi.

The Institute of Electrical and Electronics Engineers (IEEE) has developed a family of
specifications concerning Wi-Fi LANs (WLANs). IEEE Specification 802.11 concerns
WLAN transmission of 1 or 2 Megabits per second (Mbps) in the 2.4 GHz band. IEEE
Specification 802.11a concerns WLAN transmission up to 54 Mbps in the 5 GHz band.
IEEE Specification 802.11b concerns WLAN transmission of 11 Mbps in the 2.4 GHz
band. IEEE Specification 802.11g concerns WLAN transmission of 20 Mbps or more in
the 2.4 GHz band.

WLAN's have proliferated around the globe and are used in industry, government, and
in the home. WLANs provide mobility and the benefits that derive therefrom. However,
there is also risk involved in using a WLAN. Computers connected to WLANs are
susceptible to attack as are computers connected to LANs, and are susceptible to
attacks that are unique to WLANs (e.g., rogue access points that divert computer
traffic). Therefore, there is a need to detect intrusions into wireless computer networks.
A wireless intrusion detection system (WIDS) is used to provide protection for a WLAN
by providing a more secure operating environment. SNORT is a freely available
intrusion detection system that comes in a wireless version.

FIG. 1 is a flowchart of SNORT 1. The inputs to SNORT 1 are the rules file 2 and a
master configuration file 3 that contains arguments for preprocessors. The function
SnortMain 4 is the heart of SNORT 1. SnortMain 4 calls the function SetPktProcessor
5, which makes a decision about which decoder function should be used to process
incoming packets. SnortMain 4 also calls InitPreprocessors 6 to initialize preprocessors
and ParseRulesFile 7 to parse the rules file 2. Then, SnortMain 4 calls InterfaceThread

8 to create one thread per interface. The InterfaceThread 8 starts a loop that
continuously reads all received packets. The loop is handled by the function
ProcessPacket 9. ProcessPacket 9 calls Decode 10 to decode the current packet.
Once the packet has been decoded, ProcessPacket 9 calls the Preprocess 11.
Preprocess 11 sequentially calls various preprocessors 12, 13. Finally Preprocess 11
calls Detect 14, which applies the rules from the rules file 2 to the current packet. If a
rule matches the current packet, an alert may be generated or the packet may be
logged, depending on what is specified in the rules file 2. The rules file 2 detects
suspicious or irregular behavior that could indicate intrusion, based on the values of
certain fields in a single packet header. The preprocessors 12, 13 on the other hand,
are used to detect suspicious behavior based on information gained from many
packets, or based on information gained from a single packet combined with input from
the configuration file 3 and a more sophisticated detection algorithm.

FIG. 2 is a flowchart of Wireless SNORT 21, which is basically SNORT 1 described in
FIG. 1 with a new decoder to interpret IEEE Specification 802.11 headers, a new Wi-Fi
rules file for signature-based detection, new data structures to store IEEE Specification
802.11 header information, new logging and alerting functions for IEEE Specification
802.11, and new preprocessors to detect intrusions specific to wireless networks. The
inputs to wireless SNORT 21 are the rules file 22 and a master configuration file 23 that
contains arguments for preprocessors. The function SnortMain 24 is the heart of
wireless SNORT 21. SnortMain 24 calls the function SetPktProcessor 25, which makes
a decision about which decoder function should be used to process incoming packets.
SnortMain 24 also calls InitPreprocessors 26 to initialize preprocessors and
ParseRulesFile 27 to parse the rules file 22. Then, SnortMain 24 calls InterfaceThread
28 to create one thread per interface. The InterfaceThread 28 starts a loop that
continuously reads all received packets. The loop is handled by the function
ProcessPacket 29. ProcessPacket 29 calls Decode 30 to decode the current packet.
Once the packet has been decoded, ProcessPacket 29 calls the Preprocess 31:
Preprocess 31 sequentially calls various preprocessors 32-36. The new preprocessors
include a preprocessor to detect a rogue access point (AP) 32, a reprocessor to detect
a client using the program Netstumbler 33, a preprocessor to detects Media Access
Control (MAC) address spoofing 34, a preprocessor to detect denial-of-service attacks
that use DEAUTH flooding 35, and a preprocessor to detect denial-of-service attacks
that use AUTH flooding 36. Preprocessors in SNORT 1 of FIG. 1 that are compatible
with wireless SNORT 21 of FIG. 2 may also be included in wireless SNORT 21. Finally
Preprocess 31 calls Detect 37, which applies the rules from the rules file 22 to the
current packet. If a rule matches the current packet, an alert may be generated or the
packet may be logged, depending on what is specified in the rules file 22. The rules file
22 detects suspicious or irregular behavior that could indicate intrusion, based on the
values of certain fields in a single packet header. The preprocessors 32-36 on the other
hand, are used to detect suspicious behavior based on information gained from many
packets, or based on information gained from a single packet combined with input from

the configuration file 23 and a more sophisticated detection algorithm.

U.S. Pat. No. 7,042,852, entitled "SYSTEM AND METHOD FOR WIRELESS LAN
DYNAMIC CHANNEL CHANGE WITH HONEYPOT TRAP", discloses an intrusion
detection device and method that communicates with an intruder by emulating the
identification characteristics of a potentially compromised access point. The present
invention does not communicate with an intruder by emulating the identification
characteristics of a potentially compromised access point as does U.S. Pat. No.
7,042,852. U.S. Pat. No. 7,042,852 hereby incorporated by reference into the
specification of the present invention.

U.S. Pat. No. 7,058,796, entitled "METHOD AND SYSTEM FOR ACTIVELY
DEFENDING A WIRELESS LAN AGAINST ATTACKS", discloses a method of and
device for defending a wireless LAN by transmitting a jamming signal, a signal to
introduce CRC errors, or a signal to make it more difficulty to break encryption used by
the network. The present invention does not transmit a jamming signal, a signal to
introduce CRC errors, or a signal to make it more difficulty to break encryption used by
the network as does U.S. Pat. No. 7,058,796. U.S. Pat. No. 7,058,796 is hereby
incorporated by reference into the specification of the present invention.

U.S. Pat. No. 7,086,089, entitled "SYSTEMS AND METHODS FOR NETWORK
SECURITY," discloses devices and methods of detecting security violations by
applying one or more tests to received data, including signature test, protocol test,
statistical anomaly test, policy test, and defending the network by jamming, generating
CRC errors, transmitting random frames, locking down the network, and changing
channels. The present invention does not defend a network by jamming, generating
CRC errors, transmitting random frames, locking down the network, and changing
channels as does U.S. Pat. No. 7,086,089. U.S. Pat. No. 7,086,089 is hereby
incorporated by reference into the specification of the present invention.

U.S. Pat. No. 7,089,586, entitled "FIREWALL PROTECTION FOR WIRELESS
USERS," discloses a system for protecting a mobile wireless user via a firewall
employed at the wired line, or ISP side, of the wireless link in a wireless network. The
present invention does not employ a firewall at the wired line, or ISP side, of the
wireless link in a wireless network as does U.S. Pat. No. 7,089,586. U.S. Pat. No.
7,089,586 is hereby incorporated by reference into the specification of the present
invention.

U.S. Pat. Appl. No. 20030135762, entitled "WIRELESS NETWORKS SECURITY
SYSTEM," discloses a system for monitoring wireless networks using a directional
antenna for locating unauthorized or threatening devices. The present invention does
not employ a directional antenna as does U.S. Pat. Appl. No. 20030135762. U.S. Pat.
Appl. No. 20030135762 is hereby incorporated by reference into the specification of the

present invention.

U.S. Pat. Appl. No. 20030217289, entitled "METHOD AND SYSTEM FOR WIRELESS
INTRUSION DETECTION," discloses a method of and system for monitoring
authorized and unauthorized access to wireless network using one or more nodes that
communicate via an out of band means that is separate from the network. The present
invention does not employ an out of band means that is separate from the network as
does U.S. Pat. Appl. No. 20030217289. U.S. Pat. Appl. No. 20030217289 is hereby
incorporated by reference into the specification of the present invention.

U.S. Pat. Appl. No. 20030237000, entitled "METHOD, SYSTEM AND PROGRAM
PRODUCT FOR DETECTING INTRUSION OF A WIRELESS NETWORK," discloses a
method of and system for detecting intrusion of a wireless network by comparing a
received data stream to a valid data stream. If the received data stream deviates from
the valid data stream, the data stream is compared to a known intrusion data stream.
The present invention includes more methods and devices than U.S. Pat. Appl. No.
20030237000. U.S. Pat. Appl. No. 20030237000 is hereby incorporated by reference
into the specification of the present invention.

U.S. Pat. Appl. No. 20040028001, entitled "WIRELESS LOCAL OR METROPOLITAN
AREA NETWORK WITH INTRUSION DETECTION FEATURES AND RELATED
METHODS," discloses a method of and system for detecting intrusion of a wireless
network that includes a policing station that is separate from the wireless station. The
present invention includes more devices and methods than does U.S. Pat. Appl. No.
20040028001. U.S. Pat. Appl. No. 20040028001 is hereby incorporated by reference
into the specification of the present invention.

U.S. Pat. Appl. No. 20040107219, entitled "SYSTEM AND METHOD FOR WIRELESS
LOCAL AREA NETWORK MONITORING AND INTRUSION DETECTION," discloses a
method of and system for detecting intrusion of a wireless network by profiling wireless
devices, determining threat levels posed by wireless devices, and prevents traffic from
being received by a wireless device from a wireless device determined to pose too
great a threat. The present invention includes more devices and methods than does
U.S. Pat. Appl. No. 20040107219. U.S. Pat. Appl. No. 20040107219 is hereby
incorporated by reference into the specification of the present invention.

U.S. Pat. Appl. No. 20040162995, entitled "INTRUSION DETECTION SYSTEM FOR
WIRELESS NETWORKS," discloses a method of and system for detecting intrusion of
a wireless network using monitoring stations and fusion stations to monitor and
correlate attributes of signals, including carrier frequency, spurious emissions,
power-on and power-down transients, direct and multipath received signal strength,
signal-to-noise ration, direction and angle of arrival, time of arrival, position, range, time
dispersion, and Doppler shift and polarization. The present invention does not employ

monitoring and fusion stations to receive and correlate signals as does U.S. Pat. Appl.
No. 20040162995. U.S. Pat. Appl. No. 20040162995 is hereby incorporated by
reference into the specification of the present invention.

U.S. Pat. Appl. No. 20040235453, entitled "ACCESS POINT INCORPORATING A
FUNCTION OF MONITORING ILLEGAL WIRELESS COMMUNICATIONS," discloses
a device for detecting the presence of unauthorized wireless communications at an
access point by including an additional receiver to receive and monitor all channels to
determine if unauthorized wireless communications are present. The present invention
does more than does U.S. Pat. Appl. No. 20040235453. U.S. Pat. Appl. No.
20040235453 is hereby incorporated by reference into the specification of the present
invention.

U.S. Pat. Appl. No. 20050037733, entitled "METHOD AND SYSTEM FOR WIRELESS
INTRUSION DETECTION PREVENTION AND SECURITY MANAGEMENT," discloses
a device for and method of wireless intrusion detection that integrates Open System
Interconnection (OSI) Layer 1 (i.e., the physical layer) and a smart wireless RF
antenna with an OSI Layer 2 (i.e., a data link layer) wireless security system
management platform. The present invention does not integrate OSI Layer 1 and a
smart wireless RF antenna with an OSI Layer 2 wireless security system management
platform as does U.S. Pat. Appl. No. 20050037733. U.S. Pat. Appl. No. 20050037733
is hereby incorporated by reference into the specification of the present invention.

U.S. Pat. Appl. No. 20050054326, entitled "METHOD AND SYSTEM FOR SECURING
AND MONITORING A WIRELESS NETWORK," discloses a device for and method of
securing and monitoring a wireless network by scanning a wireless network, building a
profile for each detected node, requiring an administrator to determine if the detected
node may access the network or not, detecting unauthorized nodes, and limiting an
unauthorized node's access to the network. The present invention does more than
does U.S. Pat. Appl. No. 20050054326. U.S. Pat. Appl. No. 20050054326 is hereby
incorporated by reference into the specification of the present invention.

U.S. Pat. Appl. Nos. 20050136891, 20050202800, and 20050213553, entitled
"WIRELESS LAN INTRUSION DETECTION BASED ON LOCATION," "SYSTEM AND
METHOD FOR CLIENT-SERVER-BASED WIRELESS INTRUSION DETECTION," and
"METHOD FOR WIRELESS LAN INTRUSION DETECTION BASED ON PROTOCOL
ANOMALY ANALYSIS" disclose devices for determining intrusion into a wireless
network by locating transmitters using signals transmitted thereby, recording the
locations of the transmitters that were assigned by an administrator, subsequently
detecting signals from these transmitters, determining the locations of the transmitters
using the received signals, comparing the determined locations to the recorded
location, and initiating an alarm if a location derived from a signal does not match the
corresponding recorded location. The present invention does not determine, record,

and compare locations as does U.S. Pat. Appl. Nos. 20050136891, 20050202800, and
20050213553. U.S. Pat. Appl. Nos. 20050136891, 20050202800, and 20050213553
are hereby incorporated by reference into the specification of the present invention.

U.S. Pat. Appl. No. 20050144544, entitled "MECHANISM FOR DETECTION OF
ATTACK BASED ON IMPERSONATION IN A WIRELESS NETWORK," discloses a
device for determining an attack based on impersonation by receiving a transmission
via a secure link and via wireless transmission, comparing the two, and determining
that an attack by impersonation is present if the two transmissions are not identical.
The present invention does not employ a secure link and compare function as does
U.S. Pat. Appl. No. 20050144544. U.S. Pat. Appl. No. 20050144544 is hereby
incorporated by reference into the specification of the present invention.

U.S. Pat. Appl. No. 20060085543, entitled "PERSONAL WIRELESS MONITORING
AGENT," discloses a device for monitoring a wireless device by comparing
communications against policy guidelines, determining whether a violation has
occurred, and informing an authorized user of any violation. The present invention does
more than does U.S. Pat. Appl. No. 20060085543. U.S. Pat. Appl. No. 20060085543 is
hereby incorporated by reference into the specification of the present invention.

U.S. Pat. Appl. Nos. 20060002331 and 20060193300, entitled "AUTOMATED SNIFFER
APPARATUS AND METHOD FOR WIRELESS LOCAL AREA NETWORK SECURITY"
and "METHOD AND APPARATUS FOR MONITORING MULTIPLE NETWORK
SEGMENTS IN LOCAL AREA NETWORKS FOR COMPLIANCE WITH WIRELESS
SECURITY POLICY", disclose a device for securing a wireless network by using a
plurality of sniffers spatially arranged in a selected geographic region to provide
substantial radio coverage over at least a portion of the geographic location. The
present invention employs more devices and methods than does U.S. Pat. Appl. Nos.
20060002331 and 20060193300. U.S. Pat. Appl. Nos. 20060002331 and 20060193300
are hereby incorporated by reference into the specification of the present invention.

U.S. Pat. Appl. No. 20060193299, entitled "LOCATION-BASED ENHANCEMENTS
FOR WIRELESS INTRUSION DETECTION," discloses a device for wireless intrusion
detection by identifying the physical location of each access point, generating a
message integrity code for each access point that indicates the location of the access
point, determining the signal strength of a received transmission, and determining
whether or not the location in message integrity code is consistent with the identity of
the corresponding access point and whether or not the signal strength is consistent
with the corresponding location. The present invention does not employ a message
integrity code and a signal strength measurement as does U.S. Pat. Appl. No.
20060193299. U.S. Pat. Appl. No. 20060193299 is hereby incorporated by reference
into the specification of the present invention.

U.S. Pat. Appl. No. 20060197702, entitled "WIRELESS HOST INTRUSION
DETECTION SYSTEM," discloses a device for wireless intrusion detection by
identifying a signal from a wireless access point involving a full hand-off procedure or a
change in signal such as a change in signal strength or a change in the direction of
arrival. Upon the detection of any of these events, an intrusion alert is made. The
present invention does not identify a full hand-off procedure or a change in signal as
does U.S. Pat. Appl. No. 20060197702. U.S. Pat. Appl. No. 20060197702 is hereby
incorporated by reference into the specification of the present invention.

U.S. Pat. Appl. No. 20060200862, entitled "METHOD AND APPARATUS FOR
LOCATING ROGUE ACCESS POINT SWITCH PORTS IN A WIRELESS NETWORK
RELATED PATENT APPLICATIONS," discloses a device for locating and disabling a
rogue access point by detecting the presence of a rogue wireless access point,
instructing a special client to associate with the rogue access point and send a
discover packet through the rogue access point to a network management device,
locating the switch to which the rogue access point is connected, and disabling the
switch port. The present invention does not instruct a special client to associate with a
rogue access point and send a discover packet through the rogue access point to a
network management device, locate the switch to which the rogue access point is
connected, and disable the switch port as does U.S. Pat. Appl. No. 20060200862. U.S.
Pat. Appl. No. 20060200862 is hereby incorporated by reference into the specification
of the present invention.

SUMMARY OF THE INVENTION

It is an object of the present invention to secure a wireless local area network (WLAN).

It is an object of the present invention to detect and alert on unauthorized client Media
Access Control (MAC) addresses, an unauthorized client actively trying to connect to a
valid network, an authorized client actively trying to connect to an unauthorized access
point (AP), an authorized client actively communicating with an unauthorized client in
ad-hoc mode, a device broadcasting beacons for an ad-hoc network, two devices
actively participating in an ad-hoc network, two devices actively participating in a
bridged network, a device operating on the wrong channel, a violation in the broadcast
Service Set Identifier (SSID) policy of the network, a violation in the encryption policy of
the network, and a violation in the NULL SSID association policy of the network.

It is an object of the present invention to continuously and simultaneously monitor all
802.11 channels so that no packet goes undetected, determine the channel that a
packet was transmitted on, versus the channel that it was received on, support
intrusion detection at the full data rate of the physical channel without dropping
packets, capture all frames, including frames with 802.11 protocol violations, such as
those having the reserve type set, and detect and alert on frames having 802.11

protocol violations.

The present invention is a device for and method of detecting intrusion into a wireless
network that includes a configuration file, a rules files, a main processor, a set packet
processor, an initialize preprocessor, a parse rules file, an interface thread unit, a
process packet unit, a decoder, a preprocess connected to the process packet unit; at
least one preprocessor consisting of a rogue access point and transmit channel
preprocessor, a NETSTUMBLER preprocessor, a MAC spoofing preprocessor, a
DEAUTH flood preprocessor, an AUTH flood preprocessor, a rogue client preprocessor,
a bridged network preprocessor, a rogue client valid access point preprocessor, valid
client rogue access point preprocessor, an ad-hoc network preprocessor, a wrong
channel preprocessor, a cloaking policy violation preprocessor, an encryption policy
violation preprocessor, and a null SSID association policy violation preprocessor, and a
detect unit.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow-chart of the prior art SNORT method;

FIG. 2 is a flow-chart of the prior art wireless SNORT method;

FIG. 3 is a schematic of the present invention;

FIG. 4 is a flow-chart of the rogue access point and transmit channel preprocessor of
the present invention;

FIG. 5 is a flow-chart of the rogue client preprocessor of the present invention;

FIG. 6 is a flow-chart of the bridged network preprocessor of the present invention;

FIG. 7 is a flow-chart of the rogue client and valid access point preprocessor of the
present invention;

FIG. 8 is a flow-chart of the valid client and rogue access point preprocessor of the
present invention;

FIG. 9 is a flow-chart of the ad-hoc network preprocessor of the present invention;

FIG. 10 is a flow-chart of the wrong channel preprocessor of the present invention;

FIG. 11 is a flow-chart of the cloaking violation preprocessor of the present invention;

FIG. 12 is a flow-chart of the encryption violation preprocessor of the present invention;

FIG. 13 is a flow-chart of the null SSID violation preprocessor of the present invention;

FIG. 13A is a flow-chart of a first section of the null SSID violation preprocessor of FIG.
13;

FIG. 13B is a flow-chart of a second section of the null SSID violation preprocessor of
FIG. 13;

FIG. 13C is a flow-chart of a third section of the null SSID violation preprocessor of
FIG. 13; and

FIG. 13D is a flow-chart of a fourth section of the null SSID violation preprocessor of
FIG. 13.

DETAILED DESCRIPTION

The present invention is an intrusion detection method for a wireless computer. The
present invention improves upon prior art wireless intrusion detection methods by
adding additional preprocessors to detect and alert on activity which the prior art
methods cannot.

The present invention continuously and simultaneously monitors packets transmitted
on all wireless channels for malicious activity. In the preferred embodiment, the wireless
channel is as defined in the IEEE Standards 802.11 et seq. However, the present
invention applies to any suitable wireless channel. Simultaneously monitoring channels
improves the ability to detect NETSTUMBLER and MAC spoofing, by ensuring that no
packets on any channel are missed.

The present invention can detect and alert on unauthorized client MAC addresses, an
unauthorized client attempting to connect to a valid network, an authorized device
communicating with an unauthorized device, a device broadcasting beacons for an
ad-hoc network, two devices participating in an ad-hoc network, two devices
participating in a bridged network, a device operating on a wrong channel, a violation in
the broadcast Service Set Identifier (SSID) policy of the network, a violation in the
encryption policy of the network, and a violation in the NULL SSID association policy of
the network.

The wireless intrusion detection system (WIDS) from AirDefense, Inc. cannot detect
and alert on a policy violation for NULL SSID association, or on an authorized client
communicating in ad-hoc mode with a rogue client as does the present invention. The
AirDefense WIDS does not alert a user when one client in an ad-hoc conversation is
an unauthorized user, as does the present invention. The AirDefense WIDS also

cannot continuously and simultaneously monitor all wireless channels or support
intrusion detection at the full data rate of the channel as does the present invention. In
addition, the AirDefense WIDS drops frames with the reserve type set, unlike the
present invention, which has the ability to capture all frames. Furthermore, the present
invention detects and alerts on wireless protocol violations, whereas the AirDefense
WIDS does not.

FIG. 3 is a flowchart of the wireless intrusion detection device 41 of the present
invention. The inputs to the device 41 are a rules file 42 and a configuration file 43 that
contains arguments for the preprocessors 52-65. The function Main 24 calls the
function SetPktProcessor 45, which determines which decoder function will process an
incoming packet. Main 44 also calls InitPreprocessors 46 to initialize the preprocessors
52-65 and calls ParseRulesFile 47 to parse the rules file 42. Then, Main 44 calls
InterfaceThread 48 to create one thread for all interfaces. The InterfaceThread 48
starts a loop that continuously reads all packets received from all interfaces or
channels. The loop is handled by the function ProcessPacket 49. ProcessPacket 49
calls Decode 50 to decode the current packet. Once the packet has been decoded,
ProcessPacket 49 calls Preprocess 51. Preprocess 51 sequentially calls the
preprocessors 52-65 that detect and alert on the activity described below. Anytime an
alert is generated by a preprocessor 52-65, the MAC address of the source transmitter
is added to an alert list. Separate alert lists are maintained for each type of alert.
Before a new alert is generated, each preprocessor checks it's alert list to see if the
source MAC address is already on the list. If so, it means that an alert was previously
generated for this source. Therefore, no new alert need be generated. This prevents
the database from being flooded with multiple copies of the same alert for the same
source. Once an alert is entered on an alert list, the source MAC address associated
with the alert remains on the alert list until a user-definable period of time has elapsed.
This timeout period is defined in the configuration file 43 and is passed to the
preprocessors 52-56 along with all of the other policy parameters.

RogueAPTransmitChannel 52 preprocessor detects rogue access points (APs) and the
channel on which a received packet is transmitted. RogueAPTransmitChannel 52
preprocessor is a new preprocessor that has not been disclosed by the prior art, the
details of which are described below and in FIG. 4.

NETSTUMBLER 53 preprocessor detects devices running the NETSTUMBLER
program for the purpose of wireless network discovery. In the preferred embodiment,
the networks follow IEEE Standards 802.11b, 802.11a, and 802.11g. However, the
present invention applies to any suitable wireless network. This preprocessor is known
in the prior art (e.g., disclosed in wireless SNORT).

MACSpoofing 54 preprocessor detects modification, or spoofing, of a Media Access
Control (MAC) address. This preprocessor is known in the prior art (e.g., disclosed in

wireless SNORT).

DeauthFlood 55 preprocessor detects denial-of-service attacks that send a flood of
deauthentication (DEAUTH) packets in an attempt to disrupt service. This preprocessor
is known in the prior art (e.g., disclosed in wireless SNORT).

AuthFlood 56 preprocessor detects denial-of-service attacks that send a flood of
Authentication (AUTH) packets in an attempt to disrupt service. This preprocessor is
known in the prior art (e.g., disclosed in wireless SNORT).

RogueClient 57 preprocessor detects rogue clients. RogueClient 57 preprocessor is a
new preprocessor who's operation has not been disclosed in the prior art, the details of
which are described below and in FIG. 5.

BridgedNetwork 58 preprocessor detects the presence of a wireless distribution
system, or bridged network. BridgedNetwork 58 preprocessor is a new preprocessor
who's operation has not been disclosed in the prior art, the details of which are
described below and in FIG. 6.

RogueClientValidAP 59 preprocessor detects an unauthorized client attempting to
connect to a valid AP, or network. RogueClientValidAP 59 preprocessor is a new
preprocessor who's operation has not been disclosed in the prior art, the details of
which are described below and in FIG. 7.

ValidClientRogueAP 60 preprocessor detects an authorized client attempting to
connect to a rogue AP. ValidClientRogueAP 60 preprocessor is a new preprocessor
who's operation has not been disclosed in the prior art, the details of which are
described below and in FIG. 8.

AdhocNetwork 61 preprocessor detects the presence of an ad-hoc network.
AdhocNetwork 61 preprocessor is a new preprocessor who's operation has not been
disclosed in the prior art, the details of which are described below and in FIG. 9.

WrongChannel 62 preprocessor detects a device operating on an unauthorized
channel. Wrong Channel 62 preprocessor is a preprocessor who's operation has not
been disclosed in the prior art, the details of which are described below and in FIG. 10.

CloakingViolation 63 preprocessor detects a device violating the network SSID cloaking
policy. CloakingViolation 63 preprocessor is a preprocessor who's operation has not
been disclosed in the prior art, the details of which are described below and in FIG. 11.

EncryptionViolation 64 preprocessor detects a device violating the network encryption
policy. EncryptionViolation 64 preprocessor is a preprocessor who's operation has not

been disclosed in the prior art, the details of which are described below and in FIG. 12.

NullSSIDViolation 65 preprocessor detects a device violating the network NULL SSID
association policy. NullSSIDViolation 65 preprocessor is a preprocessor who's
operation has not been disclosed in the prior art, the details of which are described
below and in FIGS. 13-13D.

Preprocess 51 calls Detect 66, which applies the rules from the rules file 42 to the
current packet. If a rule matches the current packet, an alert may be generated or the
packet may be logged, depending on what is specified in the rules file 42. The rules file
42 detects suspicious or irregular behavior that could indicate intrusion, based on the
values of certain fields in a single packet header. The preprocessors 52-65 are used to
detect suspicious behavior based on information gained from many packets, or based
on information gained from a single packet combined with input from the configuration
file 43 and a more sophisticated detection algorithm.

FIG. 4 is a flow-chart of the RogueAPTransmitChannel 52 preprocessor that detects
rogue access points (AP) and the transmit channel of a received packet. Due to
spectral overlap, a packet transmitted on one channel may be received on that channel
and many of its surrounding channels. RogueAPTransmitChannel 52 preprocessor
determines on which channels a received packet was transmitted and received. The
first step 71 of RogueAPTransmitChannel 52 preprocessor is determining the frame
type of the packet being processed. The second step 72 is determining if the frame
type contains a basic service set identifier (BSSID) or is an acknowledgement message
(i.e., ACK). The BSSID is the MAC address of the AP that controls the network to
which the source is associated. If the frame does not contain a BSSID and is not an
ACK then the third step 73 is setting global variable Transmit_Channel equal to zero
and returning to Preprocess 51. If the frame contains a BSSID or is an ACK then the
fourth step 74 is determining if the packet is a beacon frame or a probe response. An
access point advertises its operating channel in a beacon and probe response so that
clients looking to associate with it will know which channel to use. The identification of
the channel is included in one of the information elements in the headers of these two
frame types. If either frame type is identified, the fifth step 75 is identifying the BSSID
and the channel in the header. For any other frame type received, determine the
BSSID. If the BSSID is known then the managing AP is known. Therefore, the channel
on which it operates is known from its beacons and probe responses. Since the source
address of the packet is managed by the AP, or possibly is that AP, the source address
must be transmitting on the same channel as the AP. The sixth step 76 is determining if
the BSSID is in a rogue AP list. If not then the seventh step 77 is determining if the
BSSID is on a valid AP list. If the BSSID is not on the valid AP list then the eighth step
78 is adding the BSSID and its channel to the rogue AP list, setting global variable
Transmit_Channel equal to that channel, and returning to Preprocess 51. If the BSSID
is in the rogue AP list or the BSSID is not in the rogue AP list but is in the valid AP list

then the ninth step 79 is updating the channel information in the corresponding rogue
or valid AP list entry, setting global variable Transmit_Channel to that channel, and
returning to Preprocess 51. If the frame is neither a beacon frame nor a probe response
then the tenth step 80 is finding the BSSID in the header. The eleventh step 81 is
determining if the BSSID or destination address is in the rogue AP list. An
acknowledgement does not have a BSSID field in its header, it only has a destination
address field. So, instead of trying to match the BSSID to an entry in the rogue AP list
or the valid AP list, match the destination address to an entry in the rogue AP list or the
valid AP list. The destination address will only be in one of these lists if the packet is
destined for an AP. If the BSSID or the destination address are in the rogue AP list then
the twelfth step 82 is determining its channel in the rogue AP list, setting global variable
Transmit_Channel equal to that channel, and returning to Preprocess 51. If the BSSID
and the destination address are not in the rogue AP list then the thirteenth step 83 is
determining if the BSSID or destination address are on the valid AP list. If the BSSID or
the destination address are in the valid AP list then determining its channel from the
valid AP list, setting global variable Transmit_Channel to that channel, and returning to
Preprocess 51. If the BSSID and the destination address are not on the valid AP list
then the channel cannot be determined and the fourteenth step 84 is adding the BSSID
to the rogue AP list with channel equal to zero, setting the global variable
Transmit_Channel equal to zero, and returning to Preprocess 51.

For the occasions where an operating channel cannot be determined, a
Transmit_Channel of zero is stored in the global packet data structure. This situation
occurs with certain control frame types that do not contain a BSSID field and are not
acknowledgements, such as broadcast probe requests. It also occurs when the
captured packet is an acknowledgement that is not destined for an AP. Another
situation where it occurs is when the captured frame is not a beacon or probe
response, and it contains an unrecognized BSSID, meaning that a beacon or probe
response has not previously been received from that AP. In such a case, the BSSID is
also entered into the rogue AP list with an operating channel of zero. The channel is
updated in the rogue AP list whenever the first beacon or probe response from that AP
arrives. Otherwise, determine its channel, set global variable Transmit_Channel equal
to that channel, and return to Preprocess 51.

FIG. 5 is a flow-chart of the RogueClient 57 preprocessor that detects rogue clients.
Wireless SNORT 21 in FIG. 2 includes a preprocessor to detect rogue access points
32, but does not include a preprocessor to detect rogue clients as does the present
invention. The present detects and all unauthorized wireless transmitters. Valid clients
are listed in the configuration file 43. If a client that is not on that list transmits a packet,
an alert is generated. The first step 91 of the RogueClient 57 preprocessor is
determining the frame type of the current packet being analyzed. The location of a
source address, if any, in the wireless header is different for each frame type, so the
frame type of the captured packet is determined before the source address can be

discovered. The second step 92 is determining if the frame type contains a source
address. If not then the third step 93 is returning to Preprocess 51. Some frame types,
such as acknowledgements, do not contain source addresses. If the frame contains a
source address then the fourth step 94 is finding the source address in the header. The
fifth step 95 is determining if the packet is from an AP. If so then return to Preprocess
51. The sixth step 96 is determining if the source address is in the rogue client list. This
is done by iterating through a list that is maintained of rogue clients. The RogueClient
57 preprocessor determines if the source address of the captured packet matches an
entry in the rogue list. If the source address is not on the rogue client list then the
seventh step 97 is determining if the source address is on a valid client list. This is
done by iterating through the list of valid clients, looking to see if a member of the list
matches the source address of the current packet. If so then the eighth step 98 is
returning to Preprocessor 51. This indicates that the source is a valid client and need
not cause an alert. If the packet is not on the valid client list then the ninth step 99 is
adding the source address to the rogue client list, generating an alert message to
indicate that a rogue client has been detected, and returning to Preprocessor 51. If the
sixth step 96 determined that the source address is in the rogue client list then the
tenth step 100 is determining if a user-defined time period has expired. If not then
return to Preprocess 51. This indicates that the rogue client has already caused an
alert and need not cause another one until the user-definable time period has elapsed.
The timeout period is set in the configuration file 43. If the time period has expired then
add the source address to the rogue client list, generate an alert message to indicate
that a rogue client had been detected, and return to Preprocessor 51. This indicates
that the source address of the current packet is not on the valid client list or the rogue
client list Therefore, the packet originated from a rogue client but had not caused an
alert. An alert is then generated, and the source address is added to the list of rogue
clients.

FIG. 6 is a flow-chart of the BridgedNetwork 58 preprocessor for detecting the
presence of a wireless distribution system, or bridged network. The present invention
detects when two or more devices participate in a bridged network. This is
accomplished by determining if the packet being analyzed is a data packet. If so then
the values of the to_ds and from_ds flags in the header are checked. The to_ds and
from_ds flags indicate that the packet came from the distribution system (ds) and was
being sent to the distribution system, respectively. If each flag value is equal to one, it
means that the packet is being sent between two access points that form a wireless
bridge. If a wireless bridge packet is identified, determine if an alert has already been
issued for this source and destination couplet. If not, an alert is generated and the
source and destination pair is added to the alert list. The first step 101 of the
BridgedNetwork 58 preprocessor is finding the frame type of the packet being
analyzed. The second step 102 is determining if the frame contains a source address.
If not then the third step 103 is returning to Preprocess 51. If the frame contains a
source address then the fourth step 104 is determining if the frame is a data frame. If

so then the fifth step 105 is determining if to_ds and from_ds are each set to one. If the
frame is not a data frame then return to Preprocess 51. If to_ds and from_ds are each
set to one then the sixth step 106 is determining if the source and destination
addresses are in the alert list. Otherwise, returning to Preprocess 51. If the source and
destination addresses are on the alert list then the seventh step 107 is determining if a
user-definable time has expired. If the time has not expired, indicating that the most
recent previous alert of a bridged network is not stale, then return to Preprocessor 51.
If either the time has expired, indicating that the previous alert is stale and should be
refreshed, or if the source and destination addresses are not on the alert list then the
eighth step 108 is adding the source and destination addresses to the alert list,
generating an alert that indicates that a bridged network has been detected, and
returning to Preprocess 51.

FIG. 7 is a flow-chart of the RogueClientValidAP 59 preprocessor that detects an
unauthorized client attempting to connect to a valid AP, or network. An unauthorized
client attempting to connect to a valid network means a client that is not on the list of
valid clients sends an authentication request to an access point that is on the list of
valid access points. The RogueClientValidAP 59 preprocessor determines if the packet
being analyzed is an authentication request. If so then the RogueClientValidAP 59
preprocessor records the destination access point. If the source address of the packet
is determined to be rogue through the process described above (i.e., the source
address is already on the rogue client list or it is not on the valid client list), the
RogueClientValidAP 59 preprocessor iterates through the list of valid APs to determine
if the destination AP is a valid AP for the network. Once it is established that the source
address of the packet is not a valid client and its destination address is a valid AP, the
RogueClientValidAP 59 preprocessor determines if an alert has already been issued on
the source address. If not then the source address is added to the unauthorized
authentication request alert list and an alert is generated. The first step 111 in the
RogueClientValidAP 59 preprocessor is finding the frame type of the packet being
analyzed. The second step 112 is determining if the frame contains a source address. If
not then the third step 113 is returning to Preprocess 51. If the frame contains a source
address then the fourth step 114 is determining if the frame is an authentication
request. If so then the fifth step 115 is determining if the source address is on the rogue
client list. Otherwise, returning to Preprocess 51. If the source address is not on the
rogue client list then the sixth step 116 is determining if the source address is on the
valid client list. If so then the seventh step 117 is returning to preprocess 51. If the
source address is on the rogue client list or if the source address is not on the rogue
client list or the valid client list then the eighth step 118 is determining if the destination
AP address is valid. If not then return to Preprocess 51. If so then the ninth step 119 is
determining if the source address is on the bad authentication request list. If so then
return to preprocess 51. Otherwise, the tenth step 120 is adding the source address to
the bad authentication request list, generating an alert to indicate that an unauthorized
client is attempting to connect to a valid AP, and returning to Preprocess 51.

FIG. 8 is a flow-chart of the ValidClientRogueAP 60 preprocessor that detects an
authorized client attempting to connect to a rogue AP. If the packet being processed is
an authentication request, the ValidClientRogueAP 60 preprocessor records the
destination address of the packet. If the source address of the packet is on the valid
client list, the ValidClientRogueAP 60 preprocessor iterates through the list of valid
network APs. If the destination address is not on the list of valid network APs, the
ValidClientRogueAP 60 preprocessor generates an alert. The first step 201 of the
ValidClientRogueAP 60 preprocessor is determining the frame type of the packet. The
second step 202 is determining if the frame contains a source address. If not then the
third step 203 is returning to Preprocess 51. If so then the fourth step 204 is
determining if the frame is an authentication request. If not then return to Preprocess
51. Otherwise, the fifth step 205 is determining if the source address is on the rogue
client list. If so then return to Preprocess 51. Otherwise, the sixth step 206 is
determining if the source address is on the valid client list. If not then the seventh step
207 is returning to Preprocess 51. If the source address is on the valid client list then
the eighth step 208 is determining if the destination address is rogue. If not then return
to Preprocess 51. Otherwise, the ninth step 209 is determining if the source address is
on the bad authentication request list. If so then returning to Preprocess 51. Otherwise,
adding the source address to the bad authentication request list, generating an alert to
indicate that an authorized client is attempting to connect to a rogue AP, and returning
to Preprocess 51.

FIG. 9 is a flow-chart of the AdhocNetwork 61 preprocessor for detecting ad-hoc
networks. The AdhocNetwork 61 preprocessor has multiple alerts concerning ad-hoc
networks. The AdhocNetwork 61 preprocessor detects a single device broadcasting
beacons for an ad-hoc network, two devices participating in an ad-hoc network, and an
authorized client communicating in ad-hoc mode with a rogue client. In order to detect
a device sending ad-hoc beacons, the AdhocNetwork 61 preprocessor first checks to
see if the packet being analyzed is a beacon frame or a probe response frame. If so
then the AdhocNetwork 61 preprocessor checks the values of the ESS and IBSS fields
in the header. A mobile station broadcasting beacons for an independent basic service
set (IBSS), otherwise known as an ad-hoc network, always sets the extended service
set (ESS) field to zero and the IBSS field to one. If these values are identified then an
alert is generated. For the other two ad-hoc network scenarios, the AdhocNetwork 61
preprocessor first checks to see if the packet is a data packet. If so then it checks the
values of the to_ds and from_ds flags in the header. If each field has a value of zero, it
indicates that the packet is being transmitted directly between two clients in an ad-hoc
network. At this point an active ad-hoc network alert is generated. If the source
address is a valid client and the destination address is not, or the destination address
is a valid client and the source address is not then an authorized client in active ad-hoc
conversation with rogue client alert is generated. The first step 301 of the
AdhocNetwork 61 preprocessor is determining the frame type of the packet. The

second step 302 is determining if the frame contains a source address. If not then the
third step 303 is returning to Preprocess 51. If so then the fourth step 304 is
determining if the frame is a beacon or a probe response. If so then the fifth step 305 is
determining if ESS is equal to zero and IBSS is equal to one. If not then return to
Preprocess 51. If so then the sixth step 306 is adding the source address to the ad-hoc
beacon alert list, generating an ad-hoc beacon detected alert, and returning to
Preprocess 51. If the frame is neither a beacon nor a probe request then the seventh
step 307 is determining if the frame is a data frame. If not then the eighth step 308 is
returning to Preprocess 51. If so then the ninth step 309 is determining if to_ds and
from_ds are each set to zero. If not then return to Preprocess 51. If so then the tenth
step 310 is determining if the source and destination addresses are on the active
ad-hoc alert list. If so then returning to Preprocess 51. If not then the eleventh step 311
is adding the source and destination addresses to the active ad-hoc network alert list
and generating an active ad-hoc network detected alert. The twelfth step 312 is
determining if the source address is on the valid client list. If not then the thirteenth
step 313 is determining if the destination address is on the valid client list. If not then
the fourteenth step 314 is returning to Preprocess 51. If so then the fifteenth step 315
is generating an authorized client in ad-hoc conversation with rogue client alert, and
returning to Preprocess 51. If the source address is on the valid client list then the
sixteenth step 316 is determining if the destination address is on the valid client list. If
so then returning to Preprocess 51. If not then generating an authorized client in
ad-hoc conversation with rogue client alert, and returning to Preprocess 51.

FIG. 10 is a flow-chart of the WrongChannel 62 preprocessor for detecting a device
operating on an unauthorized channel. Valid access points (APs) and their authorized
operating channels are listed in the configuration file 43. The network's valid clients and
their authorized operating channels are also listed in the configuration file 43. The
WrongChannel 62 preprocessor detects a device operating on an unauthorized
channel. The WrongChannel 62 preprocessor determines if the source address of a
packet is an authorized access point listed in the configuration file 43 or an authorized
client listed in the configuration file 43. The WrongChannel 62 preprocessor looks up
the authorized operating channel for the valid client or access point and compares it
against the channel on which the packet was transmitted. If they match, there is no
violation. If the transmit channel and the authorized operating channel are different then
the source is transmitting packets on an unauthorized channel. This would be a
violation for which an alert would be generated. The first step 401 of the WrongChannel
62 preprocessor is determining the frame type of the packet being analyzed. The
second step 402 is determining if the frame contains a source address. If not then the
third step 403 is returning to the Preprocessor 51. If so then the fourth step 404 is
determining the source address in the header. The fifth step 405 is determining if the
source address is in the valid client list. If not then the sixth step 406 is determining if
the source address is in the valid AP list. If not then returning to Preprocess 51. If the
source address is in the valid client list or not in the valid client list but in the valid AP

list then the seventh step 407 is recording the designated operating channel. The
eighth step 408 is determining if the source address is in the wrong channel alert list. If
so then return to Preprocess 51. If not then the ninth step 409 is determining if the
transmit channel is the designated operating channel. If so then return to Preprocess
51. If not then the tenth step 410 is adding the source address to the wrong channel
alert list, generating a device operating on the wrong channel alert, and returning to
Preprocess 51.

FIG. 11 is a flow-chart of the Cloaking Violation 63 preprocessor that detects a device
violating the network SSID cloaking policy. In some access points (APs), the
administrator can choose to "cloak" the AP's service set identification (SSID) so that
the AP does not transmit the SSID in the beacon frame. The informational element
containing the SSID will still appear in the frame, but it will contain a null value in place
of the SSID string. The network cloaking policy is set in the configuration file 43 with a
Boolean variable cloaking_required. If this variable is a one, the AP must cloak the
SSID in the beacon frames that it transmits. If this variable is a zero, the AP does not
have to cloak the SSID in the beacon frames it transmits. CloakingViolation 63
preprocessor determines whether or not the received packet is a beacon frame. If it is,
it determines whether or not the SSID field is NULL. If cloaking is required in the
network (cloaking_required=1) and the SSID field is not equal to NULL, an alert is
generated. The first step 501 of the CloakingViolation 63 preprocessor is determining
the frame type of the packet being analyzed. The second step 502 is determining if the
frame is a beacon. If not then the third step 503 is returning to Preprocess 51. If so
then the fourth step 504 is determining if cloaking_required is, equal to a one. If not
then return to Preprocess 51. If so then the fifth step 505 is determining if SSID is null.
If so then returning to Preprocess 51. If not then the sixth step 506 is determining if the
source address of the packet is on the cloaking policy alert list. If so then returning to
Preprocess 51. If not then the seventh step 507 is adding the source address to the
cloaking policy alert list, generating a SSID cloaking policy violation detected alert, and
returning to Preprocess 51.

FIG. 12 is a flow-chart of the EncryptionViolation 64 preprocessor for detecting a device
violating the network encryption policy. The administrator can configure the network to
operate with or without encryption. The EncryptionViolation 64 preprocessor can detect
if a particular client is not adhering to the encryption policy. The system administrator
sets the network encryption policy in the configuration file 43 with a Boolean variable
encryption_required. If this variable is a one, encryption is required for transmissions. If
this variable is a zero, encryption is not required for transmissions. The
EncryptionViolation 64 preprocessor determines if the packet being analyzed is a data
packet or an authentication packet. If it is either of these frame types, the
EncryptionViolation 64 preprocessor checks the value of the Wired Equivalent Privacy
(wep) flag in the header. The wep flag should have the value one if the packet payload
is encrypted. If encryption is required for transmission (encryption_required==1) and

the value of the wep flag is zero, an alert is generated. The EncryptionViolation 64
preprocessor also determines if the packet is a beacon or a probe response. If either of
these frame types is recognized, the EncryptionViolation 64 preprocessor determines
the value of the privacy field in the header. The privacy field should be one if the access
point requires encrypted transmissions. If encryption is required for transmission and
the value of the privacy field in the beacon or probe response frames is zero, an alert is
generated. The different frame types must be treated differently in the
EncryptionViolation 64 preprocessor because beacons and probe responses are never
encrypted, but they must still adhere to the encryption policy by broadcasting
whichever option the system administrator has selected for the network. To detect a
violation of the encryption policy, the EncryptionViolation 64 preprocessor determines
the value of the privacy field in beacons and probe responses, and determines the
value of the wep field in data packets. If the privacy field is set to a one in the header of
a beacon or probe response frame, it indicates that the AP implements the wep
algorithm, and that all clients must use wep encryption when transmitting data frames.
If the wep field in the header of a data packet is a one, it means that the packet
payload is encrypted using the wep algorithm. Checking the privacy field would detect
access point (AP) encryption policy violators, and checking the wep field would detect
client encryption policy violators. The EncryptionViolation 64 preprocessor checks both
fields, whereas prior art wireless intrusion detection systems do not. The first step 601
of the EncryptionViolation 64 preprocessor is determining the frame type of the packet
being analyzed. The second step 602 is determining if the frame is a probe response or
a beacon frame. If it is neither then the third step 603 is determining if the frame is a
data frame or an authentication frame. If the frame is neither then the fourth step 604 is
returning to Preprocess 51. If the frame is a probe response, beacon frame, data frame,
or authentication frame then the fifth step 605 is determining if encryption_required is
set to a one. If not then return to preprocess 51. If so and the frame is a Data or
Authentication frame then the sixth step 606 is determining if wep is a one. If so then
return to Preprocess 51. If not then the seventh step 607 is determining if the source
address of the packet is on the encryption policy list. If so then return to Preprocess
51. If not then the eighth step 608 is adding the source address to the encryption policy
alert list, generating an encryption policy violation detection alert, and returning to
Preprocess 51. If encryption_required is set to a one and the frame is a Beacon or
Probe response frame then the ninth step 609 is determining if the privacy field is a
one. If so then the tenth step 610 is returning to Preprocess 51. If not then the eleventh
step 611 is determining if the source address is on the encryption policy list. If so then
return to Preprocess 51. If not then add the source address to the encryption policy
alert list, generate an encryption policy violation detection alert, and return to
Preprocess 51.

FIG. 13 is a flow-chart of the NullSSIDViolation 65 preprocessor for detecting a device
violating the network NULL SSID association policy. FIG. 13 consists of FIGS. 13A,
13B, 13C, and 13D. An adversary attempting to locate APs with cloaked SSIDs can

configure their client to send out network probe requests using a null or broadcast
SSID in the probe. Upon receiving a broadcast probe request from a client, the AP will
send a probe response containing the SSID and allow the client to associate. The AP
should be configured to not respond to, or associate with, clients sending probe
requests that contain a broadcast SSID. The present invention detects when an AP is
violating the null SSID association policy. The network NULL SSID association policy is
set in the configuration file 43 with the variable null_ssid_assoc. If this variable is set to
a one, the access point is allowed to respond to broadcast probe requests and
associate with clients who send broadcast association requests. If this variable is set to
a zero, the access point is not allowed to respond to broadcast probe requests or
broadcast association requests. NullSSIDViolation 65 preprocessor determines if a
packet is a probe request or an association request. If either of these frame types is
identified, the NullSSIDViolation 65 preprocessor determines if the SSID field in the
header is NULL. If so, the source is added to a "bad list" of clients sending probe
requests with a NULL SSID, or a list of clients sending association requests with a
NULL SSID (two separate lists are maintained). The NullSSIDViolation 65 preprocessor
also determines if the packet is a probe response or an association response. If one of
these frame types is identified, the NullSSIDViolation 65 preprocessor cycles through
the corresponding "bad list" and compares the source addresses in the "bad list" to the
destination addresses of the probe response or association response. If there is a
match, it means that an access point is sending a probe response or an association
response to a client that previously sent a NULL SSID probe request or association
request. If the network policy is that NULL SSID association is not allowed
(null_ssid_assoc=0) and there is a match, an alert is generated.

The first step 701 in FIG. 13A is determining the frame type of the packet being
analyzed. The second step 702 is determining if the frame is a probe request. If not
then proceed to the first step 711 in FIG. 13B. If so then the third step 703 in FIG. 13A
is determining if null_ssid_assoc is set to a zero. If not then the fourth step 704 is
returning to Preprocess 51. If so then the fifth step 705 is determining if SSID is null. If
not then return to Preprocess 51. If SSID is set to null then the sixth step 706 is
determining if the source address of the packet is in the broadcast probe request
senders list. If so then return to Preprocess 51. If not then the seventh step 707 is
adding the source address to the broadcast probe request senders list and returning to
Preprocess 51.

The first step 711 of FIG. 13B is determining if the frame is a probe response. If not
then proceed to the first step 721 of FIG. 13C. If the frame is a probe response then
the second step 712 of FIG. 13B is determining the destination address in the header.
The third step 713 is determining if the destination address is in the broadcast probe
request senders list. If not then the fourth step 714 is returning to Preprocess 51. If the
destination address is on the broadcast probe request senders list then the fifth step
715 is determining if the source address is on the broadcast probe alert list. If so then

return to Preprocess 51. If not then the sixth step 716 is adding the source address to
the broadcast probe alert list, generating a Null SSID Association alert, and returning to
Preprocess 51.

The first step 721 of FIG. 13C is determining if the frame is an association request. If
not then proceed to the first step 731 of FIG. 13D. If so then the second step 722 of
FIG. 13C is determining if null_ssid_assoc is set to a zero. If not then the third step 723
is returning to Preprocess 51. If so then the fourth step 724 is determining if SSID is
set to null. If not then return to Preprocess 51. If so then the fifth step 725 is
determining if the source address is on the broadcast association request senders list.
If so then return to Preprocess 51. If not then the sixth step 726 is adding the source
address to the broadcast association request senders list, and returning to Preprocess
51.

The first step 731 of FIG. 13D is determining if the frame is an association response. If
not then the second step 732 is returning to Preprocess 51. If so then the third step of
733 is determining the destination address in the header. The fourth step 734 is
determining if the destination address is on the broadcast association request senders
list. If not then return to Preprocess 51. If so then the fifth step 735 is determining if the
source address is on the broadcast association alert list. If so then return to
Preprocess 51. If not then the sixth step 736 is adding the source address to the
broadcast association alert list, generating a Null SSID Association alert, and returning
to Preprocess 51.

* * * * *

