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Abstract. Bitcoin is a peer-to-peer (p2p) electronic cash system that
uses a distributed timestamp service to record transactions in a public
ledger (called the Blockchain). A critical component of Bitcoin’s success
is the decentralized nature of its architecture, which does not require or
even support the establishment of trusted authorities. Yet the absence
of certification creates obstacles to its wider acceptance in e-commerce
and official uses. We propose a certification system for Bitcoin that offers:
a) an opt-in guarantee to send and receive bitcoins only to/ from certified
users; b) control of creation of bitcoins addresses (certified users) by
trusted authorities. Our proposal may encourage the adoption of Bitcoin
in different scenarios that require an officially recognized currency, such
as tax payments—often an integral part of e-commerce transactions.

1 Introduction

Bitcoin is a peer-to-peer (p2p) electronic cash system, first described in [11]. The
Bitcoin p2p network implements a distributed timestamp service that records
transactions in a public ledger (called the Blockchain). The timestamp operation
is computationally expensive, requiring proof-of-work to verify a transaction and
insert it into the Blockchain. In compensation for this effort, the Bitcoin protocol
enables the nodes to mint coins, i.e., to add into the ledger transactions for
self-credit. This distributed minting operation is the source of new currency,
dispensing with the need of a central issuer.

Large numbers of users currently transact in Bitcoin, engaging in significantly-
sized transactions [13]. The decentralized nature of Bitcoin, wherein confidence
on the integrity of the public ledger arises by the cooperative nature of inter-
actions between the participants, is a critical component of its success: Bitcoin
removes the necessity for all involved to agree to trust any single entity. How-
ever, the converse is also true: Bitcoin does not offer a built-in mechanism to
incorporate trustworthiness from real-world entities into the system.

Anonymity In the Bitcoin Protocol. In the Bitcoin Blockchain, users are iden-
tified only by addresses, which are pseudonymous public key fingerprints. It is



possible for the user controlling a Bitcoin address to remain unidentified—until
information is voluntarily revealed during a purchase or in other circumstances.
For this reason Bitcoin has been at times chosen as a payment medium for illegal
business. Some governments4 are also concerned that Bitcoins could be used to
skirt capital control laws. On the other hand, legitimate users desirous of privacy
should be mindful of the fact that it is possible to link entities that share cash
streams—see Ober et al. [13] and Meiklejohn et al. [8] for how an analysis of the
Blockchain may reveal that the same real-world entity is behind multiple Bitcoin
addresses. Thus, such users should completely segregate their Bitcoin addresses
among their different personas.

Our Contribution: Certifiable Bitcoin Addresses. This paper describes
an extension of the Bitcoin protocol that preserves its decentralized nature, while
also enabling payers to optionally specify the involvement of a trusted authority
that attests to the identity of the payee, by requiring payees to use certified
Bitcoin addresses. Conversely, we also enable payees to require that a payer uses
a certified Bitcoin address. More specifically, we introduce the concept of Bitcoin
addresses that need to be generated with the support of a trusted authority.
Those addresses are still anonymous within the Bitcoin system, but the authority
can validate the legitimacy of the entity to whom it releases a certified address5,
and other members of the Bitcoin network can attest to the involvement of the
trusted authority in issuing the address. These certified addresses are allowed to
co-exist with the standard auto-generated Bitcoin addresses.

Certified Bitcoin addresses are blinded: While the trusted authority can mint
coins on behalf of a particular user, it cannot spend any of them. Certified
addresses mitigate existing reservations against the adoption of Bitcoin as a
currency in commercial uses and against acceptance of the Bitcoin payment
protocol as a fully valid alternative to credit card systems.

Identity Theft Mitigation. Our proposal also enhances security against identity
theft in Bitcoin. Indeed, consider the case where a man-in-the-middle (MITM)
attacker changes the payee’s bitcoin address for the attacker’s address. For in-
stance, the attacker could deface the payee’s website to receive payments in-
tended for the payee. This attack is quite devastating since, in the Bitcoin pro-
tocol, once the payment is accepted and registered in the ledger, it is impossible
to revert it (unlike credit card payments). With our proposed solution, the payer
can first check that the address is certified thus ensuring that the actual identity
of the attacker could be recovered by the trusted authority in case of dispute.

4 China [18] has recently declared Bitcoin illegal.
5 Note that users may be allowed to use simply, e.g., an email address to request

Bitcoin addresses. In this case, an email address, rather than an actual identity, is
bound to a Bitcoin address.



1.1 Outline

We briefly recall Bitcoin’s transaction mechanism. A Bitcoin transaction is a
cryptographically signed statement that transfers an amount of bitcoins from the
sender’s to the receiver’s address. The sender proves ownership of the bitcoins
by “redeeming” a transaction already in the ledger that moves at least the same
amount of bitcoins to their address. For more details please refer to Section 3.

The standard approach to add certified addresses to the Bitcoin system would
be to use PKI-rooted certificates. A trusted authority would sign each newly re-
leased certified address by generating an address certificate. This mechanism can
be adapted into Bitcoin’s infrastructure by using the Bitcoin scripting language.
For a certified address one needs to include a certificate from the central author-
ity to each transaction: A new transaction redeems the earlier one only if a) it is
verifiable using the sender’ address, as with all transactions; and b) the attached
certificate is valid. However, there are some disadvantages to incorporating a
traditional PKI approach in Bitcoin, to wit:

1. A noticeable modification on the software is needed. We need a signature ver-
ification operation that takes as input the certified public key (the message),
the certificate (the CA’s signature on the message) and the public key of the
CA in order to verify the certificate. However the operation OP CHECKSIG,
which in the Bitcoin scripting language provides signature verification, takes
only two inputs – a public key and a signature – and assumes as message the
transaction’s data. The semantic of OP CHECKSIG would need to be signifi-
cantly modified or a new operation would have to be added to the scripting
language. Any modification of this type would require all the nodes in the
system to upgrade their software.

2. In Bitcoin, transaction fees are accounted per bytes: the bigger the size of a
transaction, the higher the fees to pay. PKI’s addition of certificate chains
to (potentially) each address in each transaction would significantly increase
transaction costs.

3. The Bitcoin wallet software must download the entire ledger. Even an in-
crease of a few gigabytes creates scalability issues, particularly for smart-
phones or devices with limited bandwidth and data capability. The average
size for a block is 156KB and the average number of transactions for each
block is 315, which means that the average size of a transaction is approx-
imately 507 Bytes. Considering that the size of a signature in the Bitcoin
system’s encoding is 71 Bytes, the transaction size will increase by at least
14% 6. Currently, the size of the ledger is approximately 12GB. In the worst
case scenario, where every transaction is being certified, the ledger would be
about 1.67 GB bigger.

It would be preferable to add certified addresses in the Bitcoin system without
increasing the size of the transactions (and, ultimately, the size of the ledger).
We achieve this by leveraging the storage and bandwidth cost benefits provided

6 By taking the average over all transactions made in 2013.



by self-certified public keys. In particular, we adapt techniques developed for
self-certified PKI to work within the Bitcoin system. Compared with a standard
PKI approach, our solution does not have the drawbacks (2) and (3) outlined
above. Moreover, even though we still need to update the software of every
node in the network, the modification to accommodate self-signed certificates
is easier to accomplish. It can be achieved without changes to the the Bitcoin
scripting language, or (in alternative implementation) with minimal changes.
Indeed, our solution is perfectly compatible with the current ledger and both
systems (standard and certified Bitcoin) can run contemporarily on the same
ledger.

1.2 Previous Work

Previous Work on Bitcoin. As pointed out earlier, the Blockchain allows to link
entities that share cash streams; and the misconception that pseudonymity pro-
vides anonymity has been partially unmasked by a series of recent works on the
Bitcoin transaction’s graph, see for example [16, 13, 1]. Previous research has
thus focused on strengthening the privacy guarantees afforded by Bitcoin. In [4]
Barber et al. provide a protocol that features secure mixing of money, ensuring
money is transferred to fresh, and thus unlinkable, addresses through an un-
trusted third party. A more radical solution to anonymity is given in the paper of
Miers et al. [9], where the authors propose an innovative and Bitcoin-compatible
system where full anonymity is achieved via zero-knowledge techniques. In this
paper, we focus instead on enhancing trust, via certified bitcoins. Without ad-
ditional measures, this approach would lower the degree of anonymity in the
system; but we point out that our solution is compatible with the approaches
proposed in [4, 9], allowing for both anonymity and certification within the sys-
tem.

Other works have focused on improving the scalability of Bitcoin, particularly
in what regards the bandwidth required to validate the Blockchain. In [4], the
authors proposed a secure filtering service that is backward compatible with
the current system. The filtering service sends only relevant transactions to
nodes allowing for significant space savings. The service does not increase the
degree of linkability, and thus has no impact on the privacy of Bitcoin usage,
but the need of a fully-trusted third party can be a deterrent in the Bitcoin’s
context. Indeed, the filtering service could maliciously hide from the user im-
portant transactions—the user needs to fully trust the service provider for the
filtering service. In contrast, the trusted authority in our certification scheme is
only functionally trusted, and a pure enhancement to the Bitcoin’s ecosystem.
As we shall see in Section 3, the trusted party cannot recover the user secret
key. In addition, any abuse from the certification authority are detectable via
inspection of the Blockchain.

Another line of research has been recently proposed by Andrychowicz et al.
[2] where a general protocol for secure multiparty computation using Bitcoin’s
transactions is proposed. The system guarantees a form of fairness: if a party



interrupts the protocol, the outcome is still “tolerable” to the other honest par-
ties.

Previous Work on Self-Certified Public Key. Our proposal can be seen as a weak
version of what is referred to as Self-certified (SC) PKI. SC-PKI contemplates
public keys that do not need to be accompanied by a certificate in order to be
authenticated by other users. To the best of our knowledge, the first schemes
to rely on only functionally trusted authorities were described by M. Girault
in [7]—where the concept of SC-PKI is itself introduced. That work establishes
two SC-PKI constructions, one based on RSA and one based on Elgamal-type
public keys. It has been later shown that RSA constructions suffer from a draw-
back, namely it is possible for the trusted party to safely generate its keys to
include trapdoor information that facilitates the recovery of other parties’ se-
crets [17]. This attack applies to every RSA-based construction that results in
users reconstructing discrete-log type public keys. Therefore, we concentrate on
the case where the trusted party’s public keys are themselves of discrete-log type.

We note that Girault’s SC-PKI schemes are not ideally suited to the desired
Bitcoin application. The key generation protocol for the Girault’s scheme takes
as common inputs the group’s parameters (G, g), the user’s identity I and returns
as the user’s public key the tuple (r, rs) where r ∈ G and the user’s secret key
is s ∈ Zq.

By necessity, the discrete logarithm of r to base g should not be learned by
the user, for this would leak the trusted authority’s private key. As a result, two
public key pairs (rA, r

sA
A ) and (rB , r

sB
B ) of users A and B are computed with

respect to different bases rA and rB , respectively. However, this type of public
key (i.e., an element in G2) does not match the Bitcoin specification.

Another self-certified public key scheme based on Elgamal signatures and
provably secure in the Random Oracle Model (ROM) was described by Petersen
and Horster [14]. The security analysis relies on Pointcheval and Stern’s splitting-
lemma security arguments [15], and thus achieves only a loose reduction to the
Discrete Logarithm Problem (DLP).

However, in the Bitcoin setting, a tight proof in the Generic Group Model
(GGM) is more desirable than a loose proof in the Random Oracle Model. Indeed,
the Bitcoin protocol already relies on the security of the ECDSA standard—
which is only shown secure via a GGM (tight) reduction to the Elliptic Curve
Discrete Logarithm Problem (ECDLP). Our Certified Addresses construction is
thus a better fit for Bitcoin in that it is similarly provably secure in the GGM
by a tight reduction to the ECDLP—allowing for the entire security analysis to
occur within the same well-defined model.

Ateniese and de Medeiros [3] describe a new self-certified scheme based on
the Nyberg-Rueppel signature [12] scheme and its variants. The certification
scheme in Section 3 can be seen as a novel self-certified scheme where the cer-
tification results from the trusted party applying the modified Nyberg-Rueppel
signature [3] to the message m = 0.



Description of contents. On Section 2 we begin by giving a description of Bitcoin
and its transaction mechanism and then we introduce a few standard crypto-
graphic concepts and terminology that will be used in later sections. On Section 3
we present our contribution with a brief description of an implementation. On
Section 4 we provide the security analysis of our proposal. Lastly, on Section 5
we give a brief conclusion of the paper.

2 Background

In this section, we provide an overview of the Bitcoin system and its transac-
tion mechanism. We also introduce a few standard cryptographic concepts and
terminology that will be used in later sections.

2.1 Bitcoin Signature Scheme

Bitcoin employs the Elliptic Curve Digital Signing Algorithm (ECDSA) [19] for
all of its signatures. ECDSA is a widely used and trusted standard, and it has
been extensively analyzed. While a security proof for ECDSA in the Standard
Model is not known, it has been proved secure against existential forgery by
adaptive chosen-message attack in the GGM [5].

2.2 Bitcoin Transactions

In order to generate a new Bitcoin address (the core identifier in the Bitcoin
protocol), a user first produces a pair of private and public keys for ECDSA:
(sk, pk). The Bitcoin address relative to (sk, pk) is the hash of the public key,
namely H(pk), where H is a hash function based on SHA-256 and RIPEMD-160.
Some extra bytes are appended as a checksum.

The simplest case is a standard transaction, say with label Tn, between a
sender’s address S, with public key pkS , and one recipient address R. The pay-
load of this transaction, which we denote by [Tn] contains: an input index p
(which refers to the earlier transaction Tp, already committed to the public
ledger), the amount vn of bitcoins to be transferred, the sender’s public key pkS ,
and the receiver’s address R. In addition to its payload, the transaction includes
the sender’s signature τ on the transaction payload. More precisely, in addition
to the payload, the transaction includes a small, standard program in the Bitcoin
Scripting Language that when executed validates the sender’s signature on the
payload, by applying the following simple rules: The signature on Tn is valid if
and only if H(pkS) = S and the application of the ECDSA verification algo-
rithm with public key pkS , message [Tn], and signature τ succeeds. That alone
is insufficient for Tn to be accepted: In addition, the value vn being transferred
should not exceed the value vp in the output of the earlier transaction Tp. If
this latter condition holds, then Tn can be accepted to redeem transaction Tp,
provided that the transaction Tp has not been redeemed earlier (otherwise this is



an attempt to double-spend the same set of bitcoins, and the transaction should
be rejected).

More advance standard transactions with several inputs and several recipient
address can be defined. Since such transactions are not necessary for the under-
standing of this paper we skip their description and refer to [2]. Bitcoin allows
the users to also create non-standard (also called strange) transactions. Strange
transactions have a validity policy, specifically, a strange transaction Tp contains
in its output a piece of code in the Bitcoin Scripting Language which implements
a redemption policy. Subsequent strange transaction Tn that purports to redeem
Tp should thus supply any necessary inputs for the evaluation of Tp’s policy code,
and the transaction Tn successfully redeems Tp if the evaluation of Tp’s policy
with inputs provided by Tn outputs true (and again under the restriction that
no earlier transaction had redeemed Tp).

3 Certified Bitcoin Address

3.1 Description of the scheme

In this section we describe our main contribution. First we introduce some math-
ematical concepts and notation. The additive group of integer residues modulo
q is denoted by Zq. The Certification Authority (CA), denoted by T, has the
following public parameters: the description7 G of a finite group of size q, a gen-
erator g of G, and an additional element yT of G. The private parameter of the
CA is the value xT ∈ Zq such that yT = gxT . We also fix a function ρ from G to
Zq. This function could be fairly simple, e.g., it interprets the binary encoding
of an element of G as the encoding of a positive integer.

(Certified Address) A user U can request a certified address to the certifica-
tion authority T by jointly executing the protocol Certified Key Generation
in Table 1. Notice that U samples k uniformly at random in Zq (and so does
T for k′). At this point, U computes the secret key x and verifies that

gx = c · yρ(c)T .

The certified address A is the value H(c).

(Signature Verification) Given a self-certified public key c ∈ G, the signature
verification process works by first extracting the embedded public key y and
then using the standard verification. The only operation that needs to be
added is the extracting procedure (step 2 on the right of Table 1).

(Certified Transaction) Let S be an address and R a certified address. Before
sending bitcoins to the address R, the payer S checks whether there already
exists a transaction redeemed by R in the ledger. Notice that R can ensure

7 By description here we mean a (binary) encoding of G and its operations that can
be programmed into a computer.



Standard Bitcoin Certified Bitcoin

Common inputs: G, g Common inputs: G, g, yT

Standard Key Generation: Certified Key Generation:

User

1. x← Zq
2. y := gx

3. A := H(y)

User CA

1. k ← Zq
2. h := gk

h

c, x̄

3. k′ ← Zq
4. c := h · gk

′

5. e := ρ(c)
6. x̄ := k′ + e · xT

7. x := x̄+ k
8. A := H(c).

Standard Verification: Certified Verification:

1. Check A = H(y);

2. Check VrfECDSAy ([T ], τ)

1. Check A = H(c);

2. Set y := c · yρ(c)T

3. Check VrfECDSAy ([T ], τ)

Table 1. Comparison between Bitcoin and Certified Bitcoin. In both systems, the
value A represents the Bitcoin address. The certified key generation is blinded while
the transaction verification needs only a single extra step (step 2 on the right). All
operations on the exponents are taken modulo q.

that such a transaction exists by sending some bitcoins to itself (i.e. a self-
transaction). We call the first redeemed transaction of a certified address the
address certification transaction.

The correctness of the public key derivation follows:

gx = gk+k′+ρ(c)xT = gk+k′ · gρ(c)xT = c · yρ(c)T (1)

For a comprehensive list of the possible interactions between standard and
certified addresses we refer to Figure 1.



Fig. 1. Certified Bitcoin transactions: The figure shows all possible types of transac-
tions in a ledger with both standard and certified bitcoins. In the second block, a bitcoin
is sent to a newly created and supposedly-certified address. This first self transaction
in the third block designate that address as indeed certified. In the 5th block, bitcoins
are sent from a certified address to a standard address. The last transaction is between
standard bitcoin addresses.

3.2 Implementation Designs

Because of how Bitcoin handles transactions internally, it is not possible to check
that an address is certified by just looking at the transaction script. A standard
transaction script is shown below:

scriptPubKey: OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

scriptSig: <sig> <pubKey>

where scriptPubKey is the input script and scriptSig is the output script. To
verify a transaction, the following actions are performed: (1) after stacking up
the signature of the transaction and the redeemer’s public key, (2) the latter
is hashed by the OP_HASH160 operation and (3) the hashed valued is compared
with the <pubKeyHash> value. The problem is that such a value is a hash of
the public key and not a bitcoin address. The operation OP CHECKSIG is able to
distinguish whether the address is certified (by applying the certified signature
verification algorithm), but it has no way to report the type of address to the
Bitcoin client.

There are a few ways to implement our proposal into the Bitcoin client. We
briefly describe three viable options next.

New operation OP EXTCERTKEY. For this implementation, we extend the script-
ing language with a new operation OP EXTCERTKEY that takes a self-certified
public key c as input and then extracts the public key y from it, pushing the ex-
tracted key y into the stack, and then re-using the standard signature operation
OP CHECKSIG to verify the signature against the extracted key (now in the stack).
The size of the transaction would increase by the size of the new operation code
(1 byte):



scriptPubKey: OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY OP_EXTCERTKEY

OP_CHECKSIG

New operation OP CHECKCERTSIG. Instead, we could extend the scripting lan-
guage with a new operation OP CHECKCERTSIG that will exclusively handle certi-
fied transactions by first extracting the public key y from the self-certified public
key c to later perform the standard signature verification. The transaction script
for a certified transaction replaces the standard operation OP CHECKSIG with this
new operation:

scriptPubKey: OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY

OP_CHECKCERTSIG

Modify the operation OP CHECKSIG. Another way is to just modify the client to
interpret each transaction as possibly a certified transaction. In this case, the
client would first execute the script normally, but if it failed, it would re-attempt
the execution using the certified transaction algorithm (i.e., performing an oper-
ation such as OP CHECKCERTSIG instead of OP CHECKSIG). The client would then
report one of (a) successful standard transaction; (b) successful certified trans-
action; or (c) verification failure accordingly. The Bitcoin scripting language is
unmodified in this approach.

3.3 Security Requirements and Goals

A standard Bitcoin address is self-generated, while a certified address is jointly
computed with the involvement of the CA. Thus, it is natural to require that
Bitcoin transactions be hard to forge even by a malicious CA. Another security
requirement is that certificates must be unforgeable—if the adversary does not
know the CA’s secret key, it cannot generate a certificate and a transaction
(signature) through that certificate. Certified Bitcoin addresses share some ideas
with both Self-Certified Public Keys [7] and Blind Signatures [6]. The security
of our construction holds in the GGM which is the same on which the security
of standard Bitcoin relies on. This allows us to provide a security analysis of the
protocol within a single and well-defined model.

Crucial to our security formulation is the stipulation that an address be
recognized as certified only after it issues a signature (i.e., there is a certified
transaction in the public ledger which redeems from it). Indeed, in the absence
of the burden of demonstrating knowledge of the secret key, it is trivial for an
adversary to “pretend” to have a certificate, since the output c of an (honest-
party) execution of the certification protocol is simply an uniformly distributed
element in G.

While, by unforgeability of ECDSA, the adversary can not redeem bitcoins
from the related address, they may still pretend that the address has been cer-
tified. This attack makes no sense in the context of standard Bitcoin addresses:
A rational adversary willing to maximize their gain would prefer to exhibit an



address for which the secret key is known (to be able to spend any received
coins). In our context, on the other hand, if a malicious user falsely claims that
an address is certified, it may induce other users to complete unpremeditated
transactions.

4 Security of the Certified Bitcoin Addresses

In this section we provide a formal security experiment that captures the informal
requirements given in Section 3. Then we show that no ppt generic adversary
can win the experiment, providing a formal proof of security to our construction.

We recall that the GGM captures algorithms that access group operations
(and indeed the group encoding) through black box function calls. The proofs
are inspired by the techniques described in Naccache et al. [10].

In the GGM, the group encoding σ(·) : Zq → G represents an encoding oracle
that implements a homomorphism from Zq onto G.

As before, we employ a function ρ(·) from G to Zq, and via notation overload
also see ρ(·) as a function from G to Zq. To recall, since σ(·) encodes elements
of G into binary strings, these strings may thus be interpreted as the binary
expansion of an non-negative integer, and that integer can further be reduced by
computation of its positive remainder modulo q.

In this setting, one describes the public key y = gx as {σ(1), σ(x)}. This
notation just means that the homomorphism σ(·) maps 1 to g and therefore
maps x to y. σ(·) is an exponential notation, so x is unrecoverable from σ(x).

The group operation oracle · ⊕ · takes two encoded group elements σ(v1),
σ(v2), and returns the encoded product σ(v1 + v2). (Since this is exponential
notation, the product translate as a sum in the exponents.) Similarly, given
σ(v) and an integer u, one can implement the square-and-multiply algorithm
for exponentiation, using multiple calls to the group operation oracle, to obtain
σ(uv). One also needs a group inversion oracle 	σ(v)→ σ(−v).

4.1 Unforgeability Formalizations and Proofs

We now provide a rigorous definition of security for the construction in 3.1 by
defining the Signature Unforgeability Experiment. This is an adversarial game
wherein an attacker may obtain one or more certified addresses by executing the
protocol with the CA and/or compromise the CA. To succeed in the experiment,
the attacker needs to produce a valid message-signature tuple for a fresh certified
public key (i.e., one requested by an honest party to the potentially malicious
CA).

Notation: k denotes a security parameter, and poly(k) a value allowed to grow
as a polynomial function of k. A stands for the attacker or adversary. CKGP,T
represents the Certified Key Generation protocol described in 3.1, where P is
some party. In the adversarial game, the adversary has oracle access OT to the
trusted party and can execute the protocol CKGA,OT

, obtaining new certified



keys at will. It may also compromise the trusted party directly, in which case it
can execute the protocol CKGA,T entirely as a procedure.

The adversary may also request that new (honest) parties P be instantiated
and obtain oracle access OP with which to execute CKGOP ,OT

to produce a
certified address c for P . Alternatively, if A has compromised T, it can execute
CKGOP ,T, which additionally gives it T’s view of P ’s certificate key generation.

Finally the adversary can use oracle access OP to request signatures SignECDSA
OP (·)

on arbitrarily chosen messages. The security experiment is described in Fig. 2.

Expsig−unfA (k) :

1. (G, g, xT, yT)← Gen(1k) where |G| = poly(k), and set L← ∅, S ← ∅;
2. A with input G, g, yT has oracle access to T = T(xT) with which

can play the protocol CKG·,OT

Let (c, x̄) be the output of T after any execution of CKGA,OT

L maintains all certificates whose secrets were produced by A:
Update L← L ∪ {c};

3. Optionally A can extract the secret key xT of the trusted party by
compromising it;

4. A may request that arbitrary honest parties P be instantiated. Specifi-
cally, an oracle machine OP is instantiated and set in pause state;

5. Through oracle access OP , A may request that CKGOP ,OT be executed
to output a certified address c = cP for P (A has bystander view of an
honest party enrollment);

6. If A has compromised T, it may request that CKGOP ,T be executed,
giving A the trusted party view of an honest party enrollment;

7. A may request that honest party P sign arbitrary messages m of A’s
choice, executing τ ← SignECDSA

OP (m) = SignECDSA
cP ·y

ρ(cP )

T

(m)

Let (cP ,m, τ) be the output after any such execution
S maintains the set of signatures directly given to A:
Update S ← S ∪ {(cP ,m, τ)};

8. Eventually A outputs a triple s = (c,m, τ); if

VrfECDSA
y (m, τ) = 1 and c′ /∈ L, and s /∈ S

holds where y = c · yρ(c)T , then output 1 else 0.

Fig. 2. The Expsig−unf experiment.

Informally, we say that an adversary wins an experiment if only if the output
of the experiment is 1. The security claim is that, under the GGM, there is no
efficient adversary that wins the Signature Unforgeability Experiment.

Before stating our first security result, we informally recall the hypothesis of
the Security Theorem of the ECDSA signature scheme in the GGM (Thrm. 2
in D. Brown [5]). The theorem holds under the assumptions that the private



keys and ephemeral keys are uniformly random, the hash function is collision
resistance and satisfies two other properties called (1) zero-resistance, i.e., an
adversary cannot find a message that the hash function maps to 0k), and (2)
uniformity, roughly, the distribution of the output value of the hash function
on input a uniformly and random message is statistically close to the uniform
distribution (see [5] for more details). These two properties are generally believed
to hold true in practice for cryptographic hash functions in current usage, in
particular the ones employed in the Bitcoin protocol.

Theorem 1. If the Bitcoin’s hash function is collision resistant, zero resistant
and uniform, and the ephemeral keys are uniformly random, then there is no
efficient, generic adversary that achieves a non-negligible probability of success
in Expsig−unf .

We prove the theorem by transforming the above experiment into related
ones by reasoning about the adversary view (hybrid argument).

First, we note that we can assume that A always compromises T right after
receiving the public parameters. Indeed, the adversarial goal in the experiment
is the same whether T is compromised or not, and A’s view of the experiment
is strictly enlarged by directly playing the role of T throughout.

Now we look into more detail on the protocol algorithm CKG within the
GGM. Whenever a party chooses some random value r and needs to compute
gr ∈ G, it actually needs to consult the encoding oracle for σ(r). The encoding or-
acle in a GGM simulation maintains a list of previously asked for inputs ij it has
been given and the values it has returned for them: {i1, σ1 = σ(i1), . . . , in, σn =
σ(in)}. If the new input r matches an earlier i`, it will return the corresponding
σ`. Otherwise, it generates a completely new random binary string z, newly de-
fines σ(r) := z and appends to its list {i1, σ1, . . . , in, σn, in+1 = r, σn+1 = σ(r) =
z}, returning z to the caller.

We now modify the experiment simulation to Exp
sig−unf
A . The only differ-

ence between Exp
sig−unf
A and Expsig−unfA is as follows: When an honest party

P engages with A (impersonating T) to obtain a certificate, and A generates
k′ and attempts to compute c = hgk

′
= σ(k + k′), where k is the randomness

computed by P ; then if the GGM oracle already has some i` = k+k′ in its list of

previously encoded group elements, the experiment Exp
sig−unf
A terminates early,

with A victorious. Let us call Coll this event. Otherwise, it continues identically
as Expsig−unfA , i.e., the GGM oracle computes an entirely new random string
c = σ(k + k′) and returns it to A.

We claim that A’s additional probability of success in Exp
sig−unf
A versus

Expsig−unfA is negligible. For if the adversary were able to compute k′ such that
k′ = i` − k for a previously seen i`, it would also be able to extract the discrete
logarithm k = i` − k′ from h = gk, given only h. The claim then obviously fol-
lows by the standard security assumption of hardness of the Discrete Logarithm
Problem in elliptic curves (ECDLP).

Within Exp
sig−unf
A it holds that even when honest party P interacts with a

malicious trusted party, the protocol execution guarantees that c, and thus the



random contribution x̄ = k′ + ρ(c) · xT of T to P ’s private key x = x̄ + k is
uniformly and randomly distributed.

Specifically, let u be the number of instantiated honest parties P (i.e., u is
the number of execution of the CKG protocol between an honest party and the
trusted party) and let ε bound the probability that a ppt generic algorithm
solves the DLP in G, we have that:

Pr
[
Expsig−unfA (k) = 1

]
≤ Pr

[
Exp

sig−unf
A (k) = 1

]
≤

≤ Pr
[
Exp

sig−unf
A (k) = 1 |¬Coll

]
+ Pr [Coll] ≤

≤ Pr
[
Exp

sig−unf
A (k) = 1 |¬Coll

]
+ u · ε

If ¬Coll holds the experiment guarantees that the honest parties private keys

are uniformly and randomly generated. Notice that the experiment Exp
sig−unf
A

under the condition ¬Coll is equivalent to u independent and parallel executions
of the existential forgery experiment under the chosen-message attack of the
ECDSA. We now can directly invoke the security of ECDSA in GGM. In fact,
the private keys are uniformly and random, and by hypothesis, the hash function
is collision resistance, zero-resistance and uniform and the ephemeral keys are
uniformly and random.
Specifically, let εcrh be the probability under collision resistance attack for the
underlying hash function, then:

Pr
[
Expsig−unfA (k) = 1

]
≤ u · (εcrs + poly(k) · ε)

where the poly(k) depends on the running time of the adversary.

ut
In the above we did not prove that the generation of certificates itself was

unforgeable—indeed, by disclosing T’s private key to A we made it trivial for A
to generate new certificates. Merely proving that a malicious T cannot bias the
selection of private keys by honest parties was sufficient given that the Bitcoin
construction requires issuing a signature to complete certificate validation. We
now consider the issue of unforgeability of certificates separately.

The property is not strictly necessary to the security of the certified Bitcoin
address construction, since without a previously seen signature issued by a Bit-
coin address, it cannot be considered certified. However, it provides evidence that
our Certified Key Generation mechanism can be used in any cryptographic ap-
plication, provided that the certificate be accompanied by a proof of knowledge
of the certificate’s associated private key.

We omit a formal definition of security requirements of self-certified public
schemes here for conciseness reasons, and instead refer the reader to [7]. More
specifically, we provide an adversarial-game formulation of security for the fol-
lowing claim: When the trusted party is honest, adversaries cannot on their own
generate certificates on public keys for which they know the private key.



Expcert−unfA (k) :

1. (G, g, xT, yT)← Gen(1k) where |G| = poly(k), and set L← ∅;
2. A with input G, g, yT has oracle access to T = T(xT) with which

can play the protocol CKG·,OT

Let (c, x̄) be the output of T after any execution of CKGA,OT

L maintains all certificates whose secrets were produced by A:
Update L← L ∪ {c};

3. Eventually A outputs x, c; if

y = gx = c · yρ(c)T , where c /∈ L

holds then output 1 else 0.

The security claim is that, under the GGM, there is no efficient adversary A
that wins the Certificate Unforgeability Experiment Expcert−unf .

Theorem 2. There is no efficient, generic adversary that achieves a non-negligible
probability of success in Expcert−unf .

As a generic algorithm, A works as follows: It maintains a list of linear
polynomials {Fi}, where Fi = αi + βiX, and the coefficients lie in Zq. The list
is initiated as {F1 = 1, F2 = X}. The algorithm also maintains a list {σi} of
encodings, initiated as {σ1 = σ(1), σ2 = σ(xT)}. At the k-th time the algorithm
queries the oracle, it provides the indices i, j and a bit b, and the oracle responds
with either σk = σi ⊕ σj or σi ⊕ (	σj), according to the case b = 0 or b = 1,
respectively. The algorithm adds σk and Fk = Fi ± Fj mod q to each of the
respective lists, with the + sign being chosen if b = 0. (So it is the same sign
as in the definition of σk in terms of σi and σj .) Without loss of generality, we
may assume that the Fi are distinct linear polynomials with coefficients in Zq.
If, during the execution of the protocol, it happens that Fi(x) = Fj(x) mod q,
with i 6= j, it follows that F = Fi−Fj is a non-zero polynomial, with F (xT) = 0
mod q. This can allow A to solve it for xT, thus extracting the trusted party’s
secret. If the discrete logarithm is hard in G this can only happen with negligible
probability, and we can rule out the occurrence of such execution sequences from
the game simulation (called unsafe sequences in GGM terminology).

Consider now an algorithm that produces a tuple (c, x), after u queries to the
group operation oracle. Note that in this case, the verification equation implies
that c = σ(x − ρ(c) · xT). Let e = ρ(c) and P = x − e · X. If P is not in the
list of oracle queries performed by the algorithm, augment the list by adding
Fu+1 = P at the end, and increment the number of queries u← u+ 1.

Let Fj be the unique appearance of the polynomial P in the list, without
loss of generality. Remind that, from the hardness of DL problem in G, there
does not exist a index i such that Fi(xT) ≡ Fj(xT) mod q. This implies that the
group operation oracle may return a random value for σj , because Fj represents
a query for a new encoding when the encoding oracle is called at step j. The
probability that σj equals c is therefore, no more than 1/|G|, as (almost) all



values are now equally likely. In other words, the probability that the adversary
will arrive at such an execution sequence is 1/|G| for each oracle query, and thus
overall negligible if given only a polynomial number of queries. ut

Implication of Certificate Unforgeability to Identity Theft Mitigation. Let us
briefly consider the implications of certificate unforgeability for our construc-
tion, where the certification authority is functionally trustworthy, and indeed
collects proofs of (real-world) identity from the entities it certifies. Now, recall
the attack scenario where a man-in-the-middle (MITM) attacker changes the
payee’s Bitcoin address for the attacker’s address. Since (by the result above) an
attacker cannot forge certificates, the payee has a recourse to report the fraud
and bind it to the identity of the malicious party, with cooperation of the CA. To
provide a full proof of security of this fact we would have to provide (verbose, but
intuitively straightforward) formalizations of CA functional trust and of identity
theft in the context of our Bitcoin construction—for reasons of brevity we refrain
from expanding on it here.

5 Conclusion

The decentralized nature of Bitcoin is a critical component of its success. In this
paper we describe an optional Bitcoin address certification mechanism that in-
corporates trustworthiness from real-world entities into the system, to mitigate
against existing reservations to the adoption of Bitcoin as a legitimate currency.
We describe how to implement the scheme with the current Bitcoin ledger, al-
lowing certified and non-certified addresses to be used concurrently. In addition,
we provide a proof of security within an adversarial-game security model, under
the Generic Group Model of computation.
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