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Abstract—Publishing social network data for research pur-
poses has raised serious concerns for individual privacy.
There exist many privacy-preserving works that can deal with
different attack models. In this paper, we introduce a novel
privacy attack model and refer it as a mutual friend attack.
In this model, the adversary can re-identify a pair of friends
by using their number of mutual friends. To address this
issue, we propose a new anonymity concept, called k-NMF
anonymity, i.e., k-anonymity on the number of mutual friends,
which ensures that there exist at least k-1 other friend pairs
in the graph that share the same number of mutual friends.
We devise algorithms to achieve the k-NMF anonymity while
preserving the original vertex set in the sense that we allow
the occasional addition but no deletion of vertices. Further we
give an algorithm to ensure the k-degree anonymity in addition
to the k-NMF anonymity. The experimental results on real-
word datasets demonstrate that our approach can preserve
the privacy and utility of social networks effectively against
mutual friend attacks.
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I. INTRODUCTION

With the advance on mobile and Internet technology,
more and more information is recorded by social network
applications, such as Facebook and Twitter. The relationship
information in social networks attracts researchers from
different academic fields. As a consequence, more and more
social network datasets were published for research purposes
[1]. The published social network datasets may incur the
privacy invasion of some individuals or groups. With the
increasing concerns on the privacy, many works have been
proposed for the privacy-preserving social network publica-
tion [2], [3].

Tai and Yu proposed the friendship attack model [4],
which addressed the issue that an attacker can find out not
only the degree of a person, but also the degree of his friend.
It solves the attacks based on the degrees of two connected
vertices. But it is not sufficient to just protect against the
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Figure 1: Friend lists on Facebook

friendship attack as there are more information available on
the social network. For example, the graph in Fig. 2(a) is a
k2-degree anonymized graph with k = 2. If an attacker can
obtain the number of mutual friends between two connected
vertices, he still can identify (D,F ) from other friend pairs,
as only (D,F ) has 2 mutual friends. This will be explained
in more details later. In most social networking sites, such
as Facebook, Twitter, and LinkedIn, the adversary can easily
get the number of mutual friends of two individuals linked
by a relationship. As shown in Figure 1, one can directly
see mutual friend list shared with one of his friends on
Facebook. Usually, the adversary can get the friend lists
of two individuals from Facebook, such as the friend list
in Figure 1, and then get the number of mutual friends by
intersecting their friend lists.

In this paper, we introduce a new relationship attack
model based on the number of mutual friends of two
connected individuals, and refer it as a mutual friend attack.
Figure 2 shows an example of the mutual friend attack. The
original social network G with vertex identities is shown in
Figure 2(b), and can be naively anonymized as the network
G’ shown in Figure 2(c) by removing all individuals’ names.
The number on each edge in G’ represents the number
of mutual friends of the two end vertices. Alice and Bob
are friends, and their mutual friends are Carl, Dell, Ed
and Frank. So the number of mutual friends of Alice and
Bob is 4. After obtaining this information, the adversary
can uniquely re-identify the edge (D,E) is (Alice,Bob).
Also, (Alice, Carl) can be uniquely re-identified in G’. By
combining (Alice,Bob) and (Alice, Carl), the adversary
can uniquely re-identify individuals Alice, Bob and Carl.
This simple example illustrates that it is possible for the
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Figure 2: Mutual friend attack in a social network

adversary to re-identify an edge between two individuals
and maybe indeed identify the individuals when he can get
the number of mutual friends of individuals. Note that we
do not consider the mutual friend number of two nodes if
they are not connected. For convenience, we say the number
of mutual friends of two nodes connected by an edge e as
the number of mutual friends of e.

In order to protect the privacy of relationship from the
mutual friend attack, we introduce a new privacy-preserving
model, k-anonymity on the number of mutual friends (k-
NMF Anonymity). For each edge e, there will be at least
k-1 other edges with the same number of mutual friends as
e. It can be guaranteed that the probability of an edge being
identified is not greater than 1/k. We propose algorithms
to achieve the k-NMF anonymity for the original graph
while preserving the original vertex set in the sense that we
allow the occasional addition but no deletion of vertices. By
preserving the original vertex set, various analysis on the
anonymized graph, such as identifying vertices providing
specific roles like centrality vertex, influential vertex, gate-
way vertex, outlier vertex, etc., will be more meaningful.
The experimental results on real datasets show that our ap-
proaches can preserve much of the utility of social networks
against mutual friend attacks.
Related Work. Backstorm et al. [5] pointed out that simply
removing identities of vertices cannot guarantee privacy.
Many works have been done to prevent the vertex re-
identification with the vertex degree. Liu et al. [6] studied
the k-degree anonymization which ensures that for any node
v there exist at least k-1 other vertices in the published
graph with the same degree as v. Tai et al. [4] introduced
a friendship attack, in which the adversary uses the degrees
of two end vertices of an edge to re-identify victims.
Associated with community identity for each vertex, in
[7] they proposed the k-structural diversity anonymization,
which guarantees the existence of at least k communities
containing vertices with the same degree for each vertex.
As these works only focus on the vertex degree, they cannot
achieve the k-NMF anonymity, which focuses on the number
of common neighbors of two vertices.

Many works have also been done to prevent the vertex re-
identification based on the subgraph structural information.
Zhou and Pei [8] proposed a solution to battle the adver-
sary’s 1-neighborhood attacks. Cheng et al. [9] proposed
the k-isomorphism model, which disconnects the original
graph into k-isomorphic subgraph. To protect against mul-
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Figure 3: Examples of the k-NMF anonymization

tiple structural attacks, Zou et al. [10] proposed the k-
automorphism model, which converts the original network
into a k-automorphic network. But it does not prevent the
mutual friend attack. The network in Figure 3(a) satisfies the
2-automorphism, but the edge (3, 4) is not protected under
the mutual friend attack. This is because the edge (3, 4) does
not have mutual friends while all the others have one. Wu
et al. [11] proposed the k-symmetry model, which gets a k-
automorphic network by orbit copying. All these algorithms
need to introduce many new vertices and adjust many edges
to achieve their targets. Therefore, the utility of the original
graph will be decreased too much. In any case, these works
are aimed at different types of attack model from ours as
illustrated in Figure 3(a).

Hay et al. [12] proposed a generalizing method for anony-
mizing a graph, which partitions the vertices and summarizes
the graph at the partition level. Other works focus on the
problem of link disclosure, which decides whether there
exists a link between two individuals. It is different from
the relationship re-identification introduced in this section.
Challenges. As the k-NMF anonymity model is more com-
plicated than the k-degree anonymity model, more chal-
lenges need to be handled. First, adding or removing a
different edge may affect a different number of edges on
their mutual friends. In the k-degree anonymity model, the
adversary attacks using the degree of the vertex. Adding an
edge only increase the degrees of the two end vertices of
this edge. In the k-NMF anonymity model, the adversary
attacks using the number of mutual friends. Adding an edge
can increase the numbers of mutual friends of many edges.
In Figure 2(b), adding an edge between Dell and Frank will
affect the NMFs of (Dell, Alice), (Frank, Alice), (Dell, Bob),
(Frank, Bob), and (Dell, Frank). Second, we need to provide
a criterion on choosing where to add or delete the edge while
considering the utility of the graph. Since we aim to preserve
the vertex set, we cannot add a vertex to connect an edge.
In fact, we map the k-NMF anonymization problem into an
edge anonymization problem in contrast to the vertex anony-
mization problem in the k-degree anonymization. Edges are
anonymized one by one. Adding or deleting an edge should
not destroy the anonymization of the already anonymized
edges. To anonymize an edge, we can get many candidate
edge operations and need to choose the best one. Besides,
we need to consider the impact of the newly added edges
on the number of mutual friends.
Contributions. Our contributions can be summarized as



follows. (1) We introduce the k-NMF problem and formulate
it as an edge weight anonymization problem where the edge
weight is the NMF of the two end vertices. (2) We explore
the geometry property of the graph to devise effective
anonymization algorithms while preserving the vertex set to
achieve better utility. (3) For the edge addition, we use the
breadth-first manner to preserve utility. We also introduce
the maximum mutual friend criterion to break the tie on
selecting candidate vertex to connect. (4) For the edge dele-
tion, we explore the triangle linking property to delete edges
between vertices already belonging to a triangle connection
in the network to avoid repeated re-anonymization of edges.
(5) We devise an algorithm which can anonymize the k-
NMF anonymized graph to simultaneously satisfy the k-
degree anonymity, while preserving the vertex set. (6) The
empirical results on real datasets show that our algorithms
perform well in anonymizing the real social networks.

The rest of the paper is organized as follows. We define
the problem and design algorithms to solve it in section 2
and 3. We conduct the experiments on real data sets and
conclude in Section 4 and 5.

II. PROBLEM DEFINITION

In this paper, we model a social network as an undirected
simple graph G(V,E), where V is a set of vertices repre-
senting the individuals, and E ⊆ V × V is the set of edges
representing the relationship of individuals.

Definition 1. The NMF of an edge. For an edge e between
two vertices v1 and v2 in a graph G(V,E), i.e., v1, v2 ∈ V ,
e ∈ E and e = (v1, v2), the number of mutual friends of
the edge e is the number of mutual friends of v1 and v2.

Let f be the number sequence of mutual friends
for G, in which entries are sorted in descending order,
i.e., f1 ≥ f2 ≥ ... ≥ fm. Let l be the list of edges
corresponding to f , i.e., fi is the NMF of the edge li. For
example, in Figure 4(c), f = {2, 2, 2, 2, 1, 1, 1, 1}, and l =
{(v1, v3), (v2, v3), (v3, v4), (v3, v5), (v3, v4), (v3, v5), (v1, v2),
(v1, v4), (v2, v5), (v4, v5)}. Similar to the power law
distribution of the vertex degree [13], the NMF also has the
same property [14].

Property 1. Scale free distribution of NMFs [14]. The
NMFs of edges in the large social network often have a
scale-free distribution, which means that the distribution
follows a power law or at least asymptotically.

Definition 2. Mutual friend attack. Given a social network
G(V,E) and the anonymized network G′(V ′, E′) for pub-
lishing. For an edge e ∈ E, the adversary can get the number
fe of mutual friends of e. Mutual Friend Attack will identify
all candidate edges e′ ∈ E′ with the number fe′ of mutual
friends as fe.

Suppose that the candidate edge set of an edge e is E′
e =

{e′|e′ ∈ E′,fe′ = fe}. An adversary re-identifies the edge

(a) 3-NMF (b) 6-NMF (c) 4-NMF

Figure 4: Examples of k-NMF anonymous graph
e with high confidence if the number of candidate edges is
too small. Hence, we set a threshold k to make sure that for
each edge e ∈ E, the number of candidate edges is no less
than k, i.e., |E′

fe
| ≥ k. We define the k-anonymous sequence

before defining the k-NMF anonymous graph.

Definition 3. k-anonymous sequence[6]. A sequence vector
f is k-anonymous, if for any entry with value as v, there
exist at least k − 1 other entries with value as v.

Definition 4. k-NMF. A graph G′(V ′, E′) is k-NMF anony-
mous if the number sequence f ′ of mutual friends of edges
in G′ is a k-anonymous sequence.

Definition 4 states that for each edge e ∈ E, the number
of candidate edges in G′ is no less than k. Consider the
graphs in Figure 4 as an example. There are three edges in
Figure 4(a), and the NMFs of all these edges are equal to 1.
Hence, this graph is a 3-NMF anonymous graph. As the six
edges in the graph of Figure 4(b) have 2 mutual friends, this
graph is a 6-NMF anonymous graph. The graph in Figure
4(c) has four edges (v1, v3), (v2, v3), (v3, v4), (v3, v5) with
the NMF as 2, and the NMFs of other four edges are equal
to 1. Hence, this graph is a 4-NMF anonymous graph. Some
properties on the number of mutual friends in the graph are
described as follows.

Proposition 1. Given a graph G(V,E), the number of
mutual friends of an edge e ∈ E is equal to the number
of triangles containing e in G .

Take the graph in Figure 4(c) as an example. The mutual
friends of vertices v2 and v3 are v1 and v5, so the number
of mutual friends of the edge e = (v2, v3) is 2. It is equal
to the number of triangles containing e. These triangles are
(v1, v2, v3) and (v2, v3, v5).

Proposition 2. Let G(V,E) be a graph and f be the number
sequence of mutual friends of edges in G, where |E| = m.
Then

∑m
i=1 fi = 3nM, where nM is the number of triangles

in G and fi is the number of mutual friends of the i-th edge.
Different from the degree sequence in previous work [6],

which can maintain the number of entries in the sequence,
the number sequence of mutual friends will have more en-
tries added into it when new edges are added into the graph.
Besides, according to Propositions 1 and 2, the number of
mutual friends is related to the number of triangles in the
graph. Therefore, adding one edge will affect the NMF of
many edges, and adding a different edge may affect the NMF
of a different number of edges. This can be illustrated by an
example shown in Figure 3(b). After we add the edge (1, 2),
the NMFs of all ten edges increase by one. If we add the
edge (4, 7), only the NMFs of edges (1, 4), (1, 7), (2, 4), and



(2, 7) increase by one. Therefore, one cannot anonymize a
graph by simply minimizing the number of changed edges.
Anonymized Triangle Preservation Principle (ATPP). In
our algorithms, we anonymize the edges in the graph one
by one. An anonymized triangle is a triangle with some
edges already anonymized in the process of the graph
anonymizing. The Anonymized Triangle Preservation Prin-
ciple aims to preserve the anonymized triangles containing
already anonymized edges. It means that we neither create
some additional anonymized triangles via edge addition nor
destroy any via edge deletion.

Creating (destroying) a triangle containing an already
anonymized edge by edge addition (deletion) will increase
(decrease) the NMF of this edge, indeed destroy the ano-
nymization of this edge. This leads to repeatedly anony-
mization of this edge. By preserving the anonymized trian-
gles, we can avoid this problem during the anonymization
process.
Definition 5. k-NMF anonymization problem. Given a
graph G(V,E) and an integer k, the problem is to anonymize
the graph G to a k-NMF anonymous graph G′ with edge
addition and deletion, such that the vertex set of the original
graph G is preserved.

III. k-NMF ANONYMIZATION APPROACH

In the above section, we found that changing one edge
may affect the NMFs of other edges. To handle this chal-
lenge, we utilize the scala free distribution property shown
in Property 1, and introduce the principle of preserving the
anonymized triangles. By exploring the geometry property
of the graph, we devise two effective anonymization algo-
rithms to preserve the utility while satisfying the k-NMF
anonymity.

A. Algorithm ADD

In this subsection, we aim to anonymize the original graph
only by edge addition. We organize edges into groups, and
anonymize the edges in the same group to have the same
NMF. The k-anonymity requires there exist at least k edges
in a group. Property 1 states that the NMFs of edges in
large social networks follow a scala free distribution. Hence,
only a small number of edges have a high NMF. We first
anonymize these edges, and many edges with low NMF do
not need to be processed.

Suppose the original graph is G(V,E) and the gradually
anonymized graph is G′(V ′, E′). Initially, we sort the NMF
sequence f in descending order and construct the corre-
sponding edge list l as described in Section II. We mark all
edges as “unanonymized”, and then anonymize the edges
one by one. Iteratively, we start a new group GP with the
group NMF, gf , equal to the NMF of the first unanonymized
edge in l. Then we select the edges with NMF equal to gf
and mark them as “anonymized”. We iteratively select the

first unanonymized edge in l and anonymize it by adding
edges to increase its NMF to gf . After anonymizing this
edge, we mark it as “anonymized” and put it into GP .
Adding new edges affects the NMF of some other edges,
and these new edges will be added into f and l. Hence we
resort the sequences f and l after each edge is anonymized.
Algorithm 1 shows the detailed description of the ADD
algorithm. Next, we consider when we start another new
group.

1) Group edges: An intuitive method, named Intuit-
Group, starts another group when the number of edges
in the group GP is equal to k. Alternatively, to consider
the anonymization cost, we propose a greedy method to
decide when we start another group after |GP | ≥ k, named
GreedyGroup. Suppose that f (u) ⊆ f is the NMF sequence
corresponding to the unanonymized edge list l(u) ⊆ l. No-
tice that f (u) and l(u) are dynamically updated with f and l
after anonymizing each edge. Similar to the consideration in
[6], after putting k edges into GP , GreedyGroup iteratively
checks whether it should merge the edge l

(u)
1 into GP or

start another group. The decision is made according to the
following two costs based on the number of added mutual
friends in Eq.(1) and Eq.(2).

Cmerge = (gf − f
(u)
1 ) + I(f

(u)
2 ,f

(u)
k+1) (1)

Cnew = I(f
(u)
1 ,f

(u)
k ) (2)

where I(f
(u)
i ,f

(u)
j ) =

∑j
l=i(f

(u)
i − f

(u)
l ).

For Eq.(1), we put l
(u)
1 into GP . l

(u)
1 has f

(u)
1 mutual

friends, so we need to add gf − f
(u)
1 mutual friends for

anonymizing l
(u)
1 . To satisfy k-anonymity, we need to put

at least k edges into a new group GP ′. Hence we put edges
l
(u)
2 , ..., l

(u)
k+1 into GP ′. As we only adding edges, the group

NMF of GP ′ is the maximum NMF among f
(u)
2 , ...,f

(u)
k+1,

i.e., f
(u)
2 . To anonymize l

(u)
i , f

(u)
2 − f

(u)
i mutual friends

need to be added. For Eq.(2), we put l
(u)
1 , ..., l

(u)
k into a

new group GP ′, and the group NMF of GP is f
(u)
1 . Hence

Cmerge is the cost for anonymizing k+1 edges while Cnew

is for k edges. So if Cmerge is less than Cnew, we anonymize
l
(u)
1 and merge it into GP , and check the next unanonymized

edge. Otherwise we start another new group with l
(u)
1 .

For each edge e, GreedyGroup looks ahead at O(k)
other edges to decide whether merging e with this group
or starting a new group. Therefore, the time complexity of
GreedyGroup is O(k|E|).

2) Cleanup-operation: In each iteration of the ADD
algorithm, it checks the number of unanonymized edges,
nu. If nu < 2k, the ramaining edges are put into a group;
and if nu < k, k − nu edges needed to be added following
the ATPP, so these k edges can form a group. New vertices
will be added into the graph if the ATPP cannot be satisfied.

Next, we anonymize the edges Eu in this group. Usu-



Algorithm 1 The ADD Algorithm (GreedyGroup)

Input: Original graph G(V,E), k
Output: k-NMF anonymized graph G′(V ′, E′)
Initialization: G′ = G, and mark all edges as “unanonymized”. Compute

and sort the sequences f and l. f (u) = f , l(u) = l, Gf = ∅
1: while l(u) 6= ∅ do
2: if |l(u)| < 2k then do cleanup-operation and break.

3: GP = {e|e ∈ l(u) and f
(u)
e = f

(u)
1 }; gf = f

(u)
1 ; Gf = Gf ∪ gf .

4: Mark any e ∈ GP as “anonymized”; update f (u) and l(u).
5: while |GP | < k or (|GP | ≥ k and Cmerge ≤ Cnew) do

6: Anoymize l
(u)
1 by BFSEA. GP = GP ∪ l

(u)
1 , update l(u) and f (u).

7: end while
8: end while
9: return G′(V ′, E′).

Algorithm 2 The ADD&DEL Algorithm

Input: Original graph G(V,E), k
Output: k-NMF anonymized graph G′(V ′, E′)
Initialization: G′ = G, and mark all edges as “unanonymized”. Compute

and sort the sequences f and l. f (u) = f , l(u) = l, Gf = ∅
1: while l(u) 6= ∅ do
2: if |l(u)| < 2k then do cleanup-operation and break.

3: EE = {e|e ∈ l(u) and f
(u)
e = f

(u)
1 };

4: if |EE| ≥ k, then new group GP = EE, and mark any e ∈ GP as

anonymized, Gf = Gf ∪ f
(u)
1 , update l(u) and f (u) and continue.

5: GP = ∅, gf = round(mean(f
(u)
1 , ...,f

(u)
k )). Record all initial info.

6: while f
(u)
1 ≥ gf do

7: Anonymize l
(u)
1 by edge-deletion.

8: if anonymize failed, then roll back to initial info, and gf = gf +1;

else mark l
(u)
1 as anonymized and GP = GP ∪ l

(u)
1 ; update f (u)

and l(u).
9: end while

10: Gf = Gf ∪ gf .
11: while |GP | < k do

12: Anoymize l
(u)
1 by BFSEA. GP = GP ∪ l

(u)
1 , update l(u) and f (u).

13: end while
14: end while
15: return G′(V ′, E′).

1

ally, we set the group NMF as the largest NMF among
unanonymized edges, denoted as gf . Then we sum the
difference as sd =

∑
e∈Eu

(gf − fe), where fe is the
number of mutual friends of the edge e. If sd >= k/2,
then we add sd nodes and 2 · sd edges into the graph. That
means that for each unanonymized edge e, we add gf − fe

vertices and link them with the two end vertices of e. As
all the newly added (2 · sd >= k) edges have only one
mutual friend, they can form a new group. Then we mark
the new edges as “anonymized” and achieve the task. If
sd < k/2, then we enlarge the group NMF gf = gf + 1,
and repeat the above process. By the clean-up operation, we
can successfully anonymize the original network at the last
step of the anonymization process.

B. BFS-based Edge Anonymization(BFSEA)

In this section, we consider how to anonymize an edge
by edge addition while preserving the utility. There are
three challenges to increase the NMF of an edge via adding
edges. First, the added edge should not affect the NMF of
already anonymized edges. Secondly, the added edge should
minimize the effect on the utility of the graph. Thirdly, the
NMF of the newly added edges should not disrupt the current
anonymization process which is progressing in descending
order of the NMF value.

Before anonymizing an edge (u, v), the ADD algorithm
has created some anonymized groups and got a set Gf

containing the group NMFs of these groups. Let gf be the
NMF of the current group GP , and we put gf into Gf .
Anonymizing the edge (u, v) means that we need to increase
the NMF of (u, v) to the current group NMF gf , i.e. we need
to create some new triangles containing this edge. Then we
try to find some candidate vertices and add new edges to
create new triangles. Considering the utility of the graph,
we find the candidate vertices based on the Breadth First
Search (BFS).

From the nodes u and v, BFS-based Edge Anonymization
traverses the graph in a breadth-first manner. For the i-
hop neighbors of u and v, represented by neigi(u) and
neigi(v), edge anonymization finds the candidate vertices
from neigi(u) ∪ neigi(v) and iteratively link the best one
with u or v to create a new triangle. We formulize the NMF

of the edge (u, v) as nmf(u, v).
1) Candidates generation: We search the candidate ver-

tices for edge (u, v) in a BFS manner. In the i-hop neighbors
of u and v, many vertices cannot be the candidate vertices
as violating the ATPP. The vertices w need to satisfy the
following conditions to be the candidates in the set CVi.

a) w ∈ neigi(u) ∪ neigi(v).
b) (w, u, v) 6= 4.
c) ∀x ∈ {u, v} and z ∈ V ′, if (w, x) 6∈ E′, (w, z) ∈

E′ and (x, z) ∈ E′, then (x, z) and (w, z) must be
unanonymized.

Condition b) states that (u, v, w) is not a complete tri-
angle, which needs to add edges to create a new triangle.
This mainly focus on the case when i = 1, where w may
links with both u and v. Condition c) follows the ATPP,
which guarantees that there will be no effect on the already
anonymized edges.

2) Candidates selection: After getting all the candidate
vertices satisfying the conditions, we can add new edges
between u,v and w ∈ CVi to increase the NMF of (u, v).
We iteratively select a vertex from CVi to increase the NMF
of (u, v) until nmf(u, v) reaches gf or CVi is empty. If
nmf(u, v) = gf , this edge is anonymized successfully.

In each iteration, we need to select the best one which
can preserve the most utility of the graph. Based on the link
prediction theory [15], we select the candidate vertex wmax

which guarantees that nmf ′(wmax, u) + nmf ′(wmax, v) is
maximum, where nmf ′(w, x) is defined in Eq.3.

nmf ′(w, x) =

{
0 (x,w) ∈ E′

nmf(w, x) otherwise
(3)

Where x ∈ {u, v}. This is referred to as the maximum
mutual friend criterion for adding edges. The more mutual
friends between the two vertices, the less impact the edge
addition will have on the utility of the graph.

The selection criteria described in the Eq.3 only can be
used for the candidates in the 1-hop and 2-hop neighbors.
For all the candidates w in the i-hop neighbors with i ≥ 3,
the NMF of (x,w) is 0. In this situation, we randomly select
a candidate vertex wmax from CVi.

As we anonymize edges in descending order of NMF, we
must consider the different situations on the NMF of the new
edge (x,wmax). In the situation nmf(x,wmax) >= gf , if
nmf(x,wmax) is not equal to any g

′

f ∈ Gf , (x,wmax)
cannot be added into the graph. This is because we cannot
anonymize this edge in descending order anonymization.
Otherwise, we add (x,wmax) and mark it as “anonymized”.
We put this edge into the group with NMF equal to g

′

f .
If nmf(x,wmax) < gf , add (x,wmax) and mark it as
“unanonymized”.

3) Candidates dynamic removal: After a new triangle
was created with the vertex wmax ∈ CVi, we need to
consider the effect of this triangle on the other candidate



vertices in CVi. To ensure the linking u or v with vertices
in CVi follows the ATPP, some vertices will be dynamically
removed from CVi.

If w ∈ CVi connected with the selected vertex wmax

and the edge (w,wmax) is anonymized, then we remove w
from CVi. This is because adding either (w, u) or (w, v)
creates a new triangle containing (w,wmax), and destroys
the anonymization of (w,wmax).

For any vertex w ∈ CVi with (w,wmax) is unanony-
mized, if (wmax, x) is anonymized and (w, x) 6∈ E′, then
we remove w from CVi. This is because if we select this w
as a new maximum vertex, we need to add (w, x) to create
a triangle containing (u, v), meanwhile created a triangle
containing (wmax, x). This destroyed the anonymization of
the edge (wmax, x).

4) Edge anonymization: From the nodes u and v, BFS-
based Edge Anonymization traverses the graph in a breadth-
first manner. The BFSEA iteratively generates a candidate
set CVi from the i-hop neighbors of u and v, where i
increases from 1 to ∞. After getting the candidate set
CVi, BFSEA iteratively selects the best one from CVi by
candidates selection and creates a triangle to increase the
NMF of (u, v), then updates the CVi by the candidates
dynamic removal. These operations will break when the
NMF of (u, v) reaches the current group NMF gf or no
more candidate vertex can be found from the whole graph.

If nmf(u, v) reaches the current gf , i.e. (u, v) is ano-
nymized successfully, we mark it as ”anonymized”. If the
BFSEA cannot successfully anonymize this edge, adding
new vertices can achieve the task. Linking one new vertex
with the end vertices of this edge can increase the NMF
of this edge by 1. The newly added edges have only one
mutual friend, and will be anonymized at the last step
of the anonymization algorithm. The above scenario is a
pathological case that rarely occurs as in our experiments,
no new vertices were added in all cases.

By the breadth-first manner, the BFSEA first link u or
v with w from the 1-hop neighbors. Thus after (x,w) is
added, the shortest path length (SPL) between x ∈ {u, v}
and w will only decrease to 1 from 2 with little effect to the
utility. Then we gradually increase the value of i, and link
u and v with w from the i-hop neighbors, which decreases
the SPL between x and w from i to 1. Hence, we prefer
the candidates from i-hop neighbors with smaller i value,
i.e. breadth-first manner, which can have less effect to the
utility of the graph.

To get the neigi(u) and neigi(v) for every i, we ex-
ecute the Breadth-First Search with the time complexity
as O(|V | + |E|). When i = 1, we need to compute the
neigi(u) ∩ neigi(v) to ensure (w, u, v) 6= 4 stated in the
candidates generation, and the time complexity is O(|V |).
When i ≤ 2, to get the best candidate from CVi, we compute

the nmf(w, x), x ∈ {u, v}, with the time complexity as
O(|V |). Hence, for each candidate set, the total running
time of the NMF computation is O(|V |2). When i ≥ 3, we
randomly select a candidate from CVi to create a triangle,
and the time complexity is O(1). Hence, the time complexity
of candidates selection is O(|V |2). Therefore, the time
complexity of BFSEA is O(|V |2).

As there are O(|E|) edges need to be anonymized, the
time complexity of the ADD algorithm is O(|E||V |2).
C. Algorithm ADD&DEL

Usually, anonymization combining edge deletion with
addition will remove or add fewer edges than only applying
edge addition. Indeed, it can improve the utility of the anony-
mized graph. Before introducing the ADD&DEL algorithm,
we discuss the method on how to anonymize an edge by
edge deletion.
Edge-deletion. For an unanonymized edge (u, v), the algo-
rithm finds any candidate edge (x,w), where x is u or v,
which satisfies the following conditions.

a) Both (u,w) and (v, w) exist and are unanonymized.
b) For any vertex z linked with x and w, edges (x, z)

and (w, z) are still unanonymized.
c) If both (u,w) and (v, w) satisfy condition b), we

choose the one with fewer mutual friends.
Condition c) is the reverse of the maximum mutual friend

criterion for adding edge. The fewer the mutual friends, the
weaker the relationship. Hence dropping the edge has less
impact to the utility. After (x,w) is deleted, the shortest path
length between x and w will only increase to 2 from 1 with
little effect to the utility. Condition a) and b) follows the
anonymized triangle preservation principle to guarantee that
there will be no effect on the already anonymized edges.

For an unanonymized edge (u, v), edge-deletion initially
finds all candidate edges satisfying the edge-deletion con-
ditions, and then puts them into the set CE. During each
iteration, the edge emin ∈ CE with the least mutual friends
will be removed from the graph and the set CE. The algo-
rithm stops when the NMF of (u, v) reaches the group NMF
gf or CE becomes an empty set. If CE is empty and the
NMF of (u, v) is not equal to gf , the anonymization of (u, v)
is unsuccessful; Otherwise, we successfully anonymize this
edge and mark it as “anonymized”.

The edge-deletion is the reverse of the methods in ADD
algorithms. The running time mainly costs on the computing
of mutual friends, so the complexity of edge-deletion is
O(|V |2).
The ADD&DEL Algorithm. This algorithm is shown in Al-
gorithm 2, which anonymizes the graph by edge addition and
deletion. Similar to the ADD algorithm, ADD&DEL checks
the number of unanonymized edges with NMF equal to the
NMF of the first unanonymized edge in sorted sequence l(u).
If there are more than k edges, we put them into this group



Algorithm 1 The ADD Algorithm (GreedyGroup)

Input: Original graph G(V,E), k
Output: k-NMF anonymized graph G′(V ′, E′)
Initialization: G′ = G, and mark all edges as “unanonymized”. Compute

and sort the sequences f and l. f (u) = f , l(u) = l, Gf = ∅
1: while l(u) 6= ∅ do
2: if |l(u)| < 2k then do cleanup-operation and break.

3: GP = {e|e ∈ l(u) and f
(u)
e = f

(u)
1 }; gf = f

(u)
1 ; Gf = Gf ∪ gf .

4: Mark any e ∈ GP as “anonymized”; update f (u) and l(u).
5: if |GP | ≥ k then continue.
6: while |GP | < k or (|GP | ≥ k and Cmerge ≤ Cnew) do

7: Anoymize l
(u)
1 by BFSEA. GP = GP ∪ l

(u)
1 , update l(u) and f (u).

8: end while
9: end while

10: return G′(V ′, E′).

Algorithm 2 The ADD&DEL Algorithm

Input: Original graph G(V,E), k
Output: k-NMF anonymized graph G′(V ′, E′)
Initialization: G′ = G, and mark all edges as “unanonymized”. Compute

and sort the sequences f and l. f (u) = f , l(u) = l, Gf = ∅
1: while l(u) 6= ∅ do
2: if |l(u)| < 2k then do cleanup-operation and break.

3: EE = {e|e ∈ l(u) and f
(u)
e = f

(u)
1 };

4: if |EE| ≥ k, then new group GP = EE, and mark any e ∈ GP as

anonymized, Gf = Gf ∪ f
(u)
1 , update l(u) and f (u) and continue.

5: GP = ∅, gf = round(mean(f
(u)
1 , ...,f

(u)
k )). Record all initial info.

6: while f
(u)
1 ≥ gf do

7: Anonymize l
(u)
1 by edge-deletion.

8: if anonymize failed, then roll back to initial info, and gf = gf +1;

else mark l
(u)
1 as anonymized and GP = GP ∪ l

(u)
1 ; update f (u)

and l(u).
9: end while

10: Gf = Gf ∪ gf .
11: while |GP | < k do

12: Anoymize l
(u)
1 by BFSEA. GP = GP ∪ l

(u)
1 , update l(u) and f (u).

13: end while
14: end while
15: return G′(V ′, E′).

1

and start another group. Otherwise, we need to anonymize
edges to form this group. To gradually anonymize edges and
create this group, we initially set the group NMF, gf , as the
mean value of NMFs of the first k unanonymized edges. We
record all initial information before anonymizing this group.
For the unanonymized edge with NMF greater than gf , we
use edge-deletion to anonymize it. If we cannot successfully
anonymize this edge, we set gf = gf +1 and roll back to all
initial information. For the unanonymized edge with NMF
less than gf , we apply the ADD algorithm to anonymize
it. We gradually anonymize unanonymized edges in sorted
sequence l(u) until this group has k edges, and start another
group.

In the ADD&DEL algorithm, an edge will be anonymized
by either Edge-deletion or methods of the ADD algorithm.
Therefore, the time complexity of anonymizing an edge
is O(|V |2), and the time complexity of the ADD&DEL
algorithm is O(|E||V |2).
D. k1-degree Anonymization Based on k2-NMF Anony-
mization

In this subsection, we propose the KDA algorithm on
anonymizing the k2-NMF anonymized graph G′ to satisfy
k1-degree anonymity. To maintain the k2-NMF anonymity of
G′, the KDA algorithm does not change the NMF of edges
in G′ when performing anonymization. Proposition 1 stated
that the NMF of an edge is related on the number of triangles
in which this edge participate, so we anonymize the graph G′

without adding new triangles, i.e., the anonymized triangle
preservation principle. We can connect two vertices with
shortest path length (SPL) no less than three to guarantee
that no new triangles will be introduced. Then the NMF of
newly added edge is zero. As the degree distribution of the
social network follows the power law [13], we only need to
anonymize these vertices with large degrees.

The KDA algorithm is similar to the ADD algorithm.
The unanonymized vertices are sorted in descending order of
their degrees. We gradually group and anonymize them only
by edge addition. The vertices in the same group have same
degree. To start a new group, KDA set the group degree
gd as the greatest degree of unanonymized vertices. If there
are less than k vertices in this group, we anonymize the
unanonymized vertices in descending order of their degrees.
If this group has more than k vertices, we compute the
Cmerge and Cnew for the next unanonymized vertex, and
decide whether put it into this group or start a new group.

Suppose that the i-hop neighbors of vertex u is neigi(u).
To anonymize the unanonymized vertex u, KDA iteratively
and randomly select an unanonymized vertex wmax from
neig3(u) and connect u and wmax. If the vertex u cannot
be anonymized, KDA update the neig3(u) based on the
newly added edges and repeat the above process. If u still
cannot be anonymized, we select the candidate vertex from
neig4(u), neig5(u) and so on until u is anonymized.

When anonymizing a vertex, the KDA algorithm searches
the graph in a breadth-first manner to get the candidate
vertices. In the worst case, the KDA searches the whole
graph and the time complexity is O(|E| + |V |). As there
are O(V ) vertices needed to be anonymized, the time
complexity of the KDA algorithm is O(|E||V | + |V |2) in
the worst case.

IV. EXPERIMENTAL RESULTS

In this section, we conduct experiments on real data
sets to evaluate the performance of the proposed graph
anonymization algorithms.

A. Datasets

We conduct our experiments on three real datasets: ACM,
Cora, and Brightkite. All datasets are preprocessed into
simple undirected graphs without self-loop and multiple
edges. We also remove the isolated vertices from the graph.

ACM: This dataset was extracted from ACM digital
library. We extracted papers published in 12 conference
proceedings on computer science before the year 2011.
We derive a graph describing the citations between papers.
If one paper cites another paper, an undirected edge will
connect both corresponding vertices. The graph includes
7,315 vertices and 16,203 edges.

Cora: This dataset is composed of a number of scientific
papers on computer science [16]. We extract the collabo-
rations between authors to derive the graph. If two authors
had co-authored some papers they would be connected. After
we removed the authors without any collaboration, the graph
contains 14,076 vertices and 72,871 edges.

Brightkite: This dataset shows the friendships between
users in the social network Brightkite over the period of



Table I: The numbers of vertices violating k-degree anony-
mization and edges violating k-NMF anonymization

ACM Cora Brightkite
k k-deg k-NMF k-deg k-NMF k-deg k-NMF
5 54 28 141 106 266 93

10 75 28 267 179 533 129
15 103 43 408 277 705 285
20 137 62 446 349 795 393
25 162 62 584 488 891 598
30 221 62 752 575 1088 762
50 262 99 1142 733 1425 1297
100 526 226 1472 1350 2326 2578

April 2008 to October 2010. The graph consists of 58,228
nodes and 214,078 edges, and is available at the SNAP [1].

B. Mutual Friend Attack in Real Data

In the k-degree anonymization model, the adversary re-
identifies a vertex using the degree of this vertex. In the
k-NMF anonymization model, the adversary re-identifies an
edge using the NMF of this edge. We compare both attacks
on the real datasets listed in Subsection IV-A, and show the
results in Table I. We removed all labels in three datasets.
From Table I, we can see that the number of edges violating
k-NMF anonymity can be sizable when we set k from 5 to
100. It is a very easy way for an adversary to take the mutual
friend attack. k-NMF anonymization problem can be seen
as a parallel of the k-degree anonymization problem.

C. Evaluating k-NMF Anonymization Algorithms

We evaluate the performance of the Greedy and Intuitive
ADD algorithms and the ADD&DEL algorithm by measur-
ing the average clustering coefficient, average path length,
betweenness centrality and the ratios of edges change.
Figures 5-8 show the results, where ADD-Int and ADD-Gre
stand for the ADD algorithm with IntuitGroup and Greedy-
Group respectively. ADD&DEL stands for the ADD&DEL
algorithm.
Average Clustering Coefficient (CC): We first compare
the average clustering coefficients of the anonymized graphs
with the original graph, and the results are shown in Figure
5. The CC values on datasets ACM and Brightkite increase
when k increases, but decreased on dataset Cora when k
increases. Hence no clear trend on CC change can be con-
cluded, however the average clustering coefficients derived
by our three methods deviate slightly from the original
values on three datasets. The ADD&DEL performs better
than the two ADD algorithms in Figure 5, and the ADD
algorithm with GreedyGroup looks slightly better than the
algorithm with IntuitGroup.
Average Path Length (APL): Figure 6 shows the average
path lengths for the anonymized graphs and the original
graphs on three datasets. The APL of the graph anonymized
by the ADD&DEL algorithm is very close to the APL
of the original graph. By adding and deleting edges, the
ADD&DEL algorithm can preserve more utility than the
ADD algorithm. Besides, the differences of APL between

the graphs anonymized by our methods and the original
graphs are very small, and the largest difference value is
0.8 when k is set as 100 on the dataset Cora.
Betweenness Centrality (BC): All the plots of the average
betweenness centralities are very similar to the plots of the
APL. Hence we show the distribution of betweenness cen-
tralities of all vertices in Figure 7. Due to space constraints,
we only show the results on Cora. The sub-figures in Figures
7(a), 7(b) and 7(c) enlarge the details on the frequency varied
from 0 to 100. Clearly, in Figures 7(a) and 7(b), ADD&DEL
performs better than the ADD algorithm with GreedyGroup,
and shows little sensitivity to the value of k while ADD
with GreedyGroup degrades as k increases. Also Figure
7(c) shows that ADD&DEL performs better than the ADD
algorithms.
Percentages of edges changed: As there is no vertex
addition occurred in all cases considered under ADD and
ADD&DEL which do not perform node deletion operations,
we consider the edge changes. Figure 8 shows the edge
changes on the original graphs. The changes on ADD&DEL
includes the ratios of edges added and removed. The
ADD&DEL algorithm changed fewest edges, and the ADD
algorithm with GreedyGroup added fewer edges than the
algorithm with IntuitGroup.

From the above evaluation, we can see that our algorithms
can preserve the utility of the original graph effectively.
Among them, ADD&DEL performs better than the ADD al-
gorithm, and GreedyGroup performs better than IntuitGroup.

D. Evaluating the KDA Algorithm

In this subsection, we evaluate the performance of the
KDA algorithm in Section III-D , and compare it with the
classic k-degree anonymization algorithm in [6].

Since there are no new triangles formed after the KDA al-
gorithm adds new edges, the clustering coefficient decreases
a little bit as k increases as shown in Figures 9(a), 10(a)
and 11(a). Our algorithm performs better than the classic
k-degree anonymization on this measure. Since new edges
are added into the graph, the APL value decreases a little bit
as k increases as shown in Figures 9(b), 10(b), and 11(b).
As we consider the k-NMF anonymity, the classic k-degree
anonymization performs a little better than our algorithm
on the APL measure. But when the APL of the graph is
large, our algorithm can perform better than the classic k-
degree anonymization as shown in Figure 9(b). The results
show that our algorithm performs well on preserving the
utility while protecting the privacy by carefully exploring the
graph property. The classic k-degree anonymization makes
less effort on this except minimizing the number of edges
added. Figures 9(c), 10(c) and 11(c) show the distributions
of betweenness centrality of graphs anonymized by the
KDA algorithm when we set kdeg as 10, 20 and 30. The
distributions of the anonymized graphs are very similar
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Figure 5: Clustering coefficients
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Figure 6: Average path lengths
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Figure 7: Betweenness centrality distributions on Cora
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Figure 8: Edge changes

to the distributions of the original graphs especially for
the ACM and Brightkite datasets. It shows that the KDA
algorithm can preserve much of the utility of the graph
anonymized by the k-NMF algorithms.

V. CONCLUSIONS

In this paper, we have identified a new problem of k-
anonymity on the number of mutual friends, which protects
against the mutual friend attack in the social network pub-
lication. To solve this problem, we designed two heuristic
algorithms which consider the utility of the graph. We also
devised an algorithm to ensure the k-degree anonymity
based on the k-NMF anonymity. The experimental results
demonstrate that our approaches can ensure the k-NMF
anonymity while preserve much of the utility in the original
social networks.
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Figure 9: k-degree anonymization on 20-NMF anonymized graph of ACM
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Figure 10: k-degree anonymization on 25-NMF anonymized graph of Cora
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