
Towards a Unified Theory of Cryptographic Agents

Shashank Agrawal ∗ Shweta Agrawal † Manoj Prabhakaran ‡

Abstract

In recent years there has been a fantastic boom of increasingly sophisticated “cryptographic
objects” — identity-based encryption, fully-homomorphic encryption, functional encryption, and most
recently, various forms of obfuscation. These objects often come in various flavors of security, and as
these constructions have grown in number, complexity and inter-connectedness, the relationships
between them have become increasingly confusing.

We provide a new framework of cryptographic agents that unifies various cryptographic objects and
security definitions, similar to how the Universal Composition framework unifies various multi-party
computation tasks like commitment, coin-tossing and zero-knowledge proofs.

Our contributions can be summarized as follows.
• Our main contribution is a new model of cryptographic computation, that unifies and extends

cryptographic primitives such as Obfuscation, Functional Encryption, Fully Homomorphic En-
cryption, Witness encryption, Property Preserving Encryption and the like, all of which can
be cleanly modeled as “schemata” in our framework. We provide a new indistinguishability
preserving (IND-PRE) definition of security that interpolates indistinguishability and simulation
style definitions, implying the former while (often) sidestepping the impossibilities of the latter.

• We present a notion of reduction from one schema to another and a powerful composition theorem
with respect to IND-PRE security. This provides a modular means to build and analyze secure
schemes for complicated schemata based on those for simpler schemata. Further, this provides
a way to abstract out and study the relative complexity of different schemata. We show that
obfuscation is a “complete” schema under this notion, under standard cryptographic assumptions.

• IND-PRE-security can be parameterized by the choice of the “test” family. For obfuscation, the
strongest security definition (by considering all PPT tests) is unrealizable in general. But we
identify a family of tests, called ∆, such that all known impossibility results, for obfuscation as
well as functional encryption, are by-passed. On the other hand, for each of the example primitives
we consider in this paper – obfuscation, functional encryption, fully-homomorphic encryption and
property-preserving encryption – ∆-IND-PRE-security for the corresponding schema implies the
standard achievable security definitions in the literature.

• We provide a stricter notion of reduction that composes with respect to ∆-IND-PRE-security.
• Based on ∆-IND-PRE-security we obtain a new definition for security of obfuscation, called adaptive
differing-inputs obfuscation. We illustrate its power by using it for new constructions of functional
encryption schemes, with and without function-hiding.

• Last but not the least, our framework can be used to model abstractions like the generic group
model and the random oracle model, letting one translate a general class of constructions in these
heuristic models to constructions based on standard model assumptions. We illustrate this by
adapting a functional encryption scheme (for inner product predicate) that was shown secure in
the generic group model to be secure based on a new standard model assumption we propose,
called the generic bilinear group agents assumption.

∗University of Illinois, Urbana-Champaign. Email: sagrawl2@illinois.edu.
†Indian Institute of Technology, Delhi. Email: shweta.a@gmail.com.
‡University of Illinois, Urbana-Champaign. Email: mmp@illinois.edu.

Contents

1 Introduction 3
1.1 Our Contributions . 4

2 Preliminaries 7

3 Defining Cryptographic Agents 8

4 Reductions and Compositions 10

5 Restricted Test Families: ∆, ∆∗ and ∆det 12

6 Generic Group Schema 14

7 Obfuscation Schema 16
7.1 Definition . 16
7.2 Completeness of Obfuscation . 17
7.3 Impossibility of IND-PRE obfuscation for general functionalities 17
7.4 Relation to other notions of Obfuscation . 17

7.4.1 Indistinguishability Obfuscation. 17
7.4.2 Differing Inputs Obfuscation. 18

7.5 Adaptive Differing Inputs Obfuscation . 18

8 Functional Encryption 19
8.1 Functional Encryption without Function Hiding . 19

8.1.1 Definition . 19
8.1.2 Reducing Functional Encryption to Obfuscation 19
8.1.3 Relation with known definitions . 21

8.2 Function-Hiding Functional Encryption . 22
8.2.1 Reduction to the Generic Group Schema . 22
8.2.2 A Construction from Obfuscation . 23

9 Relating Cryptographic Agents to other Cryptographic Objects 24
9.1 Fully Homomorphic Encryption . 24
9.2 Property Preserving Encryption . 25

10 On Bypassing Impossibilities 25

11 Conclusions and Open Problems 26

1

A Related Work 31

B Obfuscation Schema is Complete 33
B.1 Construction for Non-Interactive Agents . 33
B.2 General Construction for Interactive Agents . 34

C Obfuscation 36
C.1 Indistinguishability Obfuscation . 36

C.1.1 Proof of Lemma 1 . 36
C.2 Differing Inputs obfuscation. 37

C.2.1 Proof of Lemma 2 . 38

D Functional Encryption 38
D.1 Traditional Definition of Functional Encryption . 38
D.2 Proof of Lemma 3 . 39

E Fully Homomorphic Encryption 40

F Property Preserving Encryption 41
F.1 Definitions . 41
F.2 Equivalence . 41

2

1 Introduction
Over the last decade or so, thanks to remarkable breakthroughs in cryptographic techniques, a wave
of “cryptographic objects” — identity-based encryption, fully-homomorphic encryption, functional
encryption, and most recently, various forms of obfuscation — have opened up exciting new possibilities
for cryptographers. Initial foundational results on this front consisted of strong impossibility results.
Breakthrough constructions, as they emerged, often used specialized security definitions which avoided
such impossibility results. However, as these objects and their constructions have become numerous
and complex, sometimes building on each other, the connections among these disparate cryptographic
objects, and among their disparate security definitions, remain not well understood.

The goal of this work is to provide a clean and unifying framework for various cryptographic objects
and security definitions, equipped with powerful reductions and composition theorems. By choosing the
nature of the “test” in our framework (e.g., randomized or deterministic), we obtain various existing
and new flavors of security definitions for functional encryption and obfuscation. Some of the resulting
definitions are provably impossible to achieve, but stronger versions that avoid known impossibility
results also emerge (e.g., a new notion of “adaptive differing-inputs obfuscation” that leads to significant
simplifications in constructions using “differing-inputs obfuscation”).

Another important contribution of our framework is that it can be used to model abstractions like
the generic group model, letting one translate a general class of constructions in these heuristic models
to constructions based on standard model assumptions.

Cryptographic Agents. Our unifying framework, called the Cryptographic Agents framework models
one or more (possibly randomized, stateful) objects that interact with each other, so that a user with
access to their codes can only learn what it can learn from the output of these objects. As a running
example, functional encryption schemes could be considered as consisting of “message agents” and “key
agents.”

To formalize the security requirement, we use a real-ideal paradigm, but at the same time rely on
an indistinguishability notion (rather than a simulation-based security notion). We informally describe
the framework below. Figure 1 illustrates the real and ideal executions.

B

Test Ideal
User

O E

Test Ideal
User

Honest Real User

Figure 1 The ideal world (on the left) and the real world with an honest user.

• Ideal Execution. The ideal world consists of two (adversarially designed) entities — a User and
a Test — who can freely interact with each other. User is given access, via handles, to a collection
of “agents” (interactive Turing Machines), maintained by B (a “blackbox”). User and Test are both
allowed to add agents to the collection of agents with B, but the class of agents that they can add
are restricted by an ideal agents schema.1 For example, in a schema capturing public-key functional
encryption, the user can add only “message agents” each of which simply copies an inbuilt message
into its communication tape everytime it is invoked; but Test can also add “key agents,” each of
1Here, a schema is analogous to a functionality in UC security. Thus different primitives like functional encryption and

fully-homomorphic encryption are specified by different schemata.

3

which reads a message from its incoming communication tape, applies an inbuilt function to it, and
copies the result to its output tape. In a general schema, the User can feed inputs to these agents,
and also allow a set of them to interact with each other, in a “session”. At the end of this interaction,
the user obtains all the outputs from the session, and also additional handles to the agents with
updated states.2

• Real Execution. The real execution also consists of two entities, the (real-world) user (or an
adversary Adv) and Test. The latter is in fact the same as in the ideal world. But in the real world,
when Test requests adding an agent to the collection of agents, the user is handed a cryptographically
generated object – a “cryptographic agent” – instead of a handle to this agent. The correctness
requirement is that an honest user should be able to perform all the operations any User can in
the ideal world (i.e., add new agents to the collection, and execute a session of agents, and thereby
update their states) using an “execution” operation applied to the cryptographic agents. In Figure 1,
O indicates the algorithm for encoding, and E indicates a procedure that applies an algorithm for
session executions, as requested by the User. (However, an adversarial user Adv in the real world may
analyze the cryptographic agents in anyway it wants.)
• Security Definition. We define IND-PRE (for indistinguishability preserving) security, which
requires that if a Test is such that a certain piece of information about it (modeled as an input bit)
remains hidden from every user in the ideal world, then that information should stay hidden from
every user that interacts with Test in the real world as well. Note that we do not require that the
view in the real world can be simulated in the ideal world.
In the real world we require all entities to be computationally bounded. But in the ideal world,
we may consider users that are computationally bounded or unbounded (possibly with a limit on
the number of sessions it can invoke). We may also restrict ourselves to deterministic Tests. These
choices allows us to model different levels of security, which in the case of specific schema, translate
to various natural notions of security.

1.1 Our Contributions

Our main contribution is a new model of cryptographic computation, that unifies and extends emerging
concepts in the field. Obfuscation, Functional Encryption, Fully Homomorphic Encryption, Property
Preserving Encryption, etc. can all be easily and cleanly modeled by specific schemata in our model.

One can consider our framework analogous to the now-standard approach in secure multi-party
computation (MPC) (e.g., following [57, 36]) that uses a common paradigm to abstract the security
guarantees in a variety of different tasks like commitments, zero-knowledge proofs, coin-flipping,
oblivious-transfer etc. Such a common framework allows one not only to see the connections across
primitives, but also to identify better definitions that increase the usability and security of the primitives.
While we anticipate several refinements and extensions to the framework presented here, we consider
that, thanks to its simplicity, the current model already provides important insight about the “right”
security notions for the latest set of primitives in modern cryptography, and opens up a wealth of new
questions and connections for further investigation.

The list of technical results in this paper could be viewed in two parts: contributions to the
foundational aspects of cryptographic objects, and contributions to specific objects of interest (mainly,
obfuscation and functional encryption). Some of our specific contributions to the foundational aspects
of this area are as follows.

• We first define a general framework of cryptographic agents that can be instantiated for different
2For our example of functional encryption, neither inputs nor states are relevant, as the message and key agents have

all the relevant information built in. However, obfuscation is best modeled by non-interactive agents that take an input,
and modeling fully homomorphic encryption requires agents that maintain state.

4

primitives using different schemata. The resulting security definition, called Γ-IND-PRE-security is
paramterized by a test family Γ. For natural choices of Γ, these definitions tend to be not only
stronger than standard definitions, but also easier to work with in larger constructions (see next).
• We present a notion of reduction from one schema to another,3 and a composition theorem. This

provides a way to study, in abstract, relative complexity of different schemata – in particular, showing
that obfuscation is a “complete” schema under this notion. But further, it provides a modular means
to build and analyze secure schemes for complicated schema based on those for simpler schemata.
• The above notion of reduction composes for Γppt-IND-PRE-security where Γppt is the class of all

probabilistic polynomial time (PPT) tests. Unfortunately, obfuscation (and hence, any other complete
schema) can be shown to be unrealizable under this definition.
• We identify a simple test family ∆ (defined later) such that for each of the example primitives
we consider in this paper – obfuscation, functional encryption, fully-homomorphic encryption and
property-preserving encryption – ∆-IND-PRE-security for the corresponding schema implies the
standard security definitions in the literature (except the simulation-based definitions which are
known to be impossible to realize in general).
We also identify a few natural, restricted test families which yield definitions that are equivalent to
various existing security definitions in the literature.
• Then we present a more structured notion of reduction, called ∆-reduction, that composes with
respect to ∆-IND-PRE-security as well.

These basic results have several important implications to specific problems of interest.

• Obfuscation. We study in detail, the various notions of obfuscation in the literature, and
relate them to Γ-IND-PRE-security for various test families Γ. Our strongest definition of this form,
which considers the family of all PPT tests, turns out to be impossible. Our definition is conceptually
“weaker” than the virtual black-box simulation definition (in that it does not require a simulator),
but the impossibility result of Barak et al. [9] continues to apply to this definition. To circumvent
the impossibility, we identify three test families, ∆, ∆∗ and ∆det, such that ∆det-IND-PRE-security is
equivalent4 to indistinguishability obfuscation, ∆∗-IND-PRE-security is equivalent to differing inputs
obfuscation, and ∆-IND-PRE-security implies both the above. We state a new definition for the
security of obfuscation – adaptive differing-inputs obfuscation – which is equivalent ∆-IND-PRE-security.
Informally, it is the same as differing inputs obfuscation, but an adversary is allowed to interact with the
“sampler” (which samples two circuits one of which will be obfuscated and presented to the adversary
as a challenge), even after it receives the obfuscation.
• Functional Encryption. Various flavors of functional encryption (FE) have been considered in

the literature – public and private key, with or without function hiding – with various formalizations of
the security requirement – indistinguishability based or simulation based security, further classified into
adaptive and non-adaptive security, possibly with a priori bounds on the number of keys issued. Our
framework provides a unified method to capture all these variants, using slightly different schemata and
test families. For concreteness, we focus on adaptive secure, indistinguishability-based, public-key FE
(with and without function-hiding).

– We present a schema Σfe which captures FE without function-hiding. We consider a hierarchy of
security notions ∆det-IND-PRE ≤ ∆-IND-PRE ≤ IND-PRE ≤ SIM and show that ∆det-IND-PRE FE
is equivalent to the standard indistinguishability or IND based notion of security (in contrast SIM
3Our reduction uses a simulation-based security requirement. Thus, among other things, it also provides a means for

capturing simulation-based security definition: we say that a scheme Π is a Γ-SIM-secure scheme for a schema Σ if Π
reduces Σ to the null-schema.

4Equivalences are upto easily bridged syntactic differences between an obfuscation scheme and a cryptographic agent.

5

security is known to be impossible for general function families [21, 13, 5]). For function-hiding FE
too, IND-PRE-security is impossible for general function families, since such FE subsumes obfuscation.

– Function-hiding (public-key) FE had proved difficult to define satisfactorily [19, 20, 1]. The IND-PRE
framework provides a way to obtain a natural and general definition of this primitive. We present a
schema Σfh-fe to capture the security guarantees of function-hiding FE.

– We present new constructions for ∆-IND-PRE secure FE (both with and without function hiding)
for all polynomial-time computable functions. We also present an IND-PRE secure FE for the inner
product functionality.

We remark that two of our three constructions are in the form of reductions (a ∆-reduction to the
obfuscation schema, and a (standard) reduction to a “bilinear generic group” schema as described
below). Also, the first two constructions crucially rely on ∆-IND-PRE-security of obfuscation (i.e.,
adaptive differing-inputs obfuscation), thereby considerably simplifying the constructions and the
analysis compared to those in recent work [7, 25] which uses (non-adaptive) differing-inputs obfuscation.
• Using the Generic Group in the Standard Model. One can model random oracles and the

generic group model as schemata. An assumption that such a schema has an IND-PRE-secure scheme is
a standard model assumption, and to the best of our knowledge, not ruled out by the techniques in
the literature. This is because, IND-PRE-security captures only certain indistinguishability guarantees
of the generic group model, albeit in a broad manner (by considering arbitrary tests). Indeed, for
random oracles, such an assumption is implied by (for instance) virtual blackbox secure obfuscation of
point-functions, a primitive that has plausible candidates in the literature.
The generic group schema (as well as its bilinear version) is a highly versatile resource used in
several constructions, including that of cryptographic objects that can be modeled as schemata. Such
constructions can be considered as reductions to the generic group schema. Combined with our
composition theorem, this creates a recipe for standard model constructions under a strong, but simple
to state, computational assumption.
We give such an example for obtaining a standard model function-hiding public-key FE scheme for
inner-product predicates (for which a satisfactory general security definition has also been lacking).
• Other Primitives. Our model is extremely flexible, and can easily capture most cryptographic

objects for which an indistinguishability security notion is required. This includes witness encryption,
functional witness encryption, fully homomorphic encryption (FHE), property-preserving encryption
(PPE) etc. We discuss a couple of them – FHE and PPE – to illustrate this. We can model FHE using
(stateful) cryptographic agents. The resulting security definition, even with the test family ∆det, implies
the standard definition in the literature, with the additional requirement that a ciphertext does not
reveal how it was formed, even given the decryption key. For PPE, we show that an ∆det-IND-PRE
secure scheme for the PPE schema is in fact equivalent to a scheme that satisfies the standard definition
of security for PPE.

We consider this work the first step in formulating a broader theory of active or functional
cryptographic objects. Our current results bring out only some of the numerous potential advantages of
the proposed framework. On the other hand, there are limitations to its scope. For example, the model
in this work does not currently consider security issues arising from maliciously crafted cryptographic
agents. In particular, it does not model signature schemes. We leave such an extension for future work.

Related Work. Recently, there has been a tremendous amount of work on objects we model, including
FE and obfuscation. We discuss some of it in Appendix A.

6

2 Preliminaries
To formalize the model of cryptographic agents, we shall use the standard notion of probabilistic
interactive Turing Machines (ITM) with some modifications (see below). To avoid cumbersome
formalism, we keep the description somewhat informal, but it is straightforward to fully formalize our
model. We shall also not attempt to define the model in its most generality, for the sake of clarity.

In our case an ITM has separate tapes for input, output, incoming communication, outgoing
communication, randomness and work-space.

Definition 1 (Agents and Family of Agents). An agent is an interactive Turing Machine, with the
following modifications:

• There is a special read-only parameter tape, which always consists of a security parameter κ, and
possibly other parameters.
• There is an a priori restriction on the size of all the tapes other than the randomness tape (including
input, communication and work tapes), as a function of the security parameter.
• There is a special blocking state such that if the machine enters such a state, it remains there if the
input tape is empty. Similarly, there are blocking states which let the machine block if any combination
of the communication tape and the input tape is empty.

An agent family is a maximal set of agents with the same program (i.e., state space and transition
functions), but possibly different contents in their parameter tapes. We also allow an agent family to be
the empty set ∅.

We can allow non-uniform agents by allowing an additional advice tape. Our framework and results
work in the uniform and non-uniform model equally well.

Note that an agent who enters a blocking state can move out of it if its configuration is changed
by adding a message to its input tape and/or communication tape. However, if the agent enters a
halting state, it will not move out of that state. An agent who never enters a blocking state is called
a non-reactive agent. An agent who never reads or writes from a communication tape is called a
non-interactive agent.

Definition 2 (Session). A session maps a finite ordered set of agents, their configurations and inputs
to outputs and (updated) configurations of the same agents, as follows: the agents are initialized with
the given inputs on their input tapes, and then executed together until they are deadlocked.5 The session
returns the resulting collection of outputs and configurations of the agents (if the session terminates).

We shall be restricting ourselves to collections of agents such that sessions involving them are
guaranteed to terminate. Note that we have defined a session to have only an initial set of inputs, so
that the outcome of a session is well-defined (without the need to specify how further inputs would be
chosen).

Next we define an important notion in our framework, namely that of an ideal agent schema, or
simply, a schema. A schema plays the same role as a functionality does in the Universal Composition
framework for secure multi-party computation. That is, it specifies what is legitimate for a user to
do in a system. A schema defines the families of agents that the user and a “test” (or authority) are
allowed to create.

5More precisely, the first agent is executed till it enters a blocking or halting state, and then the second and so forth, in
a round-robin fashion, until all the agents have been in blocking or halting states for a full round. After each execution of
an agent, the contents of its outgoing communication tape are interpreted as an ordered sequence of messages to each of
the other agents in the session (some or all of them possibly being empty messages), and copied over to the respective
agents’ incoming communication tapes.

7

Definition 3 (Ideal Agent Schema). A (well-behaved) ideal agent schema Σ = (Pauth,Puser) (or simply
schema) is a pair of agent families, such that there is a polynomial poly such that for any session
of agents belonging to Pauth ∪ Puser (with any inputs and any configurations, with the same security
parameter κ), the session terminates within poly(κ, t) steps, where t is the number of agents in the
session.

We use the short-hand X ≈ Y to denote two binary random variables that are distributed almost
identically. More precisely, if X and Y are a family of random variables (one for each value of κ), we
write X ≈ Y if there is a negligible function negl such that |Pr[X = 1]− Pr[Y = 1]| ≤ negl(κ).

For two systemsM andM ′, we sayM uM ′ if the two systems are indistinguishable to an interactive
PPT distinguisher.

3 Defining Cryptographic Agents
In this section we define what it means for a cryptographic agent scheme to securely implement a given
ideal agent schema. At a very high-level, the security notion is of indistinguishability preservation: if
two executions using an ideal schema are indistinguishable, we require them to remain indistinguishable
when implemented using a cryptographic agent scheme. While it consists of several standard elements
of security definitions prevalent in modern cryptography, indistinguishability preservation as defined
here is novel, and potentially of broader interest.

Ideal World The ideal system for a schema Σ consists of two parties Test and User and a fixed third
party B[Σ] (for “black-box”). All three parties are probabilistic polynomial time (PPT) ITMs, and
have a security parameter κ built-in. We shall explicitly refer to their random-tapes as r, s and t. Test
receives a “secret bit” b as input and User produces an output bit b′.

The interaction between User, Test and B[Σ] can be summarized as follows:

• Uploading agents. Let Σ = (Pauth,Puser) where we associate Ptest := Pauth ∪ Puser with Test and
Puser with User. Test and User can, at any point, choose an agent from its agent family and send it
to B[Σ]. More precisely, User can send a string to B[Σ], and B[Σ] will instantiate an agent Puser,
with the given string (along with its own security parameter) as the contents of the parameter tape,
and all other tapes being empty. Similarly, Test can send a string and a bit indicating whether it
is a parameter for Pauth or Puser, and it is used to instantiate an agent Pauth or Puser, accordingly 6.
Whenever an agent is instantiated, B[Σ] sends a unique handle (a serial number) for that agent to
User; the handle also indicates whether the agent belongs to Pauth or Puser.
• Request for Session Execution. At any point in time, User may request an execution of a session,

by sending an ordered tuple of handles (h1, . . . , ht) (from among all the handles obtained thus far from
B[Σ]) to specify the configurations of the agents in the session, along with their inputs. B[Σ] reports
back the outputs from the session, and also gives new handles corresponding to the configurations of
the agents when the session terminated.7 If an agent halts in a session, no new handle is given for
that agent.

Observe that only User receives any output from B[Σ]; the communication between Test and B[Σ] is
one-way. (See Figure 1.)

We define the random variable ideal〈Test(b) | Σ | User〉 to be the output of User in an execution
of the above system, when Test gets b as input. We write ideal〈Test | Σ | User〉 in the case when the

6In fact, for convenience, we allow Test and User to specify multiple agents in a single message to B[Σ].
7Note that if the same handle appears more than once in the tuple (h1, . . . , ht), it is interpreted as multiple agents

with the same configuration (but possibly different inputs). Also note that after a session, the old handles for the agents
are not invalidated; so a User can access a configuration of an agent any number of times, by using the same handle.

8

input to Test is a uniformly random bit. We also define Time〈Test | Σ | User〉 as the maximum number
of steps taken by Test (with a random input), B[Σ] and User in total.

Definition 4. We say that Test is hiding w.r.t. Σ if ∀ PPT party User,

ideal〈Test(0) | Σ | User〉 ≈ ideal〈Test(1) | Σ | User〉.

Real World. A cryptographic scheme (or simply scheme) consists of a pair of (possibly stateful
and randomized) programs (O, E), where O is an encoding procedure for agents in Ptest and E is an
execution procedure. The real world execution for a scheme (O, E) consists of Test, a user that we shall
generally denote as Adv and the encoder O. (E features as part of an honest user in the real world
execution: see Figure 1.) Test remains the same as in the ideal world, except that instead of sending
an agent to B[Σ], it sends it to the encoder O. In turn, O encodes this agent and sends the resulting
cryptographic agent to Adv.

We define the random variable real〈Test(b) | O | Adv〉 to be the output of Adv in an execution
of the above system, when Test gets b as input; as before, we omit b from the notation to indicate a
random bit. Also, as before, Time〈Test | O | User〉 is the maximum number of steps taken by Test
(with a random input), O and User in total.

Definition 5. We say that Test is hiding w.r.t. O if ∀ PPT party Adv,

real〈Test(0) | O | Adv〉 ≈ real〈Test(1) | O | Adv〉.

Note that real〈Test | O | Adv〉 = real〈Test◦O | ∅ | Adv〉 where ∅ stands for the null implementation.
Thus, instead of saying Test is hiding w.r.t. O, we shall sometimes say Test ◦O is hiding (w.r.t. ∅). Also,
when O is understood, we may simply say that Test is real-hiding.

Syntactic Requirements on (O, E). (O, E) may or may not use a “setup” phase. In the latter case
we call it a setup-free cryptographic agent scheme, and O is required to be a memory-less program that
takes an agent P ∈ Ptest as input and outputs a cryptographic agent that is sent to Adv. If the scheme
has a setup phase, O consists of a triplet of memory-less programs (Osetup,Oauth,Ouser): in the real world
execution, first Osetup is run to generate a secret-public key pair (MSK,MPK);8 MPK is sent to Adv.
Subsequently, when O receives an agent P ∈ Pauth it will invoke Oauth(P,MSK), and when it receives an
agent P ∈ Puser, it will invoke Ouser(P,MPK), to obtain a cryptographic agent that is then sent to Adv.
E is required to be memoryless as well, except that when it gives a handle to a User, it can record a

string against that handle, and later when User requests a session execution, E can access the string
recorded for each handle in the session. There is a compactness requirement that the size of this string
is a priori bounded (note that the state space of the ideal agents are also a priori bounded). If there is
a setup phase, E can also access MPK each time it is invoked.

IND-PRE Security. Now we are ready to present the security definition of a cryptographic agent
scheme (O, E) implementing a schema Σ. Below, the honest real-world user, corresponding to an
ideal-world user User, is defined as the composite program E ◦ User as shown in Figure 1.

Definition 6. A cryptographic agent scheme Π = (O, E) is said to be a Γ-IND-PRE-secure scheme for
a schema Σ if the following conditions hold.

• Correctness. ∀ PPT User, ∀Test ∈ Γ, ideal〈Test | Σ | User〉 ≈ real〈Test | O | E ◦ User〉. If equality
holds, (O, E) is said to have perfect correctness.
• Efficiency. There exists a polynomial poly such that, ∀ PPT User, ∀Test ∈ Γ,

Time〈Test | O | E ◦ User〉 ≤ poly(Time〈Test | Σ | User〉, κ).
8For “master” secret and public-keys, following the terminology in some of our examples.

9

B[Σ]

Test Adv

S

(a)

B[Σ∗]

O E

Test Ideal
User

Honest Real User

(b)

O∗ E∗

O E

Test Ideal
User

Honest Real User

(c)

Figure 2 (O, E) in (b) is a reduction from schema Σ to Σ∗. The security requirement is that no adversary Adv in the
system (a) can distinguish that execution from an execution of the system in (b) (with Adv taking the place of honest real
user). The correctness requirement is that the ideal User in (b) behaves the same as the ideal User interacting directly
with B[Σ] (as in Figure 1(a)). (c) shows the composition of the hybrid scheme (O, E)Σ∗

with a scheme (O∗, E∗) that
IND-PRE-securely implements Σ∗.

• Indistinguishability Preservation. ∀Test ∈ Γ,

Test is hiding w.r.t. Σ⇒ Test is hiding w.r.t. O.

When Γ is the family of all PPT tests – denoted by Γppt, we simply say that Π is an IND-PRE-secure
scheme for Σ.

When the schema is understood, we shall refer to the property of being hiding w.r.t. a schema as
simply being ideal-hiding.

4 Reductions and Compositions
A fundamental question regarding (secure) computational models is that of reduction: which tasks can
be reduced to which others. In the context of cryptographic agents, we ask which schemata can be
reduced to which other schemata. We shall use a strong simulation-based notion of reduction. While a
simulation-based security notion for general cryptographic agents or even just obfuscations (i.e., virtual
black-box obfuscation) is too strong to exist, it is indeed possible to meet a simulation-based notion for
reductions between schemata. This is analogous to the situation in Universally Composable security,
where sweeping impossibility results exist for UC secure realizations in the plain model, but there is a
rich structure of UC secure reductions among functionalities.

A hybrid scheme (O, E)Σ∗ is a cryptographic agent scheme in which O and E have access to B[Σ∗],
as shown in Figure 2 (in the middle), where Σ∗ = (P∗auth,P∗user). If O has a setup phase, we require
that Ouser uploads agents only in P∗user (but Oauth can upload any agent in P∗auth ∪ P∗user). In general,
the honest user would be replaced by an adversarial user Adv. Note that the output bit of Adv in
such a system is given by the random variable ideal〈Test ◦ O | Σ∗ | Adv〉, where Test ◦ O denotes the
combination of Test and O as in Figure 2.

Definition 7 (Reduction). We say that a (hybrid) cryptographic agent scheme Π = (O, E) reduces Σ
to Σ∗ with respect to Γ, if there exists a simulator S such that ∀ PPT User,

1. Correctness: ∀Test ∈ Γppt, ideal〈Test | Σ | User〉 ≈ ideal〈Test ◦ O | Σ∗ | E ◦ User〉.
2. Simulation: ∀Test ∈ Γ, ideal〈Test | Σ | S ◦ User〉 ≈ ideal〈Test ◦ O | Σ∗ | User〉.

If Γ = Γppt, we simply say Π reduces Σ to Σ∗. If there exists a scheme that reduces Σ to Σ∗, then we
say Σ reduces to Σ∗. (Note that correctness is required for all PPT Test, and not just in Γ.)

10

Figure 2 illustrates a reduction. It also shows how such a reduction can be composed with an
IND-PRE-secure scheme for Σ∗. Below, we shall use (O′, E ′) = (O ◦O∗, E∗ ◦ E) to denote the composed
scheme in Figure 2(c).9

Theorem 1 (Composition). For any two schemata, Σ and Σ∗, if (O, E) reduces Σ to Σ∗ and (O∗, E∗)
is an IND-PRE secure scheme for Σ∗, then (O ◦ O∗, E∗ ◦ E) is an IND-PRE secure scheme for Σ.

Proof sketch: Let (O′, E ′) = (O ◦ O∗, E∗ ◦ E). Also, let Test′ = Test ◦ O and User′ = E ◦ User. To show
correctness, note that for any User, we have

real〈Test | O′ | E ′ ◦ User〉 = real〈Test′ | O∗ | E∗ ◦ User′〉
(a)
≈ ideal〈Test′ | Σ∗ | User′〉

= ideal〈Test ◦ O | Σ∗ | E ◦ User〉
(b)
≈ ideal〈Test | Σ | User〉

where (a) follows from the correctness guarantee of IND-PRE security of (O∗, E∗), and (b) follows from
the correctness guarantee of (O, E) being a reduction of Σ to Σ∗. (The other equalities are by regrouping
the components in the system.)

It remains to prove that ∀ PPT Test, Test is hiding w.r.t. Σ⇒ Test is hiding w.r.t. O′.
Firstly, we argue that Test is hiding w.r.t. Σ⇒ Test′ is hiding w.r.t. Σ∗. Suppose Test′ is not hiding

w.r.t. Σ∗; then there is some User such that ideal〈Test′(0) | Σ∗ | User〉 6≈ ideal〈Test′(1) | Σ∗ | User〉.
But, by security of the reduction (O, E) of Σ to Σ∗, ideal〈Test′(b) | Σ∗ | User〉 ≈ ideal〈Test(b) | Σ | S ◦
User〉, for b = 0, 1. Then, ideal〈Test(0) | Σ | S ◦ User〉 6≈ ideal〈Test(1) | Σ | S ◦ User〉, showing that
Test is not hiding w.r.t. Σ. Thus we have,

Test is hiding w.r.t. Σ⇒ Test′ is hiding w.r.t. Σ∗

⇒ Test′ is hiding w.r.t. O∗ since (O∗, E∗) IND-PRE securely implements Σ∗

⇒ Test is hiding w.r.t. O′

where the last implication follows by observing that for any Adv, we have real〈Test′ | O∗ | Adv〉 =
real〈Test | O′ | Adv〉 (by regrouping the components). �

Note that in the above proof, we invoked the security guarantee of (O∗, E∗) only with respect to
tests of the form Test ◦ O. Let Γ ◦ O = {Test ◦ O|Test ∈ Γ}. Then we have the following generalization.

Theorem 2 (Generalized Composition). For any two schemata, Σ and Σ∗, if (O, E) reduces Σ to Σ∗
and (O∗, E∗) is a (Γ ◦ O)-IND-PRE secure scheme for Σ∗, then (O ◦ O∗, E∗ ◦ E) is a Γ-IND-PRE secure
scheme for Σ.

Theorem 3 (Transitivity of Reduction). For any three schemata, Σ1,Σ2,Σ3, if Σ1 reduces to Σ2 and
Σ2 reduces to Σ3, then Σ1 reduces to Σ3.

Proof sketch: If Π1 = (O1, E1) and Π2 = (O2, E2) are schemes that carry out the ∆-reduction of Σ1 to
Σ2 and that of Σ2 to Σ3, respectively, we claim that the scheme Π = (O1 ◦ O2, E2 ◦ E1) is a reduction
of Σ1 to Σ3. The correctness of this reduction follows from the correctness of the given reductions.
Further, if S1 and S2 are the simulators associated with the two reductions, we can define a simulator
S for the composed reduction as S2 ◦ S1. �

9If (O, E) and (O∗, E∗) have a setup phase, then it is implied that O′auth = Oauth ◦ O∗auth, O′user = Ouser ◦ O∗user; invoking
O′setup invokes both Osetup and O∗setup, and may in addition invoke O∗auth or O∗user.

11

5 Restricted Test Families: ∆, ∆∗ and ∆det

The cryptographic agents framework is general enough to capture several important primitives such as
obfuscation, functional encryption, fully homomorphic encryption and the like. However, as we will
show in Section 7.3, for some schemata of interest, such as obfuscation (and hence function-hiding public
key functional encryption which implies obfuscation) there exist no IND-PRE secure schemes. This
motivates considering security against restricted families of tests which bypass these impossibilities. We
remark that it would be possible to consider various families adapted to the existing security definitions
of various primitives, but our goal is to provide a general framework that applies meaningfully to all
primitives, and also, equipped with a composable notion of reduction. Towards this we propose the
following sub-class of PPT tests, called ∆.

Informally, Test ∈ ∆ has the following form: each time Test sends an agent to B[Σ], it picks two
agents (P0, P1). Both the agents are sent to User, and Pb is sent to B[Σ] (where b is the secret bit
input to Test). Except for selecting the agent to be sent to B[Σ], Test is oblivious to the bit b. It
will be convenient to represent Test(b) (for b ∈ {0, 1}) as D ◦ c ◦ s(b), where D is a PPT party which
communicates with User, and outputs pairs of the form (P0, P1) to c; c sends both the agents to User,
and also forwards them to s; s(b) forwards Pb to B[Σ] (and sends nothing to User).

As we shall see, for both obfuscation and functional encryption, ∆-IND-PRE-security is indeed
stronger than all the standard indistinguishability based security definitions in the literature.

But a drawback of restricting to a strict subset of all PPT tests is that the composition theorems
(Theorem 1 and Theorem 3) do not hold any more. This is because, these composition theorems crucially
relied on being able to define Test′ = Test ◦ O as a member of the test family, where O was defined
by the reduction (see Theorem 2). Nevertheless, as we shall see, analogous composition theorems do
exist for ∆, if we enhance the definition of a reduction. At a high-level, we shall require O to have
some natural additional properties that would let us convert Test ◦ O back to a test in ∆, if Test itself
belongs to ∆.

Combining Machines: Some Notation. Before defining ∆-reduction and proving the related
composition theorems, it will be convenient to introduce some additional notation. Note that the
machines c and s above, as well as the program O, have three communication ports (in addition to the
secret bit that s receives): in terms of Figure 3, there is an input port below, an output port above and
another output port on the right, to communicate with User. (D is also similar, except that it has no
input port below, and on the right, it can interact with User by sending and receiving messages.) For
such machines, we use M1 ◦M2 to denote connecting the output port above M1 to the input port of
M2. The message from M1 ◦M2 to User is defined to consist of the pair of messages from M1 and M2
(formatted into a single message).

We shall also consider adding machines to the right of such a machine. Specifically, we use M / K
to denote modifying M using a machine K that takes as input the messages output by M to User (i.e.,
to its right), and to each such message may append an additional message of its own.

Also, recall that for two systems M and M ′, we say M uM ′ if the two systems are indistinguishable
to an interactive PPT distinguisher.

Using this notation, we define ∆-reduction.

Definition 8 (∆-Reduction). We say that a (hybrid) obfuscated agent scheme Π = (O, E) ∆-reduces Σ
to Σ∗ if

1. Π reduces Σ to Σ∗ with respect to ∆ (as in Definition 7), and
2. there exists PPT H and K such that

(a) for all D such that D ◦ c ◦ s is hiding w.r.t. Σ, D ◦ c ◦ s(b) ◦ O u D ◦ c ◦ H ◦ s(b), for b ∈ {0, 1};

12

B

O

s

c

D

Adv

(a)

B

s

H

c

D

Adv

(b)

B

s

H

c

D

K

Adv

(c)

B

s

c

H

c

D

Adv

(d)

Figure 3 Illustration of ∆ and the extra requirements on ∆-reduction. (a) illustrates the structure of a test in ∆;
the double-arrows indicate messages consisting of a pair of agents. The first condition on H is that (a) and (b) are
indistinguishable to Adv: i.e., H can mimic the message from O without knowing the input to s. The second condition is
that (c) and (d) are indistinguishable: i.e., K should be able to simulate the pairs of agents produced by H based on the
input to H (copied by c to Adv) and the messages from H to Adv.

(b) c ◦ H ◦ c u c ◦ H / K.

If there exists a scheme that ∆-reduces Σ to Σ∗, then we say Σ ∆-reduces to Σ∗.

Informally, condition (a) allows us to move O “below” s(b): note that H will need to send any
messages O used to send to User, without knowing b. Condition (b) requires that sending a copy of the
pairs of agents output by H (by adding c “above” H) is “safe”: it can be simulated by K, which only
sees the pair of agents that are given as input to H.

Theorem 4 (∆-Composition). For any two schemata, Σ and Σ∗, if (O, E) ∆-reduces Σ to Σ∗ and
(O∗, E∗) is a ∆-IND-PRE secure implementation of Σ∗, then (O ◦ O∗, E∗ ◦ E) is a ∆-IND-PRE secure
implementation of Σ.

Proof sketch: Correctness and efficiency are easily confirmed. To prove security, we need to show that
for every Test ∈ ∆, if Test is hiding w.r.t. Σ, then it is hiding w.r.t. O ◦ O∗. Since Test ∈ ∆, we can
write it as D ◦ c ◦ s. Let Test′ ∈ ∆ be defined as D ◦ c ◦H ◦ c ◦ s, where H is relates to O as in Definition 8.

First we shall argue that Test′ is hiding w.r.t. Σ∗. Below, we shall also use K that relates to H as in
Definition 8. For ay PPT User, for each b ∈ {0, 1}, we have

Test′(b) ≡ D ◦ c ◦ H ◦ c ◦ s(b)
u D ◦ c ◦ H ◦ s(b) / K
u D ◦ c ◦ s(b) ◦ O / K ≡ Test(b) ◦ O / K.

(1)

So for any PPT User,

ideal〈Test′(b) | Σ∗ | User〉 ≈ ideal〈Test(b) ◦ O / K | Σ∗ | User〉
= ideal〈Test(b) ◦ O | Σ∗ | User′〉 where User′ incorporates K and User
= ideal〈Test(b) | Σ | S ◦ User′〉 where S is from Definition 7.

Hence if Test is hiding w.r.t. Σ, ideal〈Test(0) | Σ | User′′〉 ≈ ideal〈Test(1) | Σ | User′′〉, where User′′
stands for S ◦ User′, and hence ideal〈Test′(0) | Σ∗ | User〉 ≈ ideal〈Test′(1) | Σ∗ | User〉. Since this
holds for all PPT User, Test′ is hiding w.r.t. Σ∗. Thus we have,

Test is hiding w.r.t. Σ⇒ Test′ is hiding w.r.t. Σ∗

⇒ Test′ is hiding w.r.t. O∗ as (O∗, E∗) IND-PRE securely implements Σ∗

⇒ Test ◦ O / K is hiding w.r.t. O∗ by Equation 1.

13

Now, since K only provides extra information to User, if Test ◦ O / K is hiding w.r.t. O∗, then Test ◦ O
is hiding w.r.t. O∗. This is the same as saying that Test ◦O ◦O∗ is hiding (w.r.t. a null scheme), as was
required to be shown. �

Theorem 5 (Transitivity of ∆-Reduction). For any three schemata, Σ1,Σ2,Σ3, if Σ1 ∆-reduces to
Σ2 and Σ2 ∆-reduces to Σ3, then Σ1 ∆-reduces to Σ3.

Proof sketch: Let Π1 = (O1, E1) and Π2 = (O2, E2) be the schemes that carry out the ∆-reduction
of Σ1 to Σ2 and that of Σ2 to Σ3, respectively. We define the scheme Π = (O1 ◦ O2, E2 ◦ E1). As in
Theorem 3, we see that Π reduces Σ1 to Σ3 with respect to ∆. What remains to be shown is that Π
also has associated machines (H,K) as required in Definition 8.

Let (H1,K1) and (H2,K2) be associated with Π1 and Π2 respectively, as in Definition 8. We let
H ≡ H1 ◦ H2. To define K, consider the cascade K1 / K2: i.e., K1 appends a message to the first part of
the input to K (from c ◦ H1) and passes it on to K2, which also gets the second part of the input (from
H2), and appends another message of its own. K behaves as K1 / K2 but from the output, it removes
the message added by K1. We write this as K ≡ K1 / K2 //trim , where //trim stands for the operation
of redacting the appropriate part of the message. Note that K has the required format, in that it only
appends to the entire message it receives.

We confirm that (H,K) satisfy the two required properties:

s(b) ◦ O ≡ s(b) ◦ O1 ◦ O2 u H1 ◦ s(b) ◦ O2 u H1 ◦ H2 ◦ s(b) ≡ H ◦ s(b)
c ◦ H / K ≡ (c ◦ H1 / K1) ◦ H2 / K2 //trim u c ◦ H1 ◦ c ◦ H2 / K2 //trim

u c ◦ H1 ◦ c ◦ H2 ◦ c //trim ≡ c ◦ H1 ◦ H2 ◦ c

where the last identity follows from the fact that the operation //trim removes the appropriate part of
the outgoing message. �

Other Restricted Test Families. We define two more restricted test families, ∆∗ and ∆det, which
are of great interest for the obfuscation and functional encryption schemata. Both of these are subsets
of ∆.

∆det simply consists of all deterministic tests in ∆. Equivalently, ∆det is the class of all tests of the
form D ◦ c ◦ s, where D is a deterministic polynomial time party which communicates with User, and
outputs pairs of the form (P0, P1) to c.

∆∗ consists of all tests in ∆ which do not read any messages from User. Equivalently, ∆∗ is the
class of all tests of the form D ◦ c ◦ s, where D is a PPT party which may send messages to User but
does not accept any messages from User, and outputs pairs of the form (P0, P1) to c.

The composition theorem for ∆, Theorem 4 holds for ∆∗ as well, as can be seen from the proof
above.

Theorem 6 (∆∗-Composition). For any two schemata, Σ and Σ∗, if (O, E) ∆-reduces Σ to Σ∗ and
(O∗, E∗) is a ∆∗-IND-PRE secure implementation of Σ∗, then (O ◦ O∗, E∗ ◦ E) is a ∆∗-IND-PRE secure
implementation of Σ.

Note that here the notion of reduction is still the same as in Theorem 4, namely ∆-reduction. (In
contrast, this result does not extend to ∆det, unless the notion of reduction is severely restricted, by
requiring H and K to be deterministic.)

6 Generic Group Schema
Our framework provides a method to convert a certain class of constructions — i.e., secure schemes
for primitives that can be modeled as schemata — that are proven secure in heuristic models like the

14

random oracle model [14] or the (bilinear) generic group model [77, 69], into secure constructions in the
standard model.

To be concrete, we consider the case of the generic group model. There are two important observations
we make:

• Proving that a cryptographic scheme for a given schema Σ is secure in the generic group model
typically amounts to a reduction from Σ to a “generic group schema” Σgg.
• The assumption that there is an IND-PRE-secure scheme Πgg for Σgg is a standard-model assumption
(that does not appear to be ruled out by known results or techniques).

Combined using the composition theorem (Theorem 1), these two observations yield a standard model
construction for an IND-PRE-secure scheme for Σ.

Above, the generic group schema Σgg is defined in a natural way: the agents (all in Puser, with
Pauth = ∅) are parametrized by elements of a large (say cyclic) group, and interact with each other
to carry out group operations; the only output the agents produce for a user is the result of checking
equality with another agent.

We formally state the assumption mentioned above:

Assumption 1 (Γ-Generic Group Agent Assumption). There exists a Γ-IND-PRE-secure scheme for
the generic group schema Σgg.

Similarly, we put forward the Γ-Bilinear Generic Group Agent Assumption, where Σgg is replaced
by Σbgg which has three groups (two source groups and a target group), and allows the bilinear pairing
operation as well.

The most useful form of these assumptions (required by the composition theorem when used with
the standard reduction) is when Γ is the set of all PPT tests. However, weaker forms of this assumption
(like ∆-GGA assumption, or ∆∗-GGA assumption) are also useful, if a given construction could be
viewed as a stronger form of reduction (like ∆-reduction).

While this assumption may appear too strong at first sight – given the impossibility results
surrounding the generic group model – we argue that it is plausible. Firstly, observe that primitives
that can be captured as schemata are somewhat restricted: primitives like zero knowledge that involve
simulation based security, CCA secure encryption or non-committing encryption and such others do not
have an interpretation as a secure schema. Secondly, IND-PRE security is weaker than simulation based
security, and its achievability is not easily ruled out (see discussion in Section 10). Also we note that
such an assumption already exists in the context of another popular idealized model: the random oracle
model (ROM). Specifically, consider a natural definition of the random oracle schema, Σro, in which
the agents encode elements in a large set and interact with each other to carry out equality checks.
Then, a ∆det-IND-PRE-secure scheme for Σro is equivalent to a point obfuscation scheme, which hides
everything about the input except the output. The assumption that such a scheme exists is widely
considered plausible, and has been the subject of prior research [35, 39, 79, 37]. This fits into a broader
theme of research that attempts to capture several features of the random oracle using standard model
assumptions (e.g., [17, 12]). The GGA assumption above can be seen as a similar approach to the
generic group model, that captures only some of the security guarantees of the generic group model so
that it becomes a plausible assumption in the standard model, yet is general enough to be of use in a
broad class of applications.

One may wonder if we could use an even stronger assumption, by replacing the (bilinear) generic
group schema Σgg or Σbgg by a multi-linear generic group schema Σmgg, which permits black box
computation of multilinear map operations [22, 49]. Interestingly, this assumption is provably false,

15

since there exists a reduction of obfuscation schema Σobf to Σmgg [31, 8], and we have seen that there
is no IND-PRE-secure scheme for Σobf. We leave it as a fascinating question to understand the level of
complexity of a schema that makes it unrealizable, irrespective of computational assumptions.

Falsifiability. Note that the above assumption as stated is not necessarily falsifiable, since there is
no easy way to check that a given PPT test is hiding. However, it becomes falsifiable if instead of
IND-PRE security, we used a modified notion of security IND-PRE′, which requires that every test which
is efficiently provably ideal-hiding is real-hiding. We note that IND-PRE′ security suffices for all practical
purposes as a security guarantee, and also suffices for the composition theorem. With this notion, to
falsify the assumption, the adversary can (and must) provide a proof that a test is ideal-hiding and also
exhibit a real world adversary who breaks its hiding when using the scheme.

7 Obfuscation Schema
In this section we define and study the obfuscation schema Σobf. In the obfuscation schema, agents are
deterministic, non-interactive and non-reactive: such an agent behaves as a simple Turing machine,
that reads an input, produces an output and halts. We begin by showing that the obfuscation
schema is “complete” under reduction as defined in Definition 7. Thus, there is an IND-PRE secure
implementation (O, E) which reduces any general ΣF to Σobf. This means that if there is an IND-PRE
secure implementation of Σobf, say using secure hardware, then this implementation can be used in a
modular way to build an IND-PRE secure schema for any general functionality.

Next, we show there cannot exist an IND-PRE secure schema for general functionalities. Thus,
we exhibit a class of programs F such that Test is hiding in the ideal world but for any real world
cryptographic scheme (O, E), Test is not hiding in the real world. Our impossibility follows the broad
outline of the impossibility of virtual black box obfuscation by Barak et al. [9]. Since our definition of
obfuscation schema is implied by virtual black box obfuscation, we obtain a potential10 strenghening of
the result of Barak et al. [9].

Finally, we relate the notion of IND-PRE obfuscation to standard notions of obfuscation such as
indistinguishability obfuscation and differing inputs obfuscation. We show that the former is equivalent
to IND-PRE restricted to the ∆det family of tests, while the latter is is equivalent to IND-PRE restricted
to the ∆∗ family of tests. We define a new notion of obfuscation corresponding to IND-PRE restricted
to the ∆ family of tests, namely adaptive differing inputs obfuscation.

7.1 Definition

Below, we formally define the obfuscation schema. If F is a family of deterministic, non-interactive and
non-reactive agents, we define

Σobf(F) := (∅,F).

That is, in the ideal execution User obtains handles for computing F . We shall consider setup-free,
IND-PRE secure implementations (O, E) of Σobf(F).

A special case of Σobf(F) corresponds to the case when F is the class of all functions that can be
computed within a certain amount of time. More precisely, we can define the agent family Us (for
universal computation) to consist of agents of the following form: the parameter tape, which is at most
s(κ) bits long is taken to contain (in addition to κ) the description of an arbitrary binary circuit C;
on input x, Us will compute and output C(x) (padding or truncating x as necessary). We define the
“general” obfuscation schema

Σobf := (∅,Pobf
user) := Σobf(Us),

10we do not have a separation between IND-PRE and VBB obfuscation so far

16

for a given polynomial s. Here we have omitted s from the notation Σobf and Pobf
user for simplicity, but it

is to be understood that whenever we refer to Σobf some polynomial s is implied.

7.2 Completeness of Obfuscation

We show that Σobf is a complete schema with respect to schematic reduction (Definition 7). That is,
every schema (including possibly randomized, interactive, and stateful agents) can be reduced to Σobf.
We stress that this does not yield an IND-PRE-secure scheme for every schema (using composition),
since there does not exist an IND-PRE-secure scheme for Σobf, as described in Section 7.3.

The reduction uses only standard cryptographic primitives: CCA secure public-key encryption and
digital signatures. We present the full construction and proof in Appendix B.

7.3 Impossibility of IND-PRE obfuscation for general functionalities

In this section we exhibit a class of programs F such that Test is hiding w.r.t Σobf(F) but for any real
world cryptographic scheme (O, E), Test is not hiding w.r.t. O. The idea for our impossibility follows
the broad outline of the impossibility of general virtual black box (VBB) obfuscation demonstrated by
Barak et al. [9]. Intuitively the impossibility of VBB obfuscation by Barak et al. follows the following
broad outline: consider a program P which expects code C as input. If the input code responds to a
secret challenge α with a secret response β, then P outputs a secret bit b. Barak et al. show that using
the code of P , one can construct nontrivial input code C that can be fed back to P forcing it to output
the bit b. On the other hand, a simulator given oracle access to P cannot use it to construct a useful
input code C and has negligible probability of guessing an input that will result in P outputting the
secret b. For more details, we refer the reader to [9].

At first glance, it is not clear if the same argument can be used to rule out IND-PRE secure
obfuscation schema. The argument by Barak et al. seems to rely crucially on simulation based security,
whereas ours is an indistinguishability style definition. Indeed, other indistinguishability style definitions
such as indistinguishability obfuscation (I-Obf) and differing input obfuscation (DI-Obf) are conjectured
to exist for all functions. However, our notion of indistinguishability preserving obfuscation is too
strong to be achieved, as we shall see. We will consider the same class of functions F as in [9], with the
bit b as the secret. We construct Test which expects b as external input, and uploads agents from the
function family F . In the ideal world, it is infeasible to distinguish between Test(0) and Test(1) since it
is infeasible to recover b from black box access. In the real world however, a user may execute a session
in which the agent for P is executed to produce an agent for C, following which P may be run on C to
output the secret bit. We defer the formal proof to the full version.

7.4 Relation to other notions of Obfuscation

In this section we relate the security notions for obfuscation schema to the standard notions of obfuscation
known in literature, such as indistinguishability obfuscation and differing inputs obfuscation. These
relaxations of the VBB definition were first proposed by Barak et al. [9, 10], but no constructions were
discovered for a long time. Recently, Garg et al. [50] proposed the first candidate for indistinguishability
obfuscation. Later works assume that this candidate is also a differing inputs obfuscator [7, 58].

7.4.1 Indistinguishability Obfuscation.

Loosely speaking, indistinguishability obfuscation posits that if two distinct circuits implement identical
functionalities, then their obfuscations must be indistinguishable [9]. The formal definition is provided
in Appendix C.

We show how a (set-up free) obfuscation scheme (O, E) in our framework can be converted to an
indistinguishability obfuscator. First, it is easy to see that the efficiency requirement of (O, E) implies a

17

pre-determined poly(κ) upperbound on the execution time of E on a single invocation (because, the
agents in Σobf have a pre-determined poly(κ) upperbound on their running time). Hence we can define
a circuit E [O] (with a built-in string O) of a pre-determined poly(κ) size that carries out the following
computation: on input x, it interacts with an internal copy of E , first simulating to it the message O
from O (upon which E will output a handle), followed by a request from User to execute a session with
that handle and input x; E [O] outputs whatever E outputs. Let O ◦ E denote a program which, on
input a circuit C (of size at most s(κ)), invokes O on C to obtain a string O, and then outputs the
program E [O].

We now show that if we restrict our attention to the family of tests ∆det ⊂ ∆ where D is a
deterministic party, then a secure scheme for this family exists iff an indistinguishability obfuscator
does. Formally,

Lemma 1. A set-up free ∆det-IND-PRE-secure scheme for Σobf (with perfect correctness) exists if and
only if there exists an indistinguishability obfuscator.

The proof is provided in Appendix C.1.1.

7.4.2 Differing Inputs Obfuscation.

Next, we consider the notion of differing inputs obfuscation which strengthens the notion of indis-
tinguishability obfuscation. At a high level, it stipulates that if the differing input obfuscations of
two circuits DI-Obf(C0) and DI-Obf(C1) can be computationally distinguished, then there exists an
adversary that can find an input on which the two circuits differ. Formal definition is provided in
Appendix C.2. We show that if we consider the family of tests which do not receive any input from the
user, then a secure scheme for this family exists iff a differing input obfuscator does. Formally,

Lemma 2. A set-up free ∆∗-IND-PRE-secure scheme for Σobf (with perfect correctness) exists if and
only if there exists a differing-inputs obfuscator.

The proof is provided in Appendix C.2.1.

7.5 Adaptive Differing Inputs Obfuscation

In the previous section, we saw that indistinguishability obfuscation is equivalent to ∆det-IND-PRE and
differing inputs obfuscation is equivalent to ∆∗-IND-PRE. In Section 7.3, we saw that IND-PRE secure
obfuscation is impossible for general functionalities. It is natural to ask what happens “in-between”, i.e.
for ∆ family of tests?

To this end, we state a new definition for the security of obfuscation – adaptive differing-inputs
obfuscation, which is equivalent ∆-IND-PRE security. Informally, it is the same as differing inputs
obfuscation, but an adversary is allowed to interact with the sampler (which samples two circuits one
of which will be obfuscated and presented to the adversary as a challenge), even after it receives the
obfuscation. We define it formally below.

Good sampler : Let F = {Fκ} be a circuit family. Let Sampler be a PPT stateful oracle which takes
1κ as input, and upon every invocation outputs two circuits C0, C1 ∈ Fκ and some auxiliary information
aux. We call this oracle good if for every PPT adversary A with oracle access to Sampler, the probability
that A outputs an x such that C0(x) 6= C1(x) for some C0, C1 given by Sampler, is negligible in κ.

Definition 9 (Adaptive Differing Inputs Obfuscation). A uniform PPT machine obf(·) is called an
adaptive differing inputs obfuscator for a circuit family F = {Fκ} if it probabilistically maps circuits to
circuits such that it satisfies the following conditions:

18

• Correctness: ∀κ ∈ N, ∀C ∈ Fκ, and ∀ inputs x we have that

Pr
[
C ′(x) = C(x) : C ′ ← obf(1κ, C)

]
= 1.

• Relaxed Polynomial Slowdown: There exists a universal polynomial p such that for any circuit
C, we have |C ′| ≤ p(|C|, κ) where C ′ ← obf(1κ, C).
• Adaptive Indistinguishability: Let Sampler be a stateful oracle as described above. Define Samplerb
to be an oracle that simulates Sampler internally, and when Sampler outputs C0, C1 and aux, Samplerb
additionally outputs obf(1κ, Cb). We require that for every good Sampler, for all PPT distinguishers
D

DSampler0(1κ) ≈ DSampler1(1κ).

As we shall see, this notion of obfuscation is very useful and we will be able to construct ∆-IND-PRE
FE schema by providing a ∆ reduction to a ∆-IND-PRE secure obfuscation schema (see Section 8 for
more details).

8 Functional Encryption
In this section, we present a schema Σfe for Functional Encryption. Although many variants of FE are
known – public or secret key, with or without function hiding, indistinguishability based or simulation
based – they can all11 be captured as schemata secure against different families of test programs. For
concreteness, we focus on adaptive secure, indistinguishability-based, public-key FE (with and without
function-hiding). In Section 8.1 we introduce the schema Σfe for FE without function-hiding, and in
Section 8.2 we introduce the schema Σfh-fe for function-hiding FE.

8.1 Functional Encryption without Function Hiding

Public-key FE without function-hiding is the most well-studied variant of FE.

8.1.1 Definition

For a circuit family C = {Cκ} and a message space X = {Xκ}, we define the schema Σfe = (Pfe
auth,Pfe

user)
as follows:

• Pfe
user: An agent Px ∈ Pfe

user simply sends x to the first agent in the session, where x ∈ X is a parameter
of the agent, and halts. We will often refer to such an agent as a message agent.
• Pfe

auth: An agent PC ∈ Pfe
auth, when invoked with input 0, outputs C (where C ∈ C is a parameter of

the agent) and halts. If invoked with input 1, it reads a message x̃ from its incoming communication
tape, writes C(x̃) on its output tape and halts. We will often refer to such an agent as a function
agent.

8.1.2 Reducing Functional Encryption to Obfuscation

In a sequence of recent results [50, 7, 1, 58, 25, 26], it was shown how to obtain various flavors of
functional encryption from various flavors of obfuscation. We investigate this connection in terms of
schematic reducibility: can Σfe be reduced to Σobf? For this reduction to translate to an IND-PRE-
secure scheme for Σfe, we will need (1) an IND-PRE-secure scheme for Σobf, and (2) a composition
theorem.

Our main result in this section is a ∆-reduction of Σfe to Σobf. Then, combined with a Γ-IND-PRE
secure implementation of Σobf, we obtain a Γ-IND-PRE secure implementation of Σfe, where Γ is ∆
(respectively, ∆∗), thanks to Theorem 4 (respectively, Theorem 6).

11Simulation-based definitions can be captured in terms of reduction to the null schema.

19

Before explaining our reduction, we compare it with the results in [50, 7, 25]. At a high-level, these
works could be seen as giving (Γfe,Γobf)-reductions from Σfe to Σobf, which when composed with a Γobf-
IND-PRE-secure scheme for Σobf yields a Γfe-IND-PRE-secure scheme for Σfe. The obfuscation scheme in
[50] was proposed as a candidate for a ∆det-IND-PRE-secure scheme for Σobf (i.e., an indistinguishability
obfuscation scheme). They also consider a selective-secure functional encryption which can be captured
using a family of tests we term ∆sel. That is, in [50], we have (Γfe,Γobf) = (∆sel,∆det). Indeed, similarly
to how we defined ∆-reduction, one can define an abstract notion of (∆sel,∆det)-reduction (between
any two schemata) with a corresponding composition theorem, and the reduction in [50] would fit this
definition.

In [7, 25], the obfuscation scheme is considered to be a ∆∗-IND-PRE-secure scheme for Σobf (i.e., a
differing-inputs obfuscation). The notion of functional encryption considered corresponds to a ∆det-
IND-PRE-secure scheme for Σfe. However, the reduction in [7, 25] will not satisfy a natural definition
of (∆det,∆∗)-reduction. Instead, we can consider their reductions as (Γ,∆∗)-reductions where Γ is a
restriction of ∆det that suffices to capture functional encryption. In this work we omit formal descriptions
of ∆sel and Γ above, as well as the definitions of (∆sel,∆det)-reduction and (Γ,∆∗)-reduction mentioned
above, that can be used to capture the constructions in [50, 7, 25]. Instead, we propose ∆-IND-PRE-
security as a natural security notion for both obfuscation and functional encryption schemata, and
provide a simpler ∆-reduction from Σfe to Σobf.

Our Construction. We shall use a simple and natural functional encryption scheme: the key for
a function f is simply a description of f with a signature on it; a ciphertext of a message m is an
obfuscation of a program which when given as input a signed description of a function f , returns f(m)
if the signature verifies (and ⊥ otherwise). Essentially the same construction was used in [25] as well,
but they rely on “functional signatures” in which it is possible to derive keys for signing only messages
satisfying an arbitrary relation. In our construction, we need only a standard digital signature scheme.

Below we describe our construction more formally, as a reduction from Σfe to Σobf and prove that
it is in fact a ∆-reduction. Let Σfe = (Pfe

auth,Pfe
user) and Σobf = (∅,Pobf

user).
We shall only describe O = (Osetup,Oauth,Ouser); E is naturally defined, and the correctness will be

easy to verify.

• Osetup picks a pair of signing and verification keys (SK,VK) for the signature scheme as (MSK,MPK).
• Oauth, when given a function agent Pf ∈ Pfe

auth, outputs (f, σ) to be sent to E , where f is the parameter
of Pf and σ is a signature on it.
• Ouser, when given an agent Pm ∈ Pfe

user as input, uploads an agent Pm,MPK ∈ Pobf
user to B[Σobf], which

behaves as follows: on input (f, σ) Pm,MPK verifies that σ is a valid signature on f with respect to
the signature verification key MPK; if so, it outputs f(m), and else ⊥.

To show that this is a valid ∆-reduction, apart from verifying correctness, we need to demonstrate
S, H and K as required in Definition 7 and Definition 8. We describe these below.

• S will first simulate Osetup, by picking a signing and verification key pair itself, and publishing the
latter as MPK. On obtaining a handle hf for an agent in Pfe

auth, it runs the agent with no input to
recover f , and then simulates Oauth by outputting (f, σ) where σ is a signature on f . On obtaining
a handle h for an agent in Pfe

user, it outputs a simulated handle h′ from B[Σobf] (for the agent Pm
uploaded by Ouser), and internally keeps a record of the pair (h, h′). Subsequently, on receiving a session
execution request for a simulated handle h′ with some input, first S checks if the input is of the form
(f, σ) and σ is a valid signature on f . If so, it looks for a handle hf corresponding to f that it received
from B[Σfe]; if no such handle exists, it aborts the simulation. Else it requests an execution of B[Σfe]
session involving two handles hf and h, where (h, h′) was the pair it had recorded when issuing the

20

simulated handle h′. It returns the output from this B[Σfe] session as the outcome of the execution of
the simulated B[Σobf] session.
The probability S aborts is negligible, since any PPT adversary will have negligible probability of
producing an f with a valid signature, if it was not given out by S. Conditioned on the adversary never
creating a forged signature, the simulated and real executions are identical.
• We can define H as follows. It implements Osetup faithfully. When it is given a pair of agents in

Pfe
user, it simply forwards both of them (to s). When it receives a pair of agents in Pfe

auth from T, if they
are not identical, H aborts; otherwise H will simulate the effect of Oauth by signing the function f in
(both) the agents, and forwards it to User. Now, conditioned on D never outputting a pair of distinct
agents in Pfe

auth, we have D ◦ c ◦ H ◦ s ≡ D ◦ c ◦ s ◦ O.
Now, if D ◦ c ◦ s is hiding w.r.t. Σfe, then it must be the case that the probability of D outputting a
pair of distinct agents is negligible. This is because, D ◦ c ◦ s will forward the two agents to User, and if
the two agents are not identical, the function-revealing nature of the schema, will let the User learn the
secret bit b.
• We define K as follows. It observes the inputs sent to H (as reported to User by c), and whenever

it sees a pair of agents in Pfe
user, it appends a copy of those two agents (as if it was reported the second

instance of c in c ◦ H ◦ c). This in fact ensures that c ◦ H ◦ c ≡ c ◦ H / K.

8.1.3 Relation with known definitions

In this section, we examine the relation between IND-PRE-secure Functional Encryption with standard
notions of security, such as indistinguishability based security. See Appendix D for a review of standard
definitions of security. To begin, we show that ∆det-IND-PRE-secure is equivalent to indistinguishability
secure FE.
Lemma 3. A ∆det-IND-PRE-secure scheme for Σfe exists if and only if there exists an indistinguisha-
bility secure FE scheme.

We provide a proof in Appendix D.2. Next, we show a strict separation between IND-PRE and
∆det-IND-PRE security for FE. Towards this end, we exhibit an FE scheme which is indistinguishability
secure but not IND-PRE secure. Combined with Lemma 3, this gives the required separation.

The idea of the separation follows that in [21]. Let β : {0, 1}n → {0, 1}n be a one-way permutation,
and h be its hard-core predicate. Consider a function family which has only one function f . For all
x ∈ {0, 1}n, define f(x) := β(x). Consider an FE scheme FE where Encrypt(x) is simply a public-key
encryption (PKE) of x, and the secret key for f is the secret key of the PKE scheme. (Decrypt first
runs the decryption algorithm of PKE to obtain x, and then outputs β(x).) In the indistinguishability
game, if the adversary doesn’t ask for any key, then clearly he cannot distinguish. On the other hand, if
he does request a key for f , he can only send identical messages to the challenger (β is a permutation),
and therefore has no advantage. Hence, FE is secure under the standard indistinguishability based
security definition.

On the other hand, if we transform FE to a scheme (O, E) in the schemata framework, we show
that the latter is not secure. Consider a Test algorithm which on input a bit b, chooses an n-bit string
x uniformly at random, uploads message agent x and sends b ⊕ h(x) to the User. It also uploads a
function agent corresponding to f . Thus, the ideal user sees β(x) and b⊕ h(x). Clearly, in the ideal
world a PPT adversary cannot distinguish between Test(0) and Test(1), since doing so would imply
guessing the hard-core bit. However, in the real world distinguishing between Test(0) and Test(1) is
trivial because decryption reveals x.

Finally, one can see that if Ouser simply outputs β(x) on input x, then we get a secure IND-PRE
scheme.

21

8.2 Function-Hiding Functional Encryption

Now we turn our attention to function-hiding FE (with public-keys). This a significantly more challenging
problem, both in terms of construction and even in terms of definition [19, 20, 1]. The difficulty in
definition stems from the public-key nature of the encryption which allows the adversary to evaluate the
function encoded in a key on arbitrary inputs of its choice: hence a security definition cannot insist on
indistinguishability between two arbitrary functions. In prior work, this is often handled by restricting
the security definition to involve functions that are chosen from a restricted class of distributions, such
that the adversary’s queries cannot reveal anything about the functions so chosen. The definition arising
from our framework naturally generalizes this, as the security requirement applies to all hiding tests
and thereby removes the need of specifying ad hoc restrictions. We only need to specify a schema for
function-hiding FE, and the rest of the security definition follows from the framework.

The definition of the schema corresponding to function-hiding FE, Σfh-fe = (Pfh-fe
auth ,Pfh-fe

user), is
identical to that of Σfe, except that a function agent PC ∈ Pfh-fe

auth does not take any input, but always
reads an input x from its communication tape and outputs C(x). That is, the function agents do not
reveal the function now.

We present two results – an IND-PRE-secure scheme for the class of inner-product predicates, and
a ∆-IND-PRE-secure scheme for all function families. The former relies on the assumption that an
IND-PRE-secure scheme for Σbgg exists, and the latter on the assumption that a ∆-secure scheme for
Σobf exists.

8.2.1 Reduction to the Generic Group Schema

The first construction is in fact an information-theoretic reduction to Σbgg. Our construction is
essentially the same as a construction in the recent work of [1]. This construction implemented an
inner product predicate encryption scheme SIP = (S.Setup,S.KeyGen,S.Encrypt, S.Decrypt) which is
adaptively SIM-secure for both data and function hiding, in the generic group model. Let S.sim denote
the simulator constructed in the proof of SIP. Intuitively, the simulation based proof in [1] may be
interpreted as a simulation based reduction from Σfe(IP) to Σgg satisfying Definition 7. More details
follow.

To define reduction, i.e., a scheme (O, E)Σbgg, we need to translate the construction in [1] to fit the
interface of B[Σbgg]. Note that unlike in the generic group model, B[Σbgg] does not send any handles to
the scheme’s O algorithm. Instead, O will work with a concrete group. Let Ŝ denote the construction
S, but instantiated with the concrete group Zq, where q is the order of the (source and target) groups
provided by Σbgg.12 Then, we define O as follows:

• Encoding scheme O:

– Osetup: Run Ŝ.Setup and obtain (MPK,MSK), each of which is a vector of elements in Zq. Create
an agent for each group element in MPK, and send it to B[Σbgg] (which will send a handle for it
to the user). (If there were to be entries in MPK which are not group elements, O sends them
directly to the user.)

– Oauth: Given an agent Pf ∈ Pfh-fe
auth , extract f from Pf and let SKf = Ŝ.KeyGen(MSK, f). For each

group element in SKf , send it to B[Σbgg].
– Ouser: Given an agent Pm ∈ Pfh-fe

user , let CTm = Ŝ.Encrypt(MPK,m). Again, or each group element
in CTm, send it to B[Σbgg].

• Executer E: Given handles corresponding to a function agent SKf and handles corresponding to a
12Groups of different orders can also be handled, but for simplicity, we consider the source and target groups to be of

the same order.

22

message agent CTm, E invokes S.Decrypt with these handles. During the execution, S will require
access to the generic group operations, and at the end will output a group element which is either the
identity (in which case the predicate evaluates to true) or not (in which case it evaluates to false).13

E will use access to B[Σbgg] to carry out the group operations, and at the end carry out an equality
check to find out whether the final handle output by S.Decrypt encodes the identity or not.

Correctness follows from correctness of S. To define our simulator, we use the simulator S.sim, which
simulates the generic group oracle to a user. Our simulator is slightly simpler compared to that for S:
there, the simulator proactively checked if a group element for which a handle is to be simulated would
be equal to a group element for which a handle was previously issued, and if so, used the handle again.
This is because, in the generic group model, a single group element has only one representation. In
our case, the simulator will issue serial numbers as handles (as B[Σbgg] would have done), and equality
checks are carried out (using information gathered from B[Σfe]) only to correctly respond to equality
check requests made by the user to B[Σbgg]. In all other respects, our simulator is the same as the
simulator in the generic group model. The proof that the simulation is good also follows the same
argument as there.

8.2.2 A Construction from Obfuscation

Suppose there exists a scheme Π∗ = (O∗, E∗) that is a ∆-IND-PRE-secure scheme for Σobf.

• Encoding scheme O:

– Osetup: Generate (VK, SK) as the verification key and signing key for a signature scheme. Output
VK as MPK.

– Oauth: Given an agent Pf ∈ Pfh-fe
auth , define an agent P ′f ∈ Pobf

user , which on input x outputs f(x). Let
c :=

(
O∗(P ′f)

)
and σ = SignSK(c). Send (c, σ) to User.

– Ouser: Given an agent Pm ∈ Pfh-fe
user , define an agent P ′′m,VK ∈ Pobf

user as follows: on input (c, σ), check
if VerifyVK(c, σ) holds, and halt otherwise; if the signature does verify, invoke E∗ with handle c and
input m, and output whatever E∗ outputs. Let d = O∗(P ′′m,VK)). Send d to User.

• Executer E: Given handle (c, σ) corresponding to a function agent and a handle d corresponding to
a message agent, E invokes E∗ with handle d and input (c, σ). It outputs what E∗ outputs.

The correctness of this construction is straightforward. To argue security, consider any test
Test = D ◦ c ◦ s ∈ ∆, such that Test is hiding w.r.t. Σfh-fe. Then, for any PPT adversary Adv, we need
to show that real〈Test(0) | O | Adv〉 ≈ real〈Test(1) | O | Adv〉. For this we consider an intermediate
hybrid variable, defined as follows. Let s̃(0, 1) indicate a modified version of s, which when given two
agents Pm0 , Pm1 in Pfh-fe

user , selects Pm0 , but when given two agents Pf0 , Pf1 in Pfh-fe
auth , selects Pf1 . Then

we claim that real〈Test0 | O | Adv〉 ≈ real〈D◦ c◦ s̃ | O | Adv〉 ≈ real〈Test1 | O | Adv〉. For simplicity,
consider D which only outputs a single pair of function agents (Pf0 , Pf1) and a single pair of message
agents (Pm0 , Pm1). (The general case is handled using a sequence of hybrids, in a standard way.)

To show the first approximate equality, consider a test Test′ and adversary Adv′ which work as
follows. Test′ internally simulates Test(0) and O with the following differences: when Osetup outputs the
signing key SK, Test′ forwards it to Adv′; when the two agents Pf0 , Pf1 are sent to s, Test′(b) outputs Pfb

to B[Σobf] (or O∗). Adv′, when it receives c from O∗, first signs it using SK to obtain σ, and then passes
13Though not the case with the construction in [1], a general algorithm in the generic group model may check for

identities by comparing handles, not just at the end, but at any point during its execution. In this case, E should proactively
check every handle it receives from B[Σbgg] against all previously received handles, to see if they encode the same group
element; if so, the newly received handle is replaced with the existing one.

23

on (c, σ) to an internal copy of Adv; otherwise, it lets Adv directly interact with Test′. It can be seen
that real〈Test′(0) | O∗ | Adv′〉 = real〈Test(0) | O | Adv〉 and real〈Test′(1) | O∗ | Adv′〉 = real〈D ◦
c ◦ s̃ | O | Adv〉. Further, Test′ ∈ ∆. Also, it is easy to see that if Test′ is not hiding w.r.t. Σobf, then
Test is not hiding w.r.t. Σfh-fe (because User’s interface to Σfh-fe can be used to emulate its interface to
Σobf). Thus, if Test is hiding w.r.t. Σfh-fe, then real〈Test′(0) | O∗ | Adv′〉 ≈ real〈Test′(1) | O∗ | Adv′〉.
This establishes that real〈Test0 | O | Adv〉 ≈ real〈D ◦ c ◦ s̃ | O | Adv〉.

To show that real〈D ◦ c ◦ s̃ | O | Adv〉 ≈ real〈Test1 | O | Adv〉, we consider another test Test′′.
Now, Test′′ internally simulates Test(1) and O with the following differences: when the two message
agents Pm0 , Pm1 are sent to s, Test′′(b) sends (P ′′m0,VK, P

′′
m1,VK) to Adv′′ and outputs P ′′mb,VK to B[Σobf]

(or O∗), where P ′′mb,VK was as defined in the description of Ouser. Then, real〈Test′′(0) | O∗ | Adv〉 =
real〈D ◦ c ◦ s̃ | O | Adv〉 and real〈Test′′(1) | O∗ | Adv〉 = real〈Test(1) | O | Adv〉. Also, as before,
Test′′ ∈ ∆. If Test′′ is hiding w.r.t. Σobf, then we can conclude that real〈Test′′(0) | O∗ | Adv〉 ≈
real〈Test′′(1) | O∗ | Adv〉, and hence real〈D ◦ c ◦ s̃ | O | Adv〉 ≈ real〈Test1 | O | Adv〉. Thus it only
remains to show that Test′′ is hiding w.r.t. Σobf. Firstly, by the security of the signature scheme, for
any PPT adversary User, w.h.p., it does not query Σobf with a handle and an input (c, σ) for a c that
was not produced by Test′′. Now, conditioned on this event, if User distinguishes Test′′(0) and Test′′(1),
this User can be turned into one that distinguishes between Test(0) and Test(1) when interacting with
Σfh-fe. Thus, since Test is hiding w.r.t. Σfh-fe, it follows that Test′′ is hiding w.r.t. Σobf, as was required
to be shown.

9 Relating Cryptographic Agents to other Cryptographic Objects
Various interesting cryptographic objects such as fully homomorphic encryption, property preserving
encryption, private key functional encryption, witness encryption, the many variants of functional
encryption and such others are readily obtained from IND-PRE secure implementations of corresponding
schemata. In this section, we provide two examples – fully homomorphic encryption and property
preserving encryption. The details of other examples are left to the full version.

9.1 Fully Homomorphic Encryption

In this section, we construct a cryptographic agent schema Σfhe for Fully Homomorphic Encryption
(FHE). For a message space X = {X}κ and a circuit family F = {F}κ, we define the schema
Pfhe = (Pfhe

test ,Pfhe
user) as follows:

• An agent PMsg ∈ Pfhe
user is specified as follows: It’s initial message x is put in its parameter tape.

When invoked with an input C on its input tape, it reads a set of messages x2, x3, . . . , xt from its
communication tapes. Then it computes C(x1, .., xt) where x1 is its own message (either from the
work-tape, or if the work-tape is empty, from its parameter tape). Then it updates its work-tape with
this value. When invoked without an input, it sends its message to the first program in the session.
• An agent PDec ∈ Pfhe

auth is defined as follows: when executed with an agent PMsg it reads from its
communication tape a single message from PMsg and outputs it14.

Next, we claim that a semantically secure FHE scheme Sfhe = (Setup,Encrypt,Decrypt,Eval) can be
naturally constructed from a ∆det-IND-PRE secure scheme for Σfhe. We provide the construction in
Appendix E.

14Note that there is no parameter to a Pauth agent as there is only one of its kind. However, we can allow a single schema
to capture multiple FHE schemes with independent keys, in which case an index for the key would be the parameter for
Pauth agents.

24

9.2 Property Preserving Encryption

In this section, we present a cryptographic agent schema ΣPPE for property preserving encryption(PPE).
Definitions for PPE algorithms and security can be found in Appendix F.

Let P : M×M → {0, 1} be a (polynomial-time computable) binary property over the message
spaceM. The schema ΣPPE = (PPPE

auth , ∅), where PPPE
auth has two kinds of agents, denoted by PMsg and

PDec, is defined as follows:

• PMsg for a message m ∈M is specified as follows: it has a message m on its parameter tape. When
invoked with a command compute on its input tape, it reads a message m′ from its communication
tape, computes P (m,m′), outputs it and halts. When invoked with a command send, it sends its
message m to the first agent in the session.
• PDec reads from its communication tape a single message and outputs it.

In Appendix F we show that ∆det-IND-PRE and LoR security notions are equivalent for PPE.

10 On Bypassing Impossibilities
An important aspect of our framework is that it provides a clean mechanism to tune the level of security
for each primitive to a “sweet spot.” The goal of such a definition is that it should imply prevalent
achievable definitions while bypassing known impossibilities. The tuning is done by defining the family
of tests, Γ with respect to which IND-PRE security is required. Below we discuss a few schemata and
the definitions we recommend for them, based on what is known to be impossible.

Obfuscation. As we show in Section 7, an IND-PRE-secure scheme for Σobf cannot exist. The
impossibility proof relies on the fact that the test can upload an agent with (long) secrets in them.
However, this argument stops applying when we restrict ourselves to tests in ∆: a test in ∆ has the
structure D ◦ c ◦ s and c will reveal the agent to User. Note that then there could be at most one bit of
uncertainty as to which agent was uploaded.

We point out that while ∆-IND-PRE-security may now appear restrictive (compared to the impossibly
strong IND-PRE-security), it is still much stronger than the prevalent notions of indistinguishability
obfuscation and differing inputs obfuscation, introduced by Barak et al. [9]. Indeed, to the best of our
knowledge, it yields the first definition of general obfuscation, since the seminal work of Barak et al.,
that can plausibly exist for all functions.

We also observe that ∆-IND-PRE-secure obfuscation (or equivalently, adaptive differing-inputs
obfuscation) is easier to use in constructions than differing-inputs obfuscation, as exemplified by our
constructions in Section 8.1.2 and Section 8.2.2.

Functional Encryption. Public-key function-hiding FE, as modeled by Σfh-fe, is a stronger primitive
than obfuscation (for the same class of functions), as the latter can be easily reduced to the former. This
means that there is no IND-PRE-secure scheme for Σfh-fe for general functions. We again consider ∆-
IND-PRE security as a sweet-spot for defining function-hiding functional encryption. Indeed, prior to this
definition, arguably there was no satisfactory definition for this primitive. Standard indistinguishability
based definitional approaches (which typically specify an explicit test that is ideal-hiding) runs into
the problem that if the user is allowed to evaluate a given function on any inputs of its choice, there
is no one natural ideal-hiding test. Prior works have proposed different approaches to this problem:
by restricting to only a specific test [19, 20], or using a relaxed simulation-based definition [1, 42].
∆-IND-PRE security implies the definitions of Boneh et al. [19, 20], but is in general incomparable with
the simulation-based definitions in the other works. These latter definitions can be seen as using a test
in the ideal world that is a more generous version of the test in the real world, thereby allowing an

25

adversary to learn more information than would in general be considered ideal. Our definition does not
suffer from such information leakage.

For non-function-hiding FE (captured by the schema Σfe) too, there are many known impossibility
results, when simulation-based security definitions are used [21, 13, 5]. At a high-level, these impossibil-
ities followed a “compression” argument – the decryption of the challenge CT with the queried keys
comprise a pseudorandom string R, but the adversary’s key queries and challenge message are sequenced
in such a way that to simulate its view, the simulator must somehow compress R significantly. These
arguments do not apply to IND-PRE-security simply for the reason that there is no simulator implied
by it. We do not have any candidate constructions for IND-PRE-secure scheme for Σfe, for general
functions, but we leave open the possibility that it exists. We do however, provide a construction for a
∆-IND-PRE-secure scheme for Σfe, assuming one for Σobf (by means of a ∆-reduction).

Generic Group and Random Oracle. It is well known that a proof of security in the generic
group or the random oracle model provides only a heuristic security guarantee. Several works have
shown that these oracles are “uninstantiable,” and further there are uninstantiable primitives that can
be implemented in the models with such oracles [38, 48, 70, 46, 11]. These results do not contradict
Assumption 1, however, because the primitives in question, like non-commiting encryptions, zero-
knowledge proofs and even signature schemes, do not fit into our framework of schemata. In other
words, despite its generality, schemata can be used to model only certain kind of primitives, which seem
insufficient to imply such separations between the generic group model and the standard model. As
such, we propose Assumption 1, with Γ = Γppt, the family of all PPT tests, as an assumption worthy of
investigation. However, the weaker assumption, with Γ = ∆ suffices for our construction in Section 8.2.1,
if we settle for ∆-IND-PRE security for the resulting scheme.

11 Conclusions and Open Problems
In this work, we provided a general unifying framework to model various cryptographic primitives and
their security notions, along with powerful reduction and composition theorems. Our framework easily
captures seemingly disparate objects such as obfuscation, functional encryption, fully homomorphic
encryption, property preserving encryption as well as idealized models such as the generic group model
and the random oracle model.

Given that various cryptographic primitives can all be treated as objects of the same kind (schema),
it is natural to compare them with each other. We have shown that obfuscation is complete (under
standard computational assumptions), but completely leave open the question of characterizing complete
schemata. We also raise the question of characterizing trivial schemata — those which can be reduced to
the null schema — as well as characterizing realizable schemata — those which have (say) IND-PRE-secure
schemes.

We presented a hierarchy of security notions {∆∗-IND-PRE,∆det-IND-PRE} ≤ ∆-IND-PRE ≤
IND-PRE ≤ SIM defined using various test families (or, in the case of SIM, as a reduction to the
null-schema), but the relationships between these for any given schema are not fully understood. We
leave it as an open problem to provide separations between these various notions of security for various
schemata. For the case of functional encryption we provide a separation of ∆det-IND-PRE from IND-PRE.
For obfuscation we conjecture that all the above notions are different from each other for some function
family.

Finally, while we provide several instantiations of our framework, there are several primitives that
our framework does not capture as-is, such as signatures, CCA secure encryption, obfuscation with
security against malicious obfuscators, non-committing encryption and such others. It is an important
open problem to extend our framework to support modeling the above primitives.

26

References
[1] S. Agrawal, S. Agrawal, S. Badrinarayanan, A. Kumarasubramanian, M. Prabhakaran, and A. Sahai.

Function private functional encryption and property preserving encryption : New definitions and
positive results. Cryptology Eprint Arxiv, 2013. 6, 19, 22, 23, 25, 31, 32

[2] S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard model. In
EUROCRYPT, pages 553–572, 2010. 32

[3] S. Agrawal, D. Boneh, and X. Boyen. Lattice basis delegation in fixed dimension and shorter-
ciphertext hierarchical IBE. In CRYPTO, pages 98–115, 2010. 32

[4] S. Agrawal, D. M. Freeman, and V. Vaikuntanathan. Functional encryption for inner product
predicates from learning with errors. In Asiacrypt, 2011. 32

[5] S. Agrawal, S. Gurbanov, V. Vaikuntanathan, and H. Wee. Functional encryption: New perspectives
and lower bounds. In Crypto, 2013. 6, 26

[6] J. Alwen, M. Barbosa, P. Farshim, R. Gennaro, S. D. Gordon, S. Tessaro, and D. A. Wilson. On
the relationship between functional encryption, obfuscation, and fully homomorphic encryption. In
IMA Int. Conf., pages 65–84, 2013. 32

[7] P. Ananth, D. Boneh, S. Garg, A. Sahai, and M. Zhandry. Differing-inputs obfuscation and
applications. Cryptology Eprint Arxiv, 2013. http://eprint.iacr.org/2013/689.pdf. 6, 17, 19, 20, 31,
32

[8] B. Barak, S. Garg, Y. T. Kalai, O. Paneth, and A. Sahai. Protecting obfuscation against algebraic
attacks. In Eurocrypt, 2014. 16

[9] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang. On the
(im)possibility of obfuscating programs. In CRYPTO, 2001. 5, 16, 17, 25, 31

[10] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang. On the
(im)possibility of obfuscating programs. J. ACM, 59(2):6:1–6:48, May 2012. 17

[11] M. Bellare, A. Boldyreva, and A. Palacio. An uninstantiable random-oracle-model scheme for a
hybrid-encryption problem. In EUROCRYPT, pages 171–188, 2004. 26

[12] M. Bellare, V. T. Hoang, and S. Keelveedhi. Instantiating random oracles via uces. In Crypto,
2013. 15

[13] M. Bellare and A. O’Neill. Semantically-secure functional encryption: Possibility results, im-
possibility results and the quest for a general definition. In CANS, pages 218–234, 2013. 6,
26

[14] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In Proceedings of the First Annual Conference on Computer and Communications
Security. ACM, November 1993. 15

[15] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based encryption. In IEEE
Symposium on Security and Privacy, pages 321–334, 2007. 32

[16] N. Bitansky, R. Canetti, O. Paneth, and A. Rosen. Indistinguishability obfuscation vs. auxiliary-
input extractable functions: One must fall. Cryptology ePrint Archive, Report 2013/641, 2013.
http://eprint.iacr.org/. 32

27

http://eprint.iacr.org/2013/689.pdf
http://eprint.iacr.org/

[17] A. Boldyreva, D. Cash, M. Fischlin, and B. Warinschi. Foundations of non-malleable hash and
one-way functions. In In ASIACRYPT, pages 524–541, 2009. 15

[18] D. Boneh and M. K. Franklin. Identity-based encryption from the weil pairing. In CRYPTO, pages
213–229, 2001. 32

[19] D. Boneh, A. Raghunathan, and G. Segev. Function-private identity-based encryption: Hiding the
function in functional encryption. In CRYPTO, 2013. 6, 22, 25

[20] D. Boneh, A. Raghunathan, and G. Segev. Function-private subspace-membership encryption and
its applications. In Asiacrypt, 2013. 6, 22, 25

[21] D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges. In TCC,
pages 253–273, 2011. 6, 21, 26, 38

[22] D. Boneh and A. Silverberg. Applications of multilinear forms to cryptography. IACR Cryptology
ePrint Archive, 2002:80, 2002. 15

[23] D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted data. In TCC,
pages 535–554, 2007. 32

[24] X. Boyen and B. Waters. Anonymous hierarchical identity-based encryption (without random
oracles). In CRYPTO, pages 290–307, 2006. 32

[25] E. Boyle, K.-M. Chung, and R. Pass. On extractability obfuscation. In TCC, 2014. http:
//eprint.iacr.org/2013/650.pdf. 6, 19, 20, 31

[26] E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom functions. In Public
Key Cryptography, pages 501–519, 2014. 19

[27] Z. Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp. In
CRYPTO, 2012. 31, 32

[28] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption without
bootstrapping. In ITCS, pages 309–325, 2012. 31, 32

[29] Z. Brakerski and G. N. Rothblum. Obfuscating conjunctions. In CRYPTO, pages 416–434, 2013.
31

[30] Z. Brakerski and G. N. Rothblum. Black-box obfuscation for d-cnfs. In ITCS, 2014. http:
//eprint.iacr.org/. 31

[31] Z. Brakerski and G. N. Rothblum. Virtual black-box obfuscation for all circuits via generic graded
encoding. In TCC, 2014. http://eprint.iacr.org/. 16, 31

[32] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-LWE and security
for key dependent messages. In CRYPTO, pages 501–521, 2011. 31, 32

[33] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
LWE. In FOCS, pages 97–106, 2011. 31, 32

[34] Z. Brakerski and V. Vaikuntanathan. Lattice-based FHE as secure as PKE. In ITCS, 2014.
http://eprint.iacr.org/2013/541. 31, 32

[35] R. Canetti. Towards realizing random oracles: Hash functions that hide all partial information. In
CRYPTO. Springer Berlin Heidelberg, 1997. 15, 31

28

http://eprint.iacr.org/2013/650.pdf
http://eprint.iacr.org/2013/650.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2013/541

[36] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
Proceedings of the 42Nd IEEE Symposium on Foundations of Computer Science, FOCS ’01, 2001. 4

[37] R. Canetti and R. R. Dakdouk. Obfuscating point functions with multibit output. In EUROCRYPT,
2008. 15, 31

[38] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. In STOC,
pages 209–218, 1998. 26

[39] R. Canetti, D. Micciancio, and O. Reingold. Perfectly one-way probabilistic hash functions
(preliminary version). In Proceedings of the Thirtieth Annual ACM Symposium on Theory of
Computing, STOC ’98, 1998. 15, 31

[40] R. Canetti, G. Rothblum, and M. Varia. Obfuscation of hyperplane membership. In TCC, 2010. 31

[41] R. Canetti and V. Vaikuntanathan. Obfuscating branching programs using black-box pseudo-free
groups. Cryptology ePrint Archive, Report 2013/500, 2013. http://eprint.iacr.org/. 31

[42] A. D. Caro and V. Iovino. On the power of rewinding simulators in functional encryption.
Cryptology ePrint Archive, Report 2013/752, 2013. http://eprint.iacr.org/. 25

[43] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a lattice basis. In
EUROCRYPT, pages 523–552, 2010. 32

[44] S. Chatterjee and M. P. L. Das. Property preserving symmetric encryption: Revisited. IACR
Cryptology ePrint Archive, 2013:830, 2013. http://eprint.iacr.org/2013/830. 32

[45] C. Cocks. An identity based encryption scheme based on quadratic residues. In IMA Int. Conf.,
pages 360–363, 2001. 32

[46] A. W. Dent. Adapting the weaknesses of the random oracle model to the generic group model.
IACR Cryptology ePrint Archive, 2002:86, 2002. 26

[47] M. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption over the
integers. In EUROCRYPT, pages 24–43, 2010. Full Version in http://eprint.iacr.org/2009/616.pdf.
31, 32

[48] M. Fischlin. A note on security proofs in the generic model. In T. Okamoto, editor, ASIACRYPT,
Lecture Notes in Computer Science, pages 458–469. Springer, 2000. 26

[49] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices. In EUROCRYPT,
2013. 15, 31

[50] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistinguishability
obfuscation and functional encryption for all circuits. In FOCS, 2013. http://eprint.iacr.org/. 17,
19, 20, 31, 32

[51] S. Garg, C. Gentry, S. Halevi, A. Sahai, and B. Waters. Attribute-based encryption for circuits
from multilinear maps. In CRYPTO, 2013. 32

[52] S. Garg, C. Gentry, S. Halevi, and D. Wichs. On the implausibility of differing-inputs obfuscation
and extractable witness encryption with auxiliary input. Cryptology Eprint Arxiv, 2014. http:
//eprint.iacr.org/2013/860.pdf. 32

[53] C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009. 40

29

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2013/830
http://eprint.iacr.org/2009/616.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/2013/860.pdf
http://eprint.iacr.org/2013/860.pdf

[54] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178, 2009. 31,
32

[55] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic
constructions. In STOC, pages 197–206, 2008. 32

[56] C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO, 2013. 31, 32

[57] O. Goldreich, S. Micali, and A. Wigderson. How to play ANY mental game. In ACM, editor,
STOC, pages 218–229, 1987. 4

[58] S. Goldwasser, V. Goyal, A. Jain, and A. Sahai. Multi-input functional encryption.
https://eprint.iacr.org/2013/727.pdf. 17, 19

[59] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich. How to run turing
machines on encrypted data. In CRYPTO (2), pages 536–553, 2013. 32

[60] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich. Reusable garbled
circuits and succinct functional encryption. In STOC, pages 555–564, 2013. 32

[61] S. Goldwasser and G. N. Rothblum. On best-possible obfuscation. In Proceedings of the 4th
Conference on Theory of Cryptography, TCC’07, 2007. 31

[62] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Attribute based encryption for circuits. In STOC,
2013. 32

[63] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained access
control of encrypted data. In ACM Conference on Computer and Communications Security, pages
89–98, 2006. 32

[64] D. Hofheinz, J. Malone-lee, and M. Stam. Obfuscation for cryptographic purposes. In In TCC,
pages 214–232, 2007. 31

[65] S. Hohenberger, G. N. Rothblum, A. Shelat, and V. Vaikuntanathan. Securely obfuscating re-
encryption. In Proceedings of the 4th Conference on Theory of Cryptography, TCC’07, 2007. 31,
32

[66] J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions, polynomial
equations, and inner products. In EUROCRYPT, pages 146–162, 2008. 32

[67] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure functional encryp-
tion: Attribute-based encryption and (hierarchical) inner product encryption. In EUROCRYPT,
pages 62–91, 2010. 32

[68] B. Lynn, M. Prabhakaran, and A. Sahai. Positive results and techniques for obfuscation. In
EUROCRYPT, 2004. 31

[69] U. Maurer. Abstract models of computation in cryptography. In IMA Int. Conf., volume 3796 of
Lecture Notes in Computer Science, pages 1–12. Springer, 2005. 15

[70] J. B. Nielsen. Separating random oracle proofs from complexity theoretic proofs: The non-
committing encryption case. In CRYPTO, pages 111–126, 2002. 26

[71] A. O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive, Report
2010/556, 2010. http://eprint.iacr.org/. 38

30

http://eprint.iacr.org/

[72] O. Pandey and Y. Rouselakis. Property preserving symmetric encryption. In D. Pointcheval and
T. Johansson, editors, Advances in Cryptology âĂŞ EUROCRYPT 2012, number 7237 in Lecture
Notes in Computer Science, pages 375–391. Springer Berlin Heidelberg, Jan. 2012. 31, 32, 41

[73] A. Sahai and B. Waters. Functional encryption:beyond public key cryptography. Power Point
Presentation, 2008. http://userweb.cs.utexas.edu/ËĲbwaters/presentations/ files/functional.ppt.
31

[74] A. Sahai and B. Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages 457–473, 2005.
31

[75] A. Sahai and B. Waters. How to use indistinguishability obfuscation: Deniable encryption, and
more. In Crypto, 2013. http://eprint.iacr.org/2013/454.pdf. 31

[76] A. Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pages 47–53, 1984.
32

[77] V. Shoup. Lower bounds for discrete logarithms and related problems. In Eurocrypt, pages 256–266.
Springer-Verlag, 1997. 15

[78] B. Waters. Functional encryption for regular languages. In Crypto, 2012. 32

[79] H. Wee. On obfuscating point functions. In STOC, pages 523–532, 2005. 15, 31

A Related Work
Recent times have seen a fantastic boom in the area of computing with encrypted information. Several
exciting primitives supporting advanced functionalities, such as fully homomorphic encryption [54, 47,
32, 33, 28, 27, 34, 56], functional encryption [74, 73], property preserving encryption [72, 1] have been
constructed. Some functionalities require the data to be hidden but permit the function to be public,
while others, most notably program obfuscation [9], permit the data to be public but the function to be
hidden. Here, we review the state of the art in these fields.

Program Obfuscation. Program Obfuscation is the task of garbling a given program so that the
input-output behavior is retained, but everything else about the program is hidden. The formal study
of program obfuscation was initiated by Barak et al. [9] who showed that the strongest possible notion
of security, called virtual black box security was impossible to achieve for general circuits. To address
this, they defined weaker notions of security, such as indistinguishability obfuscation (denoted by I-Obf),
which states that for two equivalent circuits C0 and C1, their obfuscations should be computationally
indistinguishable. A related but stronger security notion defined by [9] was that of differing input
obfuscation (denoted by DI-Obf), which further requires that an adversary who can distinguish between
C0 and C1 can be used to extract an input on which the two circuits differ.

Despite these weakenings, the area of program obfuscation was plagued by impossibilities [68, 61, 64]
for a long time, with few positive results, often for very specialized classes of functions [35, 39, 79, 40,
65, 37]. This state of affairs however, has improved significantly in recent times, when constructions of
graded encoding schemes [49] were leveraged to build program obfuscators for complex functionalities,
such as conjunctions [29], d-CNF formulas [30], circuits [50, 31, 41] and even Turing machines [7] in
weaker models of computation such as the generic graded encoding scheme model [29, 30, 31, 7], the
generic colored matrix model [50] and the idealized pseudo free group model [41].

These constructions are proven secure under different notions of security : virtual black box, I-Obf,
DI-Obf. Alongside, several new applications have been developed for IP-Obf [75] and DI-Obf [7, 25].
There is a growing research effort in exploring the plausibility and connections between different notions

31

http://eprint.iacr.org/2013/454.pdf

of obfuscation [16, 52]. A better understanding of various notions of obfuscation and connections with
various related notions such as functional encryption (see below), is slowly emerging, with much promise
for the future.

Functional Encryption. Functional encryption generalizes public key encryption to allow fine grained
access control on encrypted data. In functional encryption, a user can be provided with a secret key
corresponding to a function f , denoted by SKf . Given SKf and ciphertext CTx = Encrypt(x), the
user may run the decryption procedure to learn f(x). Security of the system guarantees that nothing
beyond f(x) can be learned from CTx and SKf . Functional encryption systems traditionally focussed
on restricted classes of functions such as the identity function [76, 18, 45, 24, 55, 43, 2, 3], membership
checking [23], boolean formulas [63, 15, 67], inner product functions [66, 67, 4] and more recently, even
regular languages [78]. Recent times saw constructions for more general classes of functions: Gurabov
et al. [62] and Garg et al. [51] provided the first constructions for an important subclass of FE called
“public index FE” for all circuits, Goldwasser et al. [60] constructed succinct simulation-secure single-key
FE scheme for all circuits, Garg et al. [50] constructed multi-key FE schemes for all circuits while
Goldwasser et al. and Ananth et al. [59, 7] also constructed FE for Turing machines.

Functional Encryption and Obfuscation are not just powerful cryptographic primitives in their own
right, but are also intimately related objects – for example, it was shown in [50] that indistinguishability
obfuscation implies functional encryption. Recently, differing input obfuscation has been used to
construct FE for Turing machines [59].

Fully homomorphic encryption. Fully homomorphic encryption allows a user to evaluate a circuit
C on encrypted messages {CTi = Encrypt(xi)}i∈[n] so that Decrypt

(
C(CT1, . . . ,CTn)

)
= C(x1, . . . , xn).

Since the first breakthrough construction by Gentry [54], extensive research effort has been focused on
providing improvements [47, 32, 33, 28, 27, 34, 56].

Recently, Alwen et al. [6] explored the connections between FHE, FE and obfuscation. In [6], the
authors introduce the notion of randomized FE which can be used to construct FHE. In addition,
they explore the problem of obfuscating specific re-encryption functionalities, introducing new notions
extending those proposed in earlier works on re-encryption [65]. They also develop techniques to use
obfuscated re-encryption circuits to construct FE schemes.

Property Preserving Encryption. The notion of property preserving encryption (PPE) was introduced
in a very recent work by Pandey and Rouselakis [72]. Property preserving encryption is a symmetric
key primitive, which permits some pre-determined property P (x1, x2) to be publicly tested given only
the ciphertexts CT(x1),CT(x2). In [72], the authors formalize the notion of PPE, provide definitions
of security and provide a candidate construction for inner product PPE in the generic group model.
Subsequently [44] displayed an attack against the construction in [72], which was fixed in [1]. Agrawal
et al. [1] also provide the first standard model construction of PPE.

This rich body of primitives is interdependent not only in terms of philosophy and techniques, but
also in terms of non-interaction. Unlike the case of multiparty computation, where a user (in general)
continues to send and receive messages throughout the protocol, the above primitives do not permit
users to “keep playing”. A user may create an obfuscated agent once and for all, and then release it into
the wild. This agent is expected to reveal nothing other than what is permitted by its functionality,
but must interface in a well defined manner with other agents or expected inputs.

Another aspect to note, is that many of the above primitives are known to be impossible to
instantiate under the strong simulation based security desired by MPC. Indeed, positive results often
settle for a weaker indistinguishability based security, which is also the focus of this work.

32

B Obfuscation Schema is Complete
In this section we prove that Σobf is “complete” under the notion of reduction defined in Definition 7.
More precisely, we show two kinds of reductions.

1. Any schema (∅,P) in which the agents are non-interactive (but possibly randomized and reactive)
has a reduction (O, E) to Σobf in which O is setup-free.

2. Any schema Σ = (Pauth,Puser) (possibly with Ptest 6= Puser and containing possibly randomized,
reactive, interactive agents) has a reduction (O, E) to Σobf in which O has setup.

We point out that if Ptest 6= Puser, in general it is necessary that O has setup, as otherwise an adversarial
user can create obfuscations of programs in Pauth itself.

We sketch each of these reductions below. The security of these reductions only depend on standard
symmetric-key and public-key cryptography primitives. The proofs are conceptually clean and simple,
as the reductions between schemata occur in an idealized world. However, the detailed descriptions of
the reductions and the simulator tend to be somewhat long. We provide some of the details to clarify
subtleties and also to illustrate the nature of the reductions and proofs, but defer further details to the
full version.

We carry out the reduction in two steps: first we show how to reduce any schema with non-interactive
agents to Σobf, and then build on it to reduce all schemata (including those with interactive agents) to
Σobf.

B.1 Construction for Non-Interactive Agents

In this section we reduce any schema of the form ΣRR = (∅,P), in which the agents are randomized and
reactive, but non-interactive, to Σobf. For this we define an intermediate schema, ΣR of randomized,
but non-reactive, non-interactive agents, and give two reductions: we reduce ΣRR to ΣR and ΣR to
Σobf. These can then be composed together using the transitivity of reducibility (Theorem 3) to obtain
our reduction from ΣRR to Σobf.15

Below, we will write Σ0 for Σobf, Σ1 for ΣR, and Σ2 for ΣRR.

(O1, E1) to reduce Σ1 to Σ0. On receiving a randomized agent P1 from Test, O1 uploads the following
(deterministic) agent P0 to B[Σ0]: P0 has the parameters of P1 as well as a freshly chosen seed s for
a pseudorandom function (PRF) built-in as its parameters; when invoked it interprets its input as
(i, x), generates a random tape for P1 using the PRF applied to (i, x), as r = PRFs(i, x), and executes
P1(x; r). (The κ-bit index i is used to implement multiple independent executions of the randomized
agent with the same input.)
E1 translates User’s interaction with B[Σ1] to an interaction with B[Σ0]: when User requests to

upload a randomized agent to B[Σ1], E1 will upload to B[Σ0] an agent as created by O1. When B[Σ0]
sends E1 a handle, it forwards it to User. When User sends an execution command with a handle h and
an input x to B[Σ1], E1 translates it to the handle h and input (i, x) for B[Σ0], where i is a randomly
chosen κ-bit index. The correctness of the reduction follows directly from the security of the PRF, and
the fact that it is unlikely that E1 will choose the same value for i in two different sessions.

The simulator S1, which translates Adv’s interaction with B[Σ0] to an interaction with B[Σ1],
behaves as follows: it passes on handles it receives from B[Σ1] as handles from B[Σ0]. If the user sends
an upload command, S1 will upload the agent as it is (since Σ1 allows deterministic agents as well). S1
also maintains a list of the form (h, i, x, y) where h is a handle obtained that does not correspond to an

15The tape and time bounds for the agents in Σobf will depend on the tape and time bounds for the schema ΣRR. For
simplicity, we leave this bound to be only implicitly specified by our reductions.

33

agent uploaded by Adv, (i, x) is an input for h from a session execution command given by Adv, and y
is the output it reported back to Adv for that session. On receiving a new session request h(z), i.e.,
for an agent handle h with input z, S1 behaves differently depending on whether h is a handle that
corresponds to an agent uploaded by Adv, or not. In the former case, S1 simply forwards the request
h(z) to B[Σ1] and returns the response from B[Σ1] back to Adv. In the latter case, S1 interprets z as
(i, x); then, if there is an entry of the form (h, i, x, y) in its list, S1 returns y to Adv; else it forwards the
session request (h, x) to Σ0, and gets back (a fresh) output y, records (h, i, x, y) in its list, and sends y
to User. It is easy to show, from the security of the PRF, that S1 satisfies the correctness requirements.

(O2, E2) to reduce Σ2 to Σ1. We omit the detailed description of O2, E2 and the simulator S2
associated with this reduction, but instead just describe the behavior of the non-reactive agent P1 that
O2 sends to B[Σ1], when given a reactive agent P2 of schema Σ2.

The idea is that the reactive agent P2 can be implemented by a non-reactive agent P1 which outputs
an encrypted configuration of P2 that can then be fed back as input to P1. More precisely, P1 will
contain the parameters of P2 and keys for a semantically secure symmetric-key encryption scheme
and a message authentication code (MAC) built-in as its own parameters. If invoked with just an
input for P2, P1 considers this an invocation of P2 from its start configuration. In this case, P1 uses
its internal randomness to initialize a random-tape for P2, and executes P2 on the given input until it
blocks or halts. Then (using fresh randomness) it produces an authenticated ciphertext of the resulting
configuration of P2. It outputs this encrypted configuration along with the (unencrypted) contents of
the output tape of P2. P1 can also be invoked with an encrypted configuration and an input: in this
case, it checks the authentication, decrypts the configuration (which contains the random tape for P2)
and executes P2 starting from this configuration, with the given input added to the input-tape.

The security of this reduction follows from the semantic security of the encryption and the existential
unforgeability of the MAC.

B.2 General Construction for Interactive Agents

In this section, we shall reduce a general schema Σ = (Pauth,Puser) to the schema ΣR from Section B.1,
which consists of arbitrary randomized (non-reactive, non-interactive) agents. Combined with the first
of two reductions from the previous section, using Theorem 3, this gives a reduction of Σ to Σobf.

Our reduction (O, E) is fairly simple. At a high-level, O will upload an agent called Prun to B[ΣR],
which will be used as a key for carrying out all sessions. The agents in the sessions are maintained as
encrypted and authenticated configurations, which the Prun will decrypt, execute and update, and then
reencrypt and sign. Note that for this Prun needs to be a randomized agent (hence the reduction to ΣR

rather than Σobf).
More precisely, during setup, Osetup will pick a secret-key and public-key pair (SK,PK) for a

CCA2-secure public-key encryption, and a pair of signing and verification keys (Sig, V er) for a digital
signature scheme, and sets MPK = PK and MSK = (SK,PK, Sig, V er). It will also upload the
following randomized agent Prun to B[ΣR]: the parameters of Prun include MSK.

1. Prun takes as input ((C1, σ1, x1), · · · , (Ct, σt, xt)) for t ≥ 1, where Ci are encrypted configurations of
agents in Pauth ∪ Puser, σi are signatures on Ci, and xi are inputs for the agents.

2. It decrypts each Ci using SK. It also checks the signatures on all the ciphertexts using V er, except
for the ciphertexts that contain a start configuration16 of an agent in Puser.

3. If all the configurations and signatures are valid, then first Prun chooses a seed for a pseudorandom
16A start configuration has all the tapes, except the parameter tape, empty. The configuration also contains information

about the agent family that the agent belongs to.

34

generator (PRG) to define the random-tape of each agent in a start configuration.17

4. Then Prun copies the inputs xi to input tapes of the respective agents and carries out a session
execution.

5. When the session terminates, Prun encrypts each agent’s configuration (along with the updated seed
of the PRG that defines its random tape), to obtain ciphertexts C ′i; it signs them using Sig to get
signatures σ′i; finally, it halts after outputting ((C ′1, σ′1, y1), · · · , (C ′t, σ′t, yt)), where yi are the contents
of the output tapes of the agents.

After setup, when Oauth is given an agent in Pauth by Test, it simply encrypts (the start configuration
of) the agent, signs it, and outputs the resulting pair (C, σ) as the obfuscation of the given agent. Ouser
only encrypts the agent and outputs (C,⊥) as the obfuscation; it is important that the encryption
scheme used is CCA2 secure.
E behaves as follows. During setup, E receives PK from O and a handle from B[ΣR]. E sends User

the handles corresponding to agents which are uploaded by User, or received (as cryptographically
encoded agents) from O, or (as part of session output) from Prun. For each agent uploaded by User,
E stores its parameters (i.e., start configuration) encrypted with PK, indexed by its handle. For
cryptographically encoded agents received from O or Prun, it stores the obfuscation (C, σ), indexed by
its handle. When given a session execution command, E retrieves the cryptographically encoded agents
stored for each handle (with an empty signature if it is an agent in Puser with start configuration) and
sends them to B[ΣR], along with the handle for Prun. It gets back ((C ′1, σ′1, y1), · · · , (C ′t, σ′t, yt)) as the
output from the session. It stores each (C ′i, σ′i) received with a new handle, and sends these handles
along with the outputs yi to User.

The correctness of this reduction is straightforward, depending only on the security of the PRG (and
only the correctness of the encryption and signature schemes). To prove the security property, we sketch
a simulator S. It internally runs Osetup to produce (MSK,MPK) and sends the latter to Adv. It also
sends Adv a handle, to simulate the handle for Prun it would receive during the setup phase. Subsequently,
when S receives handles from B[Σ] for agents uploaded by Test, it simulates the output of Oauth or
Ouser (depending on whether the handle is for Pauth or Puser) by encrypting a dummy configuration
for an agent. Note that the ciphertexts produced by Ouser are not signed. Also, when S receives new
handles from a session executed by B[Σ], it simulates the output of Prun, again by encrypting dummy
configurations (these are signed ciphertexts). S hands over all such simulated ciphertexts to Adv, and
also records them along with the corresponding handles it received from B[Σ]. When Adv sends a session
execution command for Prun, with an input of the form ((C1, σ1, x1), · · · , (Ct, σt, xt)), S attempts to
find a handle for each Ci as follows: first, S looks up the handles for the ciphertexts, if any, that it
has recorded already. Note that if a ciphertext has a valid signature, it must have been generated and
recorded by S. But if there is any ciphertext which is not signed, and which does not appear in S’s
table, then S will decrypt the ciphertext; if that gives a valid start configuration for an agent in Puser,
then S will upload that agent to B[Σ], and obtains a handle for it. As we shall see, this is where the
CCA2 security is crucial, as explained below. (If any of the above steps fail (invalid signature, invalid
ciphertext or invalid decrypted configuration), S can simply simulate an empty output from Prun.)
Once it has a handle hi for every Ci, S asks B[Σ] to execute a session with those handles and inputs
x1, · · · , xt. It returns the resulting outputs as well as dummy ciphertexts (as already described) as the
output from Prun.

The proof that the simulation is good relies on the CCA2 security of the encryption scheme (as well
as the unforgeability of the signatures, and the security of the PRG). Note that on obtaining handles
for various agents from B[Σ], S hands over dummy ciphertexts to Adv, and if Adv gives them back to

17We use the PRG in a stream-cipher mode: it produces a stream of pseudorandom bits, such that at any point there is
an updated seed that can be used to continue extracting more bits from the PRG.

35

S, it translates them back to the handles. Every other ciphertext is decrypted by S and used to create
an agent that it uploads. However, if the encryption scheme were malleable, Adv could generate such a
ciphertext by malleating one of the ciphertexts it received (from S or from, say, Ouser). Thus in the
real execution, the agent created by Adv would be related to an agent created by Ouser, where as in
the simulation it would be related to dummy agent created by S, leading to a distinguishing attack.
CCA2 security prevents this: one can translate a distinguishing attack (Test, Adv and S together) to an
adversary in the CCA2 security experiment, in which, though the adversary does not have access to the
decryption keys as S would, it can still carry out the decryptions carried out by S using the decryption
oracle in the CCA2 experiment. The details of this reduction are fairly routine, and hence omitted.

C Obfuscation

C.1 Indistinguishability Obfuscation

Below, we provide a formal definition for indistinguishability obfuscation.

Definition 10 (Indistinguishability Obfuscation). A uniform PPT machine obf(·) is called an indis-
tinguishability obfuscator for a circuit family F = {Fκ} if it probabilistically maps circuits to circuits
such that the following conditions are satisfied:

• Correctness: ∀κ ∈ N, ∀C ∈ Fκ, and ∀ inputs x we have that

Pr
[
C ′(x) = C(x) : C ′ ← obf(1κ, C)

]
= 1.

• Relaxed Polynomial Slowdown: There exists a universal polynomial p such that for any circuit
C, we have |C ′| ≤ p(|C|, κ) where C ′ ← obf(1κ, C).
• Indistinguishability: For every pair of circuits C0, C1 ∈ Fκ, such that ∀x, C0(x) = C1(x), we have
that for all PPT distinguishers D

D
(
1κ,obf(1κ, C0)

)
≈ D

(
1κ,obf(1κ, C1)

)
.

Multiple obfuscated circuits: Using a hybrid argument, one can show that if obf(·) is an indistin-
guishability obfuscator, then security also holds against distinguishers who have access to multiple obfus-
cated circuits. More formally, let (C0, C1) be a pair of sequence of circuits where Cb = {Cb,1, Cb,2, . . . , Cb,`}
for b ∈ {0, 1} (and ` is some polynomial in κ). Suppose for every i ∈ [1, `] and for all x, C0,i(x) = C1,i(x).
Then, for all PPT distinguishers D we have that

D
(
1κ,obf(1κ, C0,1), . . . ,obf(1κ, C0,`)

)
≈ D

(
1κ,obf(1κ, C1,1), . . . ,obf(1κ, C1,`)

)
.

C.1.1 Proof of Lemma 1

Proof. Suppose (O, E) is a set-up free ∆det-IND-PRE-secure scheme for Σobf, then O ◦ E is an indistin-
guishability obfuscator, where O ◦ E is defined as discussed before. By construction, O ◦ E satisfies the
correctness and polynomial slowdown requirements. So suppose O◦E does not satisfy the indistinguisha-
bility preservation property. Then there exists two circuits C0 and C1 which have identical input-output
behavior, but there exists a PPT algorithm D which distinguishes between of O ◦ E(C0) and O ◦ E(C1).
Now, define a simple Test ∈ ∆det which on input b, uploads Cb. It is easy to see that Test is hiding w.r.t.
Σobf as the User gets only black-box access to C0 or C1. On the other hand, we argue that Test is not
hiding w.r.t. O. For this consider an adversary Adv which, on obtaining a string O from O constructs the
program Z := E [O] and invokes D(Z). Then real〈Test(0) | O | Adv〉 6≈ real〈Test(1) | O | Adv〉 follows
from the fact that Z is distributed as O ◦ E(Cb), where b is the input to Test, and the distinguishing
advantage of D.

36

We now show how obf(.), an indistinguishability obfuscator, yields a (perfectly correct) set-up free
∆det-IND-PRE-secure scheme for Σobf. Together with the observation above, this will prove the lemma.
We know that obf maps circuits to circuits. Hence, O on input a circuit C runs obf on the same input
to obtain another circuit C ′. This latter circuit is forwarded to E . When E receives a circuit, it forwards
a handle to the User; and when it receives a handle h and an input x from the User, it executes the
circuit C ′ corresponding to h on x, and returns C ′(x). Correctness easily follows from the construction
of O and E .

Now, suppose that (O, E) is not a secure implementation. This implies that there exists a Test ∈ ∆det
which is hiding w.r.t Σobf but not w.r.t. O. Hence, there exists an adversary Adv which can distinguish
between Test(0) and Test(1) in the real world. Using Test and Adv, we construct a distinguisher D as
follows. Recall that Test(b) can be represented as D◦cs(b), where D is a deterministic party. D internally
simulates a real world set-up with D, O and Adv. Note that every pair of circuits (C0, C1) that D sends
to c must be equivalent, otherwise Test would not be hiding w.r.t. Σobf. When D uploads (C0, C1), D
forwards them to Adv and the challenger. Let us say that the challenger picks a bit b ∈ {0, 1}. When D
receives obf(Cb) = O(Cb) from the challenger, he forwards it to Adv. Finally, D outputs the view of
the adversary. Since the view of Adv in the experiment where challenger picks b is identical to its view
in the real world when Test has input b, D succeeds in distinguishing between the case where challenger
picks 0 from the case where it picks 1.

C.2 Differing Inputs obfuscation.

Definition 11 (Differing Inputs Obfuscation). A uniform PPT machine obf(·) is called a differing
inputs obfuscator for a circuit family F = {Fκ} if it probabilistically maps circuits to circuits such that
it satisfies the correctness and relaxed polynomial slowdown conditions as in Definition 10 and also:

• Differing Inputs: For every algorithm Sampler which takes 1κ as input and outputs (C0, C1, aux),
where C0, C1 ∈ Fκ, if for all PPT A

Pr
[
C0(x) 6= C1(x) : (C0, C1, aux)← Sampler(1κ);x← A(1κ, C0, C1, aux)

]
≤ negl(κ),

then for all PPT distinguishers D

D
(
1κ,obf(1κ, C0), aux

)
≈ D

(
1κ,obf(1κ, C1), aux

)
.

We call the Sampler whose output satisfies the condition given above (against all PPT A) a good
sampler. Note that differing inputs obfuscation requires indistinguishability to hold for good samplers
only.

Multiple obfuscated circuits : Like in the case of indistinguishability obfuscation, we can show that
if a differing inputs obfuscator obf(·) exists, then it is also secure against the following more general
class of sampling functions. Let Sampler` be an algorithm that on input 1κ outputs a pair of sequence
of circuits (C0, C1) and aux, where Cb = {Cb,1, Cb,2, . . . , Cb,`} for b ∈ {0, 1} (and ` is some polynomial in
κ). We claim that if Sampler` is good, i.e., for all PPT A,

Pr
[
C0,i(x) 6= C1,i(x) : (C0, C1, aux)← Sampler(1κ); (x, i)← A(1κ, C0, C1, aux)

]
≤ negl(κ),

then for all PPT distinguishers D,

D
(
1κ,obf(1κ, C0,1), . . . ,obf(1κ, C0,`), aux

)
≈ D

(
1κ,obf(1κ, C1,1), . . . ,obf(1κ, C1,`), aux

)
.

We can prove this claim via a hybrid argument. For i ∈ [0, `], let Hi be the hybrid consisting of
obf(C1,1), . . . ,obf(C1,i), obf(C0,i+1), . . . ,obf(C0,`) and aux (κ has been omitted for convenience). In or-
der to show thatH0 is indistinguishable fromH`, it is sufficient to show that for every i ∈ [0, `−1],Hi is in-
distinguishable from Hi+1. Both Hi and Hi+1 have obf(C1,1), . . . ,obf(C1,i), obf(C0,i+2), . . . ,obf(C0,`)

37

and aux in common. The only difference is that while the former has obf(C0,i+1), the latter has
obf(C1,i+1).

Consider an algorithm Sampler which on input 1κ, runs Sampler`(1κ) and outputs (C0,i+1, C1,i+1, aux′),
where aux′ = (C0, C1, aux). We can easily show that Sampler is a good sampling algorithm if Sampler` is
good. Hence, (obf(C0,i+1), aux′) is indistinguishable from (obf(C1,i+1), aux′). This implies that Hi is
indistinguishable from Hi+1.

C.2.1 Proof of Lemma 2

Proof. We first show the only if direction. Let (O, E) be a ∆∗-IND-PRE-secure scheme for Σobf. We
claim that O ◦ E is a differing inputs obfuscator, where O ◦ E is defined as discussed before. Towards
this, let S be a good sampling algorithm which takes 1κ as input and outputs (C0, C1, aux). We define
a TestS ∈ ∆∗ as follows: D runs S to obtain (C0, C1, aux); it sends aux to the User and (C0, C1) to c.
The only way an adversary can distinguish between the case where s uploads C0 from the case where it
uploads C1 is if it queries B[Σobf] with an input x s.t. C0(x) 6= C1(x). But this is not possible because
S is a good sampler. Therefore, TestS is hiding w.r.t. Σobf. This implies that TestS is hiding w.r.t. O
as well. It is now easy to show that (O ◦ E(C0), aux) is indistinguishable from (O ◦ E(C1), aux).

We now show the if direction of the lemma. Suppose obf(·) is a differing inputs obfuscator. Using
obf we can define a scheme (O, E) in the natural way (see the proof of the previous lemma for
details). We claim that (O, E) is an ∆∗-IND-PRE-secure scheme for Σobf. Correctness easily follows
from construction. In order to prove indistinguishability preservation, consider a Test ∈ ∆∗. Let
(C0, C1) denote the sequence of pairs of circuits uploaded by D, where Cb = {Cb,1, Cb,2, . . . , Cb,`} for
b ∈ {0, 1}, and aux be the messages sent to the User. Observe that for both b = 0 and 1, any adversary
Adv receives C0, C1, aux, and a sequence of handles h1, . . . , h`. If Test is hiding w.r.t Σobf, then the
probability that Adv queries with hi and input x such that C0,i(x) = C1,i(x) is negligible. Hence an
algorithm Sampler which runs Test and outputs (C0, C1, aux) is a good sampling algorithm. Therefore,
(obf(C0,1), . . . ,obf(C0,`), aux) cannot be distinguished from (obf(C1,1), . . . ,obf(C1,`), aux). We can
now show that Test is hiding w.r.t. O in a manner similar to the previous lemma.

D Functional Encryption

D.1 Traditional Definition of Functional Encryption

The following definition of functional encryption is from [21, 71]. It corresponds to non-function-hiding,
public-key functional encryption.

Syntax. A functional encryption scheme FE for a circuit family F = {Fκ} over a message space
X = {Xκ} consists of four PPT algorithms:

• Setup(1κ) takes as input the unary representation of the security parameter, and outputs the master
public and secret keys (MPK,MSK);
• KeyGen(MSK, C) takes as input the master secret key MSK and a circuit C ∈ Fκ, and outputs a
corresponding secret key SKC ;
• Encrypt(MPK, x) takes as input the master public key MPK and a message x ∈ Xκ, and outputs a

ciphertext CTx;
• Decrypt(SKC ,CTx) takes as input a key SKC and a ciphertext CTx, and outputs a value.

These algorithms must satisfy the following correctness property for all κ ∈ N, all C ∈ Fκ and all
x ∈ Xκ,

Pr
[(MPK,MSK)← Setup(1κ);

Decrypt(KeyGen(MSK, C),Encrypt(MPK, x)) 6= C(x)

]
= negl(κ),

38

where the probability is taken over their coin tosses.

Indistinguishability Security. The standard indistinguishability based security definition for
functional encryption is defined as a game between a challenger and an adversary A as follows.

• Setup: The challenger runs Setup(1κ) to obtain (MPK,MSK), and gives MPK to A.
• Key queries: A sends a circuit C ∈ Cκ to the challenger, and receives SKC ← KeyGen(MSK, C) in
return. This step can be repeated any polynomial number of times.
• Challenge: A submits two messages x0 and x1 such that C(x0) = C(x1) for all C queried by A in
the previous step. Challenger sends Encrypt(MPK, xb) to A.
• Adaptive key queries: A continues to send circuits to the challenger subject to the restriction that
any C queried must satisfy C(x0) = C(x1).
• Guess: A outputs a bit b′.

The advantage of A in this security game is given by |Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0]| . We say that
a functional encryption scheme FE = (Setup,KeyGen, Encrypt,Decrypt) is indistinguishability secure if
for all PPT adversaries A, the advantage of A in the security game described above is negligible in κ.

Multiple challenge phases : One can show via a hybrid argument that if no adversary has a
significant advantage in the above security game, then the same holds for a generalized game where
there are multiple challenge phases interspersed with key query phases. In the generalized game, it is
required that for every (x0, x1) submitted in a challenge phase, and every circuit C queried in any key
query phase, C(x0) = C(x1).

D.2 Proof of Lemma 3

Proof. We first prove the easier side. Let (O, E) be a ∆det-IND-PRE-secure scheme for Σfe, where
O = (Osetup,Oauth,Ouser). We construct an FE scheme Sfe using (O, E) as follows.

• Setup(1κ): Run Osetup to obtain a master secret key MSK and a public key MPK.
• KeyGen(MSK, C): Output SKC ← Oauth(C; MSK) (where C is passed to Oauth as the parameter for
the agent P Fun

C ∈ PPubFE
auth).

• Encrypt(MPK, x): Output CTx ← Ouser(x; MPK) (where x is passed to Ouser as the parameter for the
agent PMsg

x ∈ PPubFE
user).

• Decrypt(SKC ,CTx): Run a copy of E as follows: first feed it SKC and CTx as messages from O, and
obtain agent handles hC and hx; then request it for a session execution with handles (hC , hx) (and
no input). Return the output for the agent hC as reported by E .

In order to show that Sfe is an indistinguishability secure FE scheme, we consider the following
Test ∈ ∆det. Upon receipt of a circuit C from User, Test uploads C and adds C to a list L. Upon
receipt of a pair of inputs (x0, x1), if for every C ∈ L, C(x0) = C(x1), Test uploads xb. After this, if
User sends a circuit C ′, Test uploads C ′ iff C ′(x0) = C ′(x1). (If User sends any other type of message,
it is ignored.)

Now suppose there is an adversary A who breaks the security of Sfe. Then we show that the above
Test is hiding w.r.t. Σfe but not w.r.t. O. To see this, firstly note that Test is hiding w.r.t. Σfe by
design: there is no way an adversary can learn whether Test uploaded x0 or x1 in the ideal world. Now,
consider an adversary Adv who runs A internally: first it forwards MPK received from Osetup to A; then
it forwards A’s requests to the challenger (in the IND security game) to Test; the outputs received
from O are forwarded to A. Finally Adv outputs A’s output bit. It is straightforward to see that the
advantage Adv has in distinguishing interaction with Test(0) and Test(1) is exactly the advantage A
has in the IND security experiment.

39

We now prove the other side of the lemma. Let FE = (Setup,KeyGen, Encrypt,Decrypt) be an
indistinguishability secure FE scheme. We can construct a ∆det-IND-PRE-secure scheme (O, E) for Σfe
using the scheme FE in a way analogous to how an IND secure FE scheme is constructed from an
IND-PRE secure scheme above. We now show that if (O, E) is not a secure scheme then neither is FE .
That is, if there exists a Test ∈ ∆det such that Test is hiding in the ideal world, but there exists a PPT
adversary Adv which can distinguish between Test(0) and Test(1) in the real world, then there exists an
adversary A which can break the security of FE in the generalized IND game.

Recall that Test(b) can be represented as D ◦ cs(b), where D is a deterministic party. A internally
simulates a real world set-up with D, O and Adv, and externally participates in the indistinguishability
game with a challenger. We will show that for b ∈ {0, 1}, if challenger picks the bit b, then Adv’s view is
identically distributed to its view in the real world when Test gets input b. This will complete the proof.

At any point during a run of the real world, D either uploads a pair of function agents (C0, C1) or a
pair of message agents (x0, x1) to c. We can see that C0 and C1 must be the same circuits, otherwise
Test would not be hiding in the ideal world. Similarly, for every function agent C = C0 = C1 ever
uploaded, it must be the case that C(x0) = C(x1), for every (x0, x1). It is now easy to simulate the
view of Adv. When a function agent C is uploaded by D, A sends C to the challenger, and forwards the
key obtained to Adv (along with (C0, C1)). When D uploads (x0, x1), A forwards it to the challenger.
The ciphertext returned by the challenger is forwarded to Adv (along with (x0, x1)).

E Fully Homomorphic Encryption
Given a ∆det-IND-PRE secure scheme (O, E) for Σfhe, we show how to construct a semantically secure
FHE scheme Sfhe = (Setup,Encrypt,Decrypt,Eval). For a formal treatment of FHE, see [53].

• Setup(1κ) : Run Osetup to obtain public key PK and secret key SK.
• Encrypt(x,PK) : Run Ouser((0, x),PK) to obtain a ciphertext CTx. Here 0 denotes that x is a
parameter for agent PMsg.
• Decrypt(CT,SK) : Let D ← Oauth(1,SK), where 1 denotes that the agent is PDec. Then run a copy
of E as follows: first feed it D and CT as messages from O, and obtain handles hD and hm; then
request it for a session execution with (hD,⊥) and (hm,⊥). Return the output for the agent hD as
reported by E .
• Eval(C,CT1,CT2, . . . ,CTn): Run a copy of E as follows: first feed it CT1,CT2, . . . ,CTn as messages
from O, and obtain handles h1, h2, . . . , hn. Then request E to run a session with (h1, f), (h2,⊥),
. . . , (hn,⊥). Output the ciphertext CT returned by E .

Correctness follows easily from construction. Compactness follows from the fact that the size of
string recorded for each handle by E is a priori bounded. We now show that Sfhe is semantically
secure. On the contrary, suppose there exists an adversary A who breaks the semantic security of Sfhe.
Consider the following Test(b): Upon receipt of inputs x0, x1 from User, Test chooses xb and uploads it
(as parameter for agent PMsg). This Test is clearly hiding in the ideal world, because in the absence of
a decryption agent, an adversary only obtains handles from B[Σfhe]. Therefore, by IND-PRE security of
(O, E), Test is also hiding w.r.t. O.

Now, consider an adversary Adv who runs A internally: first it forwards PK received from Osetup to
A; then it forwards A’s requests (x0, x1) to the challenger (in the semantic security game) to Test; the
outputs received from O are forwarded to A. Finally Adv outputs A’s output bit. It is straightforward
to see that the advantage Adv has in distinguishing interaction with Test(0) and Test(1) is exactly the
advantage A has in the semantic security experiment.

40

F Property Preserving Encryption

F.1 Definitions

In this section, we formally define PPE and the standard notion of security for it [72].

Definition 12 (PPE scheme). A property preserving encryption scheme for a binary property P :
M×M→ {0, 1} is a tuple of four PPT algorithms defined as follows:

• Setup(1κ) takes as input the security parameter κ and outputs a secret key SK (and some public
parameters).
• Encrypt(m, SK) takes as input a message m ∈M and outputs a ciphertext CT.
• Decrypt(CT,SK) takes as input a ciphertext CT and outputs a message m ∈M.
• Test(CT1,CT2) takes as input two ciphertexts CT1 and CT2 and outputs a bit b.

We require that for all messages m,m1,m2 ∈M, the following two conditions hold:

• Decryption: Pr[SK← Setup(1κ); Decrypt(Encrypt(m,SK), SK) 6= m] = negl(κ), and
• Property testing: Pr[SK← Setup(1κ); Test(Encrypt(m1, SK),Encrypt(m2, SK)) 6= P (m1,m2)] = negl(κ),

where the probability is taken over the random choices of the four algorithms.

Security. In [72], the authors show that there exists a hierarchy of meaningful indistinguishability
based security notions for PPE, which does not collapse unlike other familiar settings. At the top of the
hierarchy lies Left-or-Right (LoR) security, a notion that is similar to full security in symmetric key
functional encryption.

LoR security. Let ΠP = (Setup,Encrypt,Decrypt,Test) be a PPE scheme for a binary property
P . Consider an adversary A in the security game exp(b)

LoR,A(1κ) described below, for b ∈ {0, 1}.
The Setup algorithm is run to obtain a secret key SK and some public parameters. A is given the
parameters, and access to an oracle Ob(SK, ·, ·), such that Ob(SK,m0,m1) = Encrypt(mb,SK). Let
Q = {(m(0)

1 ,m
(1)
1), (m(0)

2 ,m
(1)
2), . . . , (m(0)

` ,m
(1)
`)} denote the queries made by A to the oracle. At the

end of the experiment, A produces an output bit; let this be the output of the experiment. We call A
admissible if for every two (not necessarily distinct) pairs of messages (m(0)

i ,m
(1)
i), (m(0)

j ,m
(1)
j) ∈ Q,

P (m(0)
i ,m

(0)
j) = P (m(1)

i ,m
(1)
j). We also refer to such messages as admissible.

Definition 13 (LoR security). The scheme ΠP is an LoR secure PPE scheme for a property P if for
all PPT admissible adversaries A, the advantage of A defined as below is negligible in the security
parameter κ:

AdvLoR,A(κ) :=
∣∣Pr[exp(0)

LoR,A(1κ) = 1]− Pr[exp(1)
LoR,A(1κ) = 1]

∣∣,
where the probability is over the random coins of the algorithms of ΠP and that of A.

F.2 Equivalence

In this section, we show that ∆det-IND-PRE and LoR security notions are equivalent for PPE.

Theorem 7. A ∆det-IND-PRE secure scheme for ΣPPE exists if and only if an LoR secure scheme for
PPE exists.

We first prove the only if side of the theorem. Let (O, E) be a ∆det-IND-PRE-secure scheme for
ΣPPE, where O = (Osetup,Oauth,Ouser). We construct a PPE scheme SPPE using (O, E) as follows.

41

• Setup(1κ): Run Osetup to obtain the public parameters MPK and secret key MSK.
• Encrypt(m,MSK): Output CTm ← Oauth((0,m),MSK) where the first bit 0 indicates that the param-

eter m is for the agent PMsg.
• Decrypt(CT,MSK): Let D ← Oauth(1,MSK), where 1 denotes that the agent is PDec. Then run a

copy of E as follows: first feed it D and CT as messages from O, and obtain handles hD and hm; then
request it for a session execution with (hD,⊥) and (hm, send). Return the output for the agent hD
as reported by E .
• Test(CT1,CT2): Run a copy of E as follows: first feed it CT1 and CT2 as messages from O, and obtain
handles h1 and h2. Then request E to run a session with (h1, compute) and (h2, send). Output the
answer returned by E .

It is easy to see that the decryption and property testing properties of PPE are satisfied. In order
to show that Sfe is an LoR secure PPE scheme, we consider the following Test ∈ ∆det. Let L be a list of
pairs of messages, which is initially empty. Upon receipt of a pair (m0,m1) from User, Test checks if
for every (m′0,m′1) ∈ L, Test(m0,m

′
0) = Test(m1,m

′
1) and vice versa, and Test(m0,m0) = Test(m1,m1).

If the checks pass, Test uploads mb and adds (m0,m1) to the list; otherwise this pair is ignored. (If
Test receives a single message m from the User, it is treated as a pair (m,m).) Now suppose there is an
adversary A who breaks the security of SPPE. Then we can show that the above Test is hiding w.r.t.
ΣPPE but not w.r.t. O. The proof is very similar to the one given for Lemma 3, so we omit it here.

Next, we prove the if side of the theorem. Let SPPE = (Setup,Encrypt,Decrypt,Test) be an LoR
secure PPE scheme. We construct a scheme (O, E) in the cryptographic agents framework as follows:

• Osetup(1κ): Run Setup(1κ) to obtain (MPK,MSK).
• Oauth((b,m); MSK): If b = 0, output CT← Encrypt(m,MSK), else output MSK itself. (Recall that 0
denotes an agent in PMsg, while 1 denotes an agent in PDec.)
• E: When O sends a ciphertext CT, forward a handle h to the User and store (h,CT). When O sends
a key MSK, forward the handle hkey and store (hkey,MSK). When User requests a session execution
with (h1, compute) and (h2, send), retrieve the corresponding ciphertexts CT1 and CT2, and return
Test(CT1,CT2) to the User. On the other hand, when User sends (hkey,⊥) and (h, send), retrieve the
ciphertext CT corresponding to h, and return Decrypt(CT,MSK) to the User.

We now show that if (O, E) is not a secure scheme then neither is SPPE. That is, if there exists a
Test ∈ ∆det such that Test is hiding w.r.t. ΣPPE but not w.r.t. O, then there exists an adversary A
which can break the security of SPPE in the LoR security game. Recall that Test(b) can be represented
as D ◦ cs(b), where D is a deterministic party. It is clear that if D ever uploads a key agent, then every
pair of messages (m0,m1) that it uploads must be such that m0 = m1 (otherwise Test would not be
hiding in the ideal world). Such a Test would trivially be hiding in the real world. On the other hand,
even if D never uploads a key agent, it must always upload admissible pairs of messages (see definition
of LoR security) to remain hiding w.r.t. ΣPPE. Rest of the proof is similar to Lemma 3, and hence
omitted.

42

	Introduction
	Our Contributions

	Preliminaries
	Defining Cryptographic Agents
	Reductions and Compositions
	Restricted Test Families: , * and det
	Generic Group Schema
	Obfuscation Schema
	Definition
	Completeness of Obfuscation
	Impossibility of IND-PRE obfuscation for general functionalities
	Relation to other notions of Obfuscation
	Indistinguishability Obfuscation.
	Differing Inputs Obfuscation.

	Adaptive Differing Inputs Obfuscation

	Functional Encryption
	Functional Encryption without Function Hiding
	Definition
	Reducing Functional Encryption to Obfuscation
	Relation with known definitions

	Function-Hiding Functional Encryption
	Reduction to the Generic Group Schema
	A Construction from Obfuscation

	Relating Cryptographic Agents to other Cryptographic Objects
	Fully Homomorphic Encryption
	Property Preserving Encryption

	On Bypassing Impossibilities
	Conclusions and Open Problems
	Related Work
	Obfuscation Schema is Complete
	Construction for Non-Interactive Agents
	General Construction for Interactive Agents

	Obfuscation
	Indistinguishability Obfuscation
	Proof of [lem:iobfeq]Lemma 1

	Differing Inputs obfuscation.
	Proof of Lemma 2

	Functional Encryption
	Traditional Definition of Functional Encryption
	Proof of Lemma 3

	Fully Homomorphic Encryption
	Property Preserving Encryption
	Definitions
	Equivalence

