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Abstract. The block cipher KASUMI is widely used for security in many synchronous wireless
standards. It was proposed by ETSI SAGE for usage in 3GPP (3rd Generation Partnership Project)
ciphering algorthms in 2001. There are a great deal of cryptanalytic results on KASUMI, however,
its security evaluation against the recent zero-correlation linear attacks is still lacking so far. In
this paper, we select some special input masks to refine the general 5-round zero-correlation linear
approximations combining with some observations on the FL functions and then propose the 6-
round zero-correlation linear attack on KASUMI. Moreover, zero-correlation linear attacks on the
last 7-round KASUMI are also introduced under some weak keys conditions. These weak keys take
more than half of the whole key space.

The new zero-correlation linear attack on the 6-round needs about 2107.8 encryptions with 259.4

known plaintexts. For the attack under weak keys conditions on the last 7 round, the data complexity
is about 262.1 known plaintexts and the time complexity 2125.2 encryptions.

Keywords: KASUMI, Zero-correlation linear cryptanalysis, Cryptography.

1 Introduction

With the rapid growth of wireless services, various security algorithms have been developed

to provide users with effective and secure communications. The KASUMI developed from

a previous block cipher known as MISTY1[10], which was chosen as the foundation for the

3GPP confidentiality and integrity algorithm[14]. Nowadays, it is widely used in UMTS,

GSM and GPRS mobile communications. KASUMI adopts the basic Feistel structure and

has eight rounds. It accepts a 64-bit block and a 128-bit key.

Up to now, a great deal of attention was paid to KASUMI and many cryptanalytic methods

were used to evaluate its security, such as differential cryptanalysis[6], integral-interpolation

attack[11], higher order differential attack[12][13], sandwich attack[7] and impossible dif-

ferential attack[8]. In the past years, higher order differential attack[12][13]and integral-

interpolation attack[5] were applied to analyze variants of KASUMI. Kühn [9] presented an
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Attack Type Rounds Date Time Source

Higher-Order Differential 5 222.1CP 260.7Enc [6]

Higher-Order Differential 5 228.9CP 231.2Enc [7]

Integral-Interpolation 6 248CP 2126.2Enc [5]

Impossible Differential 6 255CP 2100Enc [9]

Multidimensional Zero-Correlation 6 259.4KP 2107.8Enc Sect.[4]

Impossible Differential 7 252.5CP 2114.3Enc [14]

Impossible Differential 7 262CP 2115.8Enc [14]

Multidimensional Zero-Correlation 7 262.1KP 2125.2Enc Sect.[5]

CP refers to the number of chosen plaintexts.
KP refers to the number of known plaintexts.

Enc refers to the number of encryptions.

Table 1: The key schedule of KASUMI

impossible differential attack on a 6-round version at EuroCrypt 2001. Later, Jia et al[8]

refined the impossible differential by selecting some special input differential values and ex-

tended the 12-years old impossible differential attack on 6-round KASUMI to 7 rounds at

SAC 2013. In the related-key setting, attacks on full 8-round [5] KASUMI were presented

using related-key booming and rectangle attack and the complexes are about 278.7 and 276.1

encryptions, respectively. At Crypto 2010, a new strategy called sandwich attacks [7] belong-

ing to a formal extension of booming attacks on the full KASUMI was obtained.

Bogdanov and Rijmen[1] proposed zero-correlation linear cryptanalysis. It is a novel

promising attack technique for block ciphers and has its theoretical foundation in the avail-

ability of numerous key-independent unbiased linear approximations with correlation zero for

many ciphers. However, the initial distinguisher of [1] had some limitations in terms of data

complexity, which needs at least half of the codebook. In FSE 2012, Bogdanov and Wang [2]

proposed a more data-efficient distinguisher by making use of multiple linear approximations

with correlation zero. The date complexity is reduced, however, the distinguisher relies on

the assumption that all linear approximations with correlation zero are independent. At Asi-

aCrypt 2012[3], a multidimensional distinguisher has been constructed for the zero-correlation

property, which removed the unnecessary independency assumptions on the distinguishing

side. Recently, multidimensional zero-correlation linear cryptanalysis has been using in the

attack of block cipher CAST-256[3], CLEFIA[4], HIGHT[15] and E2[16] successfully.

In this paper, we evaluate the security of KASUMI with respect to the recent technique

of zero-correlation linear cryptanalysis. Our contributions can be summarized as follows.

1. We reveal some 5-round linear approximations of correlation zero in KASUMI. For the

zero-correlation linear approximations of 5-round KASUMI: (ā, 0)
5-round9 (ā, 0), if we take all

non-zero values for ā, then there are so many guessed subkey bits involved in the key recovery

process that the time complexity will be greater than exhaustive search. Therefore, in order

to reduce the number of guessed subkey bits, we only use some special linear approximations.
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Based on some observations on FL function, we give some conditions the special linear

approximations should satisfy.

2. We propose a multidimensional zero-correlation linear attack on 6-round of KASUMI.

To my knowledge, there are no linear attacks on KASUMI so far and we bridge this gap, if

we treat the zero-correlation linear attack as a special case of linear attacks.

3. We provide a key-recovery attack on 7-round KASUMI(round 2 to round 8) under some

weak key conditions. We assume that the second keys of FL function in round 2 and round

8 have the some value in at least 8 bit positions. The purpose is to make a balance between

selecting out enough linear approximations and more master key satisfying the assumption.

The paper is organized as follows. We give a brief description of the block cipher KASUMI

and outlines the ideas of multidimensional zero-correlation linear cryptanalysis in Section 2.

Some observations on FL function are shown in Section 3. Section 4 and Section 5 illustrate

our attacks on 6-round and the last 7-round KASUMI. We conclude in Section 6.

2 Preliminarise

2.1 Description of KASUMI

The KASUMI algorithms [14] are symmetric block ciphers with a block size of 64 bits and a

key size of 128 bit. We give a brief description of KASUMI in this section.

KASUMI is a Feistel structure with 8 round, see Fig. 1 (a) for an illustration. The round

function consists of an FL function and an FO function. The FL function is a simple key-

dependent boolean function, depicted in Fig. 1 (c). Let the inputs of the FL function of the

i-th round be XLi = XLi,l‖XLi,r,KLi = (KLi,1,KLi,2), the output be Y Li = Y Li,l‖Y Li,r,
where XLi,l,XLi,r,Y Li,l and Y Li,r are 16-bit integers. We define the FL function as follows:

Y Li,r = ((XLi,l ∩KLi,1) ≪ 1)⊕XLi,r,

Y Li,l = ((Y Li,r ∪KLi,2) ≪ 1)⊕XLi,l,

where ∩ and ∪ denote bitwise AND and OR respectively, x ≫ i implies that x rotates left

by i bits, ⊕ denotes the bitwise exclusive-or (XOR), ‖ represents the concatenation, and FLi
denote the FL function of i-th round with subkey KLi.

The FO function is depicted in Fig. 1 (b), which is another three-round Feistel structure

consisting of three FI functions and key mixing stages. Let XOi = XOi,l‖XOi,r, KOi =

(KOi,1,KOi,2,KOi,3), KIi = (KIi,1,KIi,2,KIi,3) be the inputs of the FO function of i-th

round, and Y Oi = Y Oi,l‖Y Oi,r be the corresponding output, where XOi,l,XOi,r,Y Oi,l,Y Oi,r
and XIi,3 are 16-bit integers. Then the FO function has the form

XIi,3 = FI((XOi,l ⊕KOi,1),KIi,1)⊕XOi,r,

Y Oi,l = FI((XOi,r ⊕KOi,2),KIi,2)⊕XIi,3,



4

Algorithm 1 The KASUMI block cipher

Require: 64-bit plaintext P = (L0, R0); main key K,

Ensure: 64-bit ciphertext C = (L8, R8).

1: Derive round keys KOi, KIi and KLi (1 ≤ i ≤ 8) from K.

2: for j = 1 to 8 do

3: if j is odd, do

4: Lj = FO(FL(Lj−1,KLj),KOj ,KIj)⊕Rj−1, Rj = Lj−1,

5: else, do :

6: Lj = FL(FO(Lj−1,KOj ,KIj),KLj)⊕Rj−1, Rj = Lj−1.

7: end for

8: return C = (L8, R8).

Y Oi,r = FI((XIi,3 ⊕KOi,3),KIi,3)⊕ Y Oi,l.

For simplicity, FOi denotes the FO function of i-th round.

The FI function uses two S-boxes S7 and S9 which are permutations of 7-bit to 7-bit and

9-bit to 9-bit respectively. Suppose the inputs of the j-th FI function of the i-th round are

XIi,j , KIi,j and the output is Y Ii,j , where XIi,j and Y Ii,j are 16-bit integers. We define half

of FI function as FI, which is a 16-bit to 16-bit permutation. The structure of FI and FI

is depicted in Fig. 1 (c). Y Ii,j = FI(XIi,j) is defined as

Y Ii,j [0 ∼ 8] = S9(XIi,j [7 ∼ 15])⊕XIi,j [0 ∼ 6],

Y Ii,j [9 ∼ 15] = S7(XIi,j [0 ∼ 6])⊕ Y Ii,j [0 ∼ 6],

where z[i1 ∼ i2] denotes the (i2 ∼ i1)bits from the i1-th bit to i2-th bit of z, and 0 is the

least significant bit. The FI function is simplified as

Y Ii,j = FI(XIi,j ,KIi,j) = FI((FI(XIi,j)⊕KIi,j) ≪ 7),

and we denote FIi,j as the j-th FI function of the i-th round with subkey KIi,j .

Let Li||Ri =
(
(Li,l‖Li,r)‖(Ri,l‖Ri,r)

)
be the input of the i-th round, and then the round

function is defined as

Li = FO(FL(Li−1,KLi),KOi,KIi)⊕Ri−1, Ri = Li−1,

where i = 1, 3, 5, 7, and when i = 2, 4, 6, 8,

Li = FL(FO(Li−1,KOi,KIi),KLi)⊕Ri−1, Ri = Li−1.

Here, L0, R0, L8, R8 are the plaintext and ciphertext respectively, and Li−1, Ri−1 denote the

left and right 32-bit halves of the i-th round input. The KASUMI cipher can be described in

Algorithm 1.
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Round KLi,1 KLi,2 KOi,1 KOi,2 KOi,3 KIi,1 KIi,2 KIi,3

1 k1 ≪ 1 k′3 k2 ≪ 5 k6 ≪ 8 k7 ≪ 13 k′5 k′4 k′8
2 k2 ≪ 1 k′4 k3 ≪ 5 k7 ≪ 8 k8 ≪ 13 k′6 k′5 k′1
3 k3 ≪ 1 k′5 k4 ≪ 5 k8 ≪ 8 k1 ≪ 13 k′7 k′6 k′2
4 k4 ≪ 1 k′6 k5 ≪ 5 k1 ≪ 8 k2 ≪ 13 k′8 k′7 k′3
5 k5 ≪ 1 k′7 k6 ≪ 5 k2 ≪ 8 k3 ≪ 13 k′1 k′8 k′4
6 k6 ≪ 1 k′8 k7 ≪ 5 k3 ≪ 8 k4 ≪ 13 k′2 k′1 k′5
7 k7 ≪ 1 k′1 k8 ≪ 5 k4 ≪ 8 k5 ≪ 13 k′3 k′2 k′6
8 k8 ≪ 1 k′2 k1 ≪ 5 k5 ≪ 8 k6 ≪ 13 k′4 k′3 k′7

x≪ i: x rotates left by i bits. k′i = k′i ⊕ ci, where the cis are fixed constants.

Table 2: The key schedule of KASUMI

The key schedule of KASUMI is much simpler than the original key schedule of MISTY1.

The 128-bit keyK is divided into eight 16-bit words: (k1, k2, ..., k8), i.e., K = (k1, k2, k3, k4, k5,

k6, k7, k8). In each round, eight key words are used to compute the round subkeys, which

are made up of three parts KLi, KOi and KIi. Here, KLi = (KLi,1,KLi,2),KOi =

(KOi,1,KOi,2,KOi,3) and KIi = (KIi,1,KIi,2,KIi,3). We summarize the details of the key

schedule of KASUMI in Tab. 2.

2.2 Zero-correlation cryptanalysis

In this section, we briefly recall the basic concepts of zero-correlation linear cryptanalysis

based on [1], [2] and [3]. Linear cryptanalysis is based on linear approximations determined

by input mask a and output mask β. A linear approximation a → β of a vectorial function

f has a correlation denoted by

C(β · f(x), a · x) = 2Prx(β · f(x)⊕ a · x = 0)− 1,

where we denote the scalar product of binary vectors by a · x = ⊕ni=1aixi.

In zero-correlation linear cryptanalysis, the distinguisher uses linear approximations with

zero correlation for all keys while the classical linear cryptanalysis utilizes linear approxima-

tions with correlation as far from zero as possible. Bogdanov et al. [3] proposed a multidi-

mensional zero-correlation linear distinguisher using l zero-correlation linear approximations

and requiring O(2n/
√
l) known plaintexts, where n is the block size of a cipher.

We treat the zero-correlation linear approximations available as a linear space spanned

by m base zero-correlation linear approximations such that all l = 2m − 1 non-zero linear

combinations of them have zero correlation. For each of the 2m data values z ∈ Fm2 , the

attacker initializes a counter V [z], z = 0, 1, ..., 2m − 1 to value zero. Then, for each distinct

plaintext, the attacker computes the corresponding data value in Fm2 by evaluating the m

basis linear approximations and increments the counter V [z] of this data value by one. Then
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Figure 1: The structure and building blocks of KASUMI
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the attacker computes the statistic T :

T =
2m−1∑
i=0

(v[z]−N2−m)2

N2−m(1− 2−m)
.

The statistic T follows a X 2 -distribution with mean µ0 = (l − 1)2n−N
2n−1 and variance σ2

0 =

2(l − 1)
(

2n−N
2n−1

)2
for the right key guess, while for the wrong key guess, it follows a X2-

distribution with mean µ1 = l − 1 and variance σ2
1 = 2(l − 1).

If we denote the probability of false positives and the probability of false negatives to

distinguish between a wrong key and a right key as β0 and β1, respectively, and we consider

the decision threshold τ = µ0 +σ0z1−β0 = µ1−σ1z1−β1 , then the number of known plaintexts

N should be about

N =
(2n − 1)(z1−β0 + z1−β1)√

(l − 1)/2 + z1−β0
+ 1,

where z1−β0 and z1−β1are the respective quantiles of the standard normal distribution, See

[3] for detail.

3 Some Observations of KASUMI

Let M = (m0,m1, ...,ml−1), x = (x0, x1, ..., xl−1), qM = (qm0, qm1, ..., qml−1), M ∪ x =

(m0 ∪ x0,m1 ∪ x1, ...,ml−1 ∪ xl−1), M ∩ x = (m0 ∩ x0,m1 ∩ x1, ...,ml−1 ∩ xl−1) and M � x =

(m0x0,m1x1, ...,ml−1xl−1). We describe some observations on the FL functions, which are

used in our cryptanalysis of KASUMI.

Observation 1. Let M be a l-bit value and h1(x) = M ∪ x, h2(x) = M ∩ x. Then C(β ·
h1(x), a · x) 6= 0 if and only if a =qM � β and C(β · h2(x), a · x) 6= 0 if and only if a = M � β,
see Figure 2 (a)(b).

We only consider the function h1(x). For any i ∈ (0, l − 1), if mi = 0, then the input

mask ai is the same with the output mask βi. If mi = 1, then ai = 0, no matter what the

value βi takes. The following result can be deduced from Observation 1.

Observation 2. If the output mask of FL function is (a, a′), where a′[i] = a[i − 1]qKL2[i],

i = 1, 2, ...l− 1, and a′[0] = a[l]qKL2[l], that is, a′ = (a≪ 1) �KL2, then the input mask of

FL function is (a, 0), see Figure 2(c).

Base on Observation 2 and the structure of round functiom of the KASUMI block cipher,

we have the following two results.

Observation 3. If the input mask of FL6 function is (a, a′), where a′ = (a ≪ 1)�qKL6,2,

then the input masks of FO6,l and FO6,r function only depend on the 64-bit subkey k1, k4,

k5 and k3, see Figure 3.
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(a) (b) (c)

Figure 2: Property of OR, AND and FL function

Observation 4. Let (a, a′) be the output mask of FL2 and FL8 functions, where a[i−1] = 0,

if KL2,2[i] ⊕KL8,2[i] = 1, i = 1, 2, ...l − 1 and a[l] = 0, if KL2,2[0] ⊕KL8,2[0] = 1, and let

a′ = (a ≪ 1)�qKL2,2�qKL8,2, then the output mask of FI2,3 and FI8,3 be zero, and the

input masks of FO2,l, FO2,r, FO8,l and FO8,r functions depend on the 96-bit subkey k3, k6,

k7, k5, k1 and k4, see Figure 4.

4 Key-recovery attack on the 6 Rounds of KASUMI

The generic 5-round zero-correlation linear approximations of Feistel structure was introduced

by Bogdanov and Rijmen in [1], which is: (ā, 0)
5-Round9 (ā, 0), where ā is a 32-bit non-zero

value. Combined with the Feistel structure of the round function, some special values of input

mask ā are selected to attack the 6-round version of KASUMI. We mount the 5-round zero-

correlation linear approximations from round 1 to round 5, and extend one round backward.

We select the 5-round zero-correlation linear approximations as:

(a‖a′, 0)
5-Round9 (a‖a′, 0),

where a is 16-bit non-zero value and a′ = (a ≪ 1)�qKL6,2. The choice is to minimize the

key words guessing during the attack on 6 rounds of KASUMI. Based on observations 3, we

know that, if the input mask of the first round is selected as above, FI6,3 and FO6,3 are not

involved in the computation, which can help us to reduce the complexity of the attack. The

zero-correlation linear attack on the 6-round variant of KASUMI is demonstrated as follows,

see also Fig. 3.

In our attack, we guess the subkey and evaluate the linear approximation (a, a′)T ·
(
(L0,l, L0,r

)⊕ (R5,l, R5,r)
)

= 0, that is

(a, a′)·(L0,l⊕L6,l, L0,r⊕L6,r)⊕a·
(
FI(L5,l⊕(k1 ≪ 5), k′4)⊕L5,r⊕FI(L5,r⊕(k5 ≪ 8), k′3)

)
= 0,
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Figure 3: Multidimensional Zero-correlation attack on 6-round KASUMI

where a′ = (a ≪ 1) � ¬k′8. Then the key-recovery attack on 6-round KASUMI is proceeded

with partial-sum technique as follows.

1. Allocate a counter vector V [L5,l|L5,r|L5,r⊕R5,l⊕L0,l|R5,r⊕L0,r] of size 64 where each

element is 8-bit length and initialize to zero. In this step, about 264 plaintext-ciphertext pairs

are divided into 264 different state. The expected pairs for each state is around one. So the

assumption V as a 8-bit counter is sufficient.

2. Guess all possible values of 16 subkey bits k′2.

3. For N plaintext-ciphertext pairs, extract the 48-bit value

i = (L5,l|L5,r|X1)

where X1 = L5,r ⊕ L6,l ⊕ L0,l ⊕
((

qk′2 � (L6,r ⊕ L0,r)
)
≫ 1

)
and increment the counter xi

according to the value of i.

4. Guess all possible values of 32 master key bits k4 and k1, partially encrypt L5,l to

get Y I6,1. Let X2 = X1 ⊕ Y I6,1. Add one to the corresponding i = (L5,r|X2). The time

complexity of Step 4 is no more than 216 × 232 × 248 × 1
3 ×

1
6 6-round encryptions.

5. Guess all possible values of 32 master key bits k5 and k3, partially encrypt L5,r to get

Y I6,2. Let X3 = X2 ⊕ Y I6,2. Add one to the corresponding i = (X3). The time complexity

of Step 5 is no more than 216 × 232 × 232 × 232 × 1
3 ×

1
6 6-round encryptions.

6. After Step 5, 80 master key bits have been guessed and the parity of a ·X3 could be

evaluated for all zero-correlation linear approximations.

7. Allocate a counter vector V [z] of size 216 where each element is 64-bit length for 16-bit

z (z is the concatenation of evaluations of 16 basis zero-correlation masks).

8. For 216 values of X, evaluate all basis zero-correlation masks on X and put the evalu-

ations to the vector z, then add the corresponding V [z] : V [z]+ = V [X].

9. Compute T = N216
∑216−1

z=0 (v[z]
N −

1
216

), if T ≤ τ ,then the guessed key is a possible key

candidate. As there are 48 master key bits that we havent guessed, we do exhaustive search

for all keys conforming to this possible key candidate.
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Step Guess Computed States Counter-Size

1 k2 x1i = (L5,l|L5,r|X1) 48

2 k4,k1 x2i = (L5,r|X2) 32

3 k5,k3 x3i = (X3) 16

Table 3: Partial decryption on 6-Round KASUMI

In this attack, we set the type-I error probability β0 = 2−2.7 and the type-II error proba-

bility β1 = 2−82. We have z1−β0 ≈ 1, z1−β1 ≈ 10, n = 64, l = 216 − 1. The date complex N

is about 259.4 and the decision threshold τ ≈ 215.9.

There are 80-bit master key value guessed during the encryption phase, and only the

right key candidates survive in the wrong key filtration. The complexity of Step 3 is no

more than N216 6-round KASUMI encryptions and the complexity of Step 5 is about 2107.8

6-round KASUMI encryptions which is also the dominant part of our attack. In total, the

data complexity is about 259.4 known plaintexts, the time complexity is about 2107.8 6-round

KASUMI encryptions and the memory requirement are 264 8-bit for counters.

5 Key-recovery attack on the last 7 round KASUMI

In this section, we describe our attacks on the last 7 round of KASUMI. We mount the 5-

round zero-correlation linear approximations from round 3 to round 7, and extend one round

forward and backward respectively. We assume that the subkeys k′2 and k′4 have the same

value at least 8 bit positions among the 16 bits positions, then based on Observation 4, we

know there are a least 28 input masks and It is easy to know that more than half of the

master keys space has this property. In the attack, we also select some special input masks

to reduce number of guessed key bits.

In our attack, we guess the subkey and evaluate the linear approximation (a, a′)T ·
(
(L2,l, L2,r)

⊕(R7,l, R7,r)
)

= 0, that is

(a, a′) ·
(
(R1,l, R1,r)⊕ (L8,l, L8,r)

)
⊕ a ·

(
FI(L1,l ⊕ (k3 ≪ 5), k′6)⊕ L1,r ⊕ FI(L1,r ⊕ k′5,

k7 ≪ 8)⊕ FI(L7,l ⊕ (k1 ≪ 5), k′4)⊕ L7,r ⊕ FI(L7,r ⊕ (k5 ≪ 8), k′3)
)

= 0,

where a[i− 1] = 0, if k′4[i]⊕ k′2[i] = 1, i = 1, 2, ...15 and a[15] = 0, if k′4[0]⊕ k′2[0] = 1 and we

let a′ = a≫ 1�qk′2�qk′4.

Then the key-recovery attack on 7-round KASUMI is proceeded with partial-sum tech-

nique as follows.

1. Allocate a counter vector N [L1,l|L1,r|L7,l|L7,r|R1,l ⊕ L8,l ⊕ L1,r ⊕ L7,r|R1,r ⊕ L8,r] of

size 96 where each element is 8-bit length and initialize to zero.
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Figure 4: Multidimensional Zero-correlation attack on KASUMI reduced to rounds 2-8

2. Guess all possible values of 16 master key bits k′4.

3. For N plaintext-ciphertext pairs, extract the 80-bit value

i = (L1,l|L1,r|L7,l|L7,r|R1,l|Y 1)

where Y 1 = R1,l⊕L8,l⊕L1,r⊕L7,r⊕
((
¬k′4 � (R1,r⊕L8,r)

)
≫ 1

)
and increment the counter

xi according to the value of i.

4. Guess all possible values of 48 master key bits k1, k5, k3, partially encrypt L7,l and

L7,r to get Y O8,l. Let Y 2 = Y 1⊕ Y O8,l and add one to the corresponding i = (L1,l|L1,r|Y 2).

The time complexity of Step 4 is no more than N × 216 × 248 × 1
3 ×

1
7 7-round encryptions.

5. Guess all possible values of 16 master key bits k6, partially encrypt L1,l to get Y I2,1.

Let Y 3 = Y 2 ⊕ Y I2,1. Add one to the corresponding i = (L1,r, Y
3). The time complexity of

Step 5 is no more than 216 × 264 × 248 × 1
3 ×

1
7 7-round encryptions.

6. Guess all possible values of 16 master key bits k7, partially encrypt L1,r to get Y I2,2.

Let Y 4 = Y 4 ⊕ Y I2,2. Add one to the corresponding i = (Y 4). The time complexity of Step

5 is no more than 216 × 216 × 216 × 248 × 232 × 1
3 ×

1
7 7-round encryptions.

7. Guess 215 number of k′2 under weak key condition. k2 has the same value with k4 in at

least 8-bit positions and we call those bit positions be active bit positions. We let the masks

a be 0 or 1 in the first 8 active bit positions, and be 0 in others. there are 28 masks.

8. Allocate a counter vector N [z] of size 28 where each element is 64-bit length for 8-bit

z (z is the concatenation of evaluations of 8 basis zero-correlation masks).

9. For 216 values of Y 4, evaluate 8 basis zero-correlation masks on Y 4 and put the

evaluations to the vector z, then add the corresponding N [z] : N [z]+ = N [Y 4].
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10. Compute T = N28
∑28−1

z=0 (v[z]
N −

1
28

), if T ≤ τ ,then the guessed key is a possible key

candidate. As there are 48 master key bits that we havent guessed, we do exhaustive search

for all keys conforming to this possible key candidate.

In this attack, we set the type-I error probability β0 = 2−2.7 and the type-II error proba-

bility β1 = 2−10. We have z1−β0 ≈ 1, z1−β1 ≈ 3.09, n = 64, l = 28 − 1. The date complex N

is about 262.1 and the decision threshold τ ≈ 27.6.

There are 2111 master key value guessed during the encryption and decryption phase, and

2111 · 2−10 = 2101 key candidates survive in the wrong key filtration. Step 10 needs about

2128 · 2−10 = 2118 7-round KASUMI encryption. The complexity of the dominant Step 5,

6, 7 is about 2123.61, 2123.61 7-round KASUMI encryptions and 2127 memory accesses. If we

assume that one time of memory accesses is equivalent to one FI function operator, then, the

total complexity is about 2125.2 7-round KASUMI encryptions with 262.1 known plaintexts.

6 Conclusion

In this paper, we evaluate the security of KASUMI with respect to the novel technique of

multidimensional zero-correlation cryptanalysis. We refine the zero-correlation linear approx-

imations by selecting some special input masks. Besides, we give some observations on the

FL function with some special input masks, with which we give the first multidimensional

zero-correlation attack on the 6 round and the last 7 round of KASUMI block cipher. The

two attacks need 2107.8 encryptions with 259.4 chosen plaintexts and 2125.2 encryptions with

262.1 known plaintexts, respectively.
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