20 November 2001

Field Manual
No. 3-25.26
Department of the Army
Washington, DC , 20 July 2001

Go to

Table of Contents
Chapters 1 - 6

Chapters 7 - 10

Chapters 11 - 14







FM 3-25.26



Failure to make use of the vast amounts of information presented by the map and available to the eye on the ground reduces the chances for success in land navigation. The soldier who has repeatedly practiced the skills of identifying and discriminating among the many types of terrain and other features knows how these features are mapped. He can begin to visualize the shape of the land by studying the map, estimate distances, and perform quick resection from the many landmarks he sees is the one who will be at the right place to help defeat the enemy on the battlefield. This chapter tells how to orient a map with and without a compass, how to find locations on a map as well as on the ground, how to study the terrain, and how to move on the ground using terrain association and dead reckoning.


The first step for a navigator in the field is orienting the map. A map is oriented when it is in a horizontal position with its north and south corresponding to the north and south on the ground. Some orienting techniques follow:

a.   Using a Compass. When orienting a map with a compass, remember that the compass measures magnetic azimuths. Since the magnetic arrow points to magnetic north, pay special attention to the declination diagram. There are two techniques used.

(1)     First Technique. Determine the direction of the declination and its value from the declination diagram.

(a)   With the map in a horizontal position, take the straightedge on the left side of the compass and place it alongside the north-south grid line with the cover of the compass pointing toward the top of the map. This procedure places the fixed black index line of the compass parallel to north-south grid lines of the map.

(b)   Keeping the compass aligned as directed above, rotate the map and compass together until the magnetic arrow is below the fixed black index line on the compass. At this time, the map is close to being oriented.

(c)   Rotate the map and compass in the direction of the declination diagram.

(d)   If the magnetic north arrow on the map is to the left of the grid north, check the compass reading to see if it equals the G-M angle given in the declination diagram. The map is then oriented (Figure 11-1).

Figure 11-1. Map oriented with 11 degrees west declination.

(e)   If the magnetic north is to the right of grid north, check the compass reading to see if it equals 360 degrees minus the G-M angle (Figure 11-2).

Figure 11-2. Map oriented with 21 degrees east declination.

(2)   Second Technique. Determine the direction of the declination and its value from the declination diagram.

(a)   Using any north-south grid line on the map as a base, draw a magnetic azimuth equal to the G-M angle given in the declination diagram with the protractor.

(b)   If the declination is easterly (right), the drawn line is equal to the value of the G-M angle. Then align the straightedge, which is on the left side of the compass, alongside the drawn line on the map. Rotate the map and compass until the magnetic arrow of the compass is below the fixed black index line. The map is now oriented (Figure 11-3).

Figure 11-3. Map oriented with 15 degrees east declination.

(c)   If the declination is westerly (left), the drawn line will equal 360 degrees minus the value of the G-M angle. Then align the straightedge, which is on the left side of the compass, alongside the drawn line on the map. Rotate the map and compass until the magnetic arrow of the compass is below the fixed black index line. The map is now oriented (Figure 11-4).

Figure 11-4. Map oriented with 10 degrees west declination.


1.   Once the map is oriented, magnetic azimuths are determined using the compass. Do not move the map from its oriented position since any change in its position moves it out of line with the magnetic north. [See paragraph 11-6b(1).]

2.   Special care should be taken whenever orienting your map with a compass. A small mistake can cause you to navigate in the wrong direction.

b.   Using Terrain Association. A map can be oriented by terrain association when a compass is not available or when the user has to make many quick references as he moves across country. Using this method requires careful examination of the map and the ground, and the user must know his approximate location (Figure 11-5). Orienting by this method is discussed in detail in paragraph 11-3.

Figure 11-5. Terrain association.

c.   Using Field-Expedient Methods. When a compass is not available and there are no recognizable terrain features, a map may be oriented by any of the field-expedient methods described in paragraph 9-5. Also see Figure 11-6.

Figure 11-6. Field-expedient method.


The key to success in land navigation is to know your location at all times. With this basic knowledge, you can decide what direction and what distance to travel.

a.   Known Position. Most important of all is the initial location of the user before starting any movement in the field. If movement takes place without establishing the initial location, everything that is done in the field from there on is a gamble. Determine the initial location by referring to the last known position, by grid coordinates and terrain association, or by locating and orienting your position on the map and ground.

b.   Known Point/Known Distance (Polar Plot). This location can be determined by knowing the starting point, the azimuth to the desired objective, and the distance to it.

c.   Resection. See Chapter 6.

d.   Modified Resection. See Chapter 6.

e.   Intersection. See Chapter 6.

f.   Indirect Fire. Finding a location by indirect fire is done with smoke. Use the point of impact of the round as a reference point from which distances and azimuth can be obtained.


The technique of moving by terrain association is more forgiving of mistakes and far less time-consuming than dead reckoning. It best suits those situations that call for movement from one area to another. Errors made using terrain association are easily corrected because you are comparing what you expected to see from the map to what you do see on the ground. Errors are anticipated and will not go unchecked. You can easily make adjustments based upon what you encounter. Periodic position-fixing through either plotted or estimated resection will also make it possible to correct your movements, call for fire, or call in the locations of enemy targets or any other information of tactical or logistical importance.

a.   Matching the Terrain to the Map by Examining Terrain Features. By observing the contour lines in detail, the five major terrain features (hilltop, valley, ridge, depression, and saddle) should be determined. This is a simple task in an area where the observer has ample view of the terrain in all directions. One-by-one, match the terrain features depicted on the map with the same features on the ground. In restricted terrain, this procedure becomes harder; however, constantly check the map as you move since it is the determining factor (Figure 11-5).

b.   Comparing the Vegetation Depicted on the Map. When comparing the vegetation, a topographic map should be used to make a comparison of the clearings that appear on the map with the ones on the ground. The user must be familiar with the different symbols, such as vineyards, plantations, and orchards that appear on the legend. The age of the map is an important factor when comparing vegetation. Some important vegetation features were likely to be different when the map was made. Another important factor about vegetation is that it can change overnight by natural accidents or by man (forest fires, clearing of land for new developments, farming, and so forth).

c.   Masking by the Vegetation. Camouflage the important landforms using vegetation. Use of camouflage makes it harder for the navigator to use terrain association.

d.   Using the Hydrography. Inland bodies of water can help during terrain association. The shape and size of lakes in conjunction with the size and direction of flow of the rivers and streams are valuable help.

e.   Using Man-made Features. Man-made features are an important factor during terrain association. The user must be familiar with the symbols shown in the legend representing those features. The direction of buildings, roads, bridges, high-tension lines, and so forth make the terrain inspection a lot easier; however, the age of the map must be considered because man-made features appear and disappear constantly.

f.   Examining the Same Piece of Terrain During the Different Seasons of the Year. In those areas of the world where the seasons are distinctive, a detailed examination of the terrain should be made during each of the seasons. The same piece of land does not present the same characteristics during both spring and winter.

(1)   During winter, the snow packs the vegetation, delineating the land, making the terrain features appear as clear as they are shown by the contour lines on the map. Ridges, valleys, and saddles are very distinctive.

(2)   During spring, the vegetation begins to reappear and grow. New vegetation causes a gradual change of the land to the point that the foliage conceals the terrain features and makes the terrain hard to recognize.

(3)   During summer months, the effects are similar to those in the spring.

(4)   Fall makes the land appear different with its change of color and gradual loss of vegetation.

(5)   During the rainy season, the vegetation is green and thick, and the streams and ponds look like small rivers and lakes. In scarcely vegetated areas, the erosion changes the shape of the land.

(6)   During a period of drought, the vegetation dries out and becomes vulnerable to forest fires that change the terrain whenever they occur. Also during this season, the water levels of streams and lakes drop, adding new dimensions and shape to the existing mapped areas.

g.   Following an Example of Terrain Association. Your location is hilltop 514 in the lower center of the map in Figure 11-7.

Figure 11-7. Example of terrain association.

(1)   To The North. The contour lines indicate that the hill slopes down for about 190 meters, and that it leads into a small valley containing an intermittent stream. On the other side of the stream as you continue with your northerly inspection, the terrain starts a gradual ascent, indicating a hilltop partially covered with vegetation, until an unimproved road is reached. This road runs along a gradual ridgeline with north-west direction. Then the contour line spacings become narrow, indicating a steeper grade that leads to a narrow valley containing a small intermittent stream. As you continue up, you find a small but prominent ridge with a clearing. The contour lines once again show a steeper grade leading to a moderate valley containing an intermittent stream running in a south-east direction.

(2)   To The East. There is a clearing of the terrain as it slopes down to Schley Pond. An ample valley is clearly seen on the right side of the pond, as indicated by the "U" and "V" shape of the contour lines. This valley contains some swamp areas and there is a long ridgeline on the north portion of the valley.

(3)   To The South. The terrain gently slopes downward until a clear area is reached. It continues in a downward direction to an intermittent stream running south-east in a small valley. There is also an improved road running in the same direction as the valley. At the intersection of the roads as you face south, there is a clearing of about 120 meters on the ridge. At the bottom of it, a stream runs from Schley Pond in a south-west direction through an ample valley fed by two intermittent streams. As you continue, a steep, vegetated hill is found with a clearing on its top, followed by a small saddle and another hilltop.

(4)   To The West. First, you see a small, clear valley. It is followed by a general ridgeline running north-west in which an unimproved road is located just before a hilltop. Continuing on a westerly direction, you will find a series of alternate valleys and ridges.


Military cross-country navigation is intellectually demanding because it is imperative that the unit, crew, or vehicle survive and successfully complete the move in order to accomplish its mission. However, the unnecessary use of a difficult route makes navigation too complicated, creates more noise when proceeding over it, causes wear and tear on equipment and personnel, increases the need for and needlessly complicate recovery operations, and wastes scarce time. On receipt of a tactical mission, the leader begins his troop-leading procedures and makes a tentative plan. He bases the tentative plan on a good terrain analysis. He analyzes the considerations covered in the following mnemonics OCOKA and METT-T.

a.   OCOKA. The terrain should be analyzed for observation and fields of fire, cover and concealment, obstacles, key terrain, and avenues of approach.

(1)   Observation and Fields of Fire. The purpose of observation is to see the enemy (or various landmarks) but not be seen by him. Anything that can be seen can be hit. Therefore, a field of fire is an area that a weapon or a group of weapons can cover effectively with fire from a given position.

(2)   Cover and Concealment. Cover is shelter or protection (from enemy fire) either natural or artificial. Always try to use covered routes and seek cover for each halt, no matter how brief it is planned to be. Unfortunately, two factors interfere with obtaining constant cover. One is time and the other is terrain. Concealment is protection from observation or surveillance, including concealment from enemy air observation. Before, trees provided good concealment, but with modern thermal and infrared imaging equipment, trees are not always effective. When you are moving, concealment is generally secondary; therefore, select routes and positions that do not allow covered or concealed enemy near you.

(3)   Obstacles. Obstacles are any obstructions that stop, delay, or divert movement. Obstacles can be natural (rivers, swamps, cliffs, or mountains) or they may be artificial (barbed wire entanglements, pits, concrete or metal antimechanized traps). They can be ready-made or constructed in the field. Always consider any possible obstacles along your movement route and, if possible, try to keep obstacles between the enemy and yourself.

(4)   Key Terrain. Key terrain is any locality or area that the seizure or retention of affords a marked advantage to either combatant. Urban areas that are often seen by higher headquarters as being key terrain because they are used to control routes. On the other hand, an urban area that is destroyed may be an obstacle instead. High ground can be key because it dominates an area with good observation and fields of fire. In an open area, a draw or wadi (dry streambed located in an arid area) may provide the only cover for many kilometers, thereby becoming key. You should always attempt to locate any area near you that could be even remotely considered as key terrain.

(5)   Avenues of Approach. These are access routes. They may be the routes you can use to get to the enemy or the routes they can use to get to you. Basically, an identifiable route that approaches a position or location is an avenue of approach to that location. They are often terrain corridors such as valleys or wide, open areas.

b   . METT-T. Tactical factors other than the military aspects of terrain must also be considered in conjunction with terrain during movement planning and execution as well. These additional considerations are mission, enemy, terrain and weather, troops, and time available.

(1)   Mission. This refers to the specific task assigned to a unit or individual. It is the duty or task together with the purpose that clearly indicates the action to be taken and the reason for it but not how to do it. Training exercises should stress the importance of a thorough map reconnaissance to evaluate the terrain. This allows the leader to confirm his tentative plan, basing his decision on the terrain's effect on his mission.

(a)   Marches by foot or vehicle are used to move troops from one location to another. Soldiers must get to the right place, at the right time, and in good fighting condition. The normal rate for an 8-hour foot march is 4 kmph. However, the rate of march may vary, depending on the following factors:

  • Distance.

  • Time allowed.

  • Likelihood of enemy contact.

  • Terrain.

  • Weather.

  • Physical condition of soldiers.

  • Equipment/weight to be carried.

  • A motor march requires little or no walking by the soldiers, but the factors affecting the rate of march still apply.

    (b)   Patrol missions are used to conduct combat or reconnaissance operations. Without detailed planning and a thorough map reconnaissance, any patrol mission may not succeed. During the map reconnaissance, the mission leader determines a primary and alternate route to and from the objectives.

    (c)   Movement to contact is conducted whenever an element is moving toward the enemy but is not in contact with the enemy. The lead element must orient its movement on the objective by conducting a map reconnaissance, determining the location of the objective on both the map and the ground, and selecting the route to be taken.

    (d)   Delays and withdrawals are conducted to slow the enemy down without becoming decisively engaged, or to assume another mission. To be effective, the element leader must know where he is to move and the route to be taken.

    (2)   Enemy. This refers to the strength, status of training, disposition (locations), doctrine, capabilities, equipment (including night vision devices), and probable courses of action that impact upon both the planning and execution of the mission, including a movement.

    (3)   Terrain and Weather. Observation and fields of fire influence the placement of positions and crew-served weapons. The leader conducts a map reconnaissance to determine key terrain, obstacles, cover and concealment, and likely avenues of approach.

    (a)   Key terrain is any area whose control affords a marked advantage to the force holding it. Some types of key terrain are high ground, bridges, towns, and road junctions.

    (b)   Obstacles are natural or man-made terrain features that stop, slow down, or divert movement. Consideration of obstacles is influenced by the unit's mission. An obstacle may be an advantage or disadvantage, depending upon the direction of attack or defense. Obstacles can be found by conducting a thorough map reconnaissance and study of recent aerial photographs.

    (c)   Cover and concealment are determined for both friendly and enemy forces. Concealment is protection from observation; cover is protection from the effects of fire. Most terrain features that offer cover also provide concealment from ground observation. There are areas that provide no concealment from enemy observation. These danger areas may be large or small open fields, roads, or streams. During the leader's map reconnaissance, he determines any obvious danger areas and, if possible, adjusts his route.

    (d)   Avenues of approach are routes by which a unit may reach an objective or key terrain. To be considered an AA, a route must provide enough width for the deployment of the size force for which it is being considered. The AAs are also considered for the subordinate enemy force. For example, a company determines likely AAs for an enemy platoon; a platoon determines likely AAs for an enemy squad. Likely AAs may be either ridges, valleys, or by air. By examining the terrain, the leader determines the likely enemy AAs based on the tactical situation.

    (e)   Weather has little effect on dismounted land navigation. Rain and snow could possibly slow down the rate of march, that is all. But during mounted land navigation, the navigator must know the effect of weather on his vehicle. (See Chapter 12 for mounted land navigation.)

    (4)   Troops. Consideration of your own troops is equally important. The size and type of the unit to be moved and its capabilities, physical condition, status of training, and types of equipment assigned all affect the selection of routes, positions, fire plans, and the various decisions to be made during movement. On ideal terrain such as relatively level ground with little or no woods, a platoon can defend a front of up to 400 meters. The leader must conduct a thorough map reconnaissance and terrain analysis of the area his unit is to defend. Heavily wooded areas or very hilly areas may reduce the front a platoon can defend. The size of the unit must also be taken into consideration when planning a movement to contact. During movement, the unit must retain its ability to maneuver. A small draw or stream may reduce the unit's maneuverability but provide excellent concealment. All of these factors must be considered.

    (a)   Types of equipment that may be needed by the unit can be determined by a map reconnaissance. For example, if the unit must cross a large stream during its movement to the objective, ropes may be needed for safety lines.

    (b)   Physical capabilities of the soldiers must be considered when selecting a route. Crossing a large swampy area may present no problem to a physically fit unit, but to a unit that has not been physically conditioned, the swampy area may slow or completely stop its movement.

    (5)   Time Available. At times, the unit may have little time to reach an objective or to move from one point to another. The leader must conduct a map reconnaissance to determine the quickest route to the objective; this is not always a straight route. From point A to point B on the map may appear to be 1,000 meters, but if the route is across a large ridge, the distance will be greater. Another route from point A to B may be 1,500 meters but on flat terrain. In this case, the quickest route would be across the flat terrain; however, concealment and cover may be lost.


    One key to success in tactical missions is the ability to move undetected to the objective. There are four steps to land navigation. Being given an objective and the requirement to move there, you must know where you are, plan the route, stay on the route, and recognize the objective.

    a.   Know Where You Are (Step 1). You must know where you are on the map and on the ground at all times and in every possible way. This includes knowing where you are relative to 

  • Your directional orientation.

  • The direction and distances to your objective.

  • Other landmarks and features.

  • Any impassable terrain, the enemy, and danger areas.

  • Both the advantages and disadvantages presented by the terrain between you and your objective.

    This step is accomplished by knowing how to read a map, recognize and identify specific terrain and other features; determine and estimate direction; pace, measure, and estimate distances, and both plot and estimate a position by resection.

    b.   Plan the Route (Step 2). Depending upon the size of the unit and the length and type of movement to be conducted, several factors should be considered in selecting a good route or routes to be followed. These include 

  • Travel time.

  • Travel distance.

  • Maneuver room needed.

  • Trafficability.

  • Load-bearing capacities of the soil.

  • Energy expenditure by troops.

  • The factors of METT-T.

  • Tactical aspects of terrain (OCOKA).

  • Ease of logistical support.

  • Potential for surprising the enemy.

  • Availability of control and coordination features.

  • Availability of good checkpoints and steering marks.

    In other words, the route must be the result of careful map study and should address the requirements of the mission, tactical situation, and time available. It must also provide for ease of movement and navigation.

    (1)   Three route-selection criteria that are important for small-unit movements are cover, concealment, and the availability of reliable checkpoint features. The latter is weighted even more heavily when selecting the route for a night operation. The degree of visibility and ease of recognition (visual effect) are the key to the proper selection of these features.

    (2)   The best checkpoints are linear features that cross the route. Examples include perennial streams, hard-top roads, ridges, valleys, railroads, and power transmission lines. Next, it is best to select features that represent elevation changes of at least two contour intervals such as hills, depressions, spurs, and draws. Primary reliance upon cultural features and vegetation is cautioned against because they are most likely to have changed since the map was last revised.

    (3)   Checkpoints located at places where changes in direction are made mark your decision points. Be especially alert to see and recognize these features during movement. During preparation and planning, it is especially important to review the route and anticipate where mistakes are most likely to be made so they can be avoided.

    (4)   Following a valley floor or proceeding near (not on) the crest of a ridgeline generally offers easy movement, good navigation checkpoints, and sufficient cover and concealment. It is best to follow terrain features whenever you can not to fight them.

    (5)   A lost or a late arriving unit, or a tired unit that is tasked with an unnecessarily difficult move, does not contribute to the accomplishment of a mission. On the other hand, the unit that moves too quickly and carelessly into a destructive ambush or leaves itself open to air strikes also have little effect. Careful planning and study are required each time a movement route is to be selected.

    c.   Stay on the Route (Step 3). In order to know that you are still on the correct route, you must be able to compare the evidence you encounter as you move according to the plan you developed on the map when you selected your route. This may include watching your compass reading (dead reckoning) or recognizing various checkpoints or landmarks from the map in their anticipated positions and sequences as you pass them (terrain association). A better way is to use a combination of both.

    d.   Recognize the Objective (Step 4). The destination is rarely a highly recognizable feature such as a dominant hilltop or road junction. Such locations as this are seldom missed by the most inexperienced navigators and are often dangerous places for soldiers to occupy. The relatively small, obscure places are most likely to be the destinations.

    (1)   Just how does a soldier travel over unfamiliar terrain for moderate to great distances and know when he reaches the destination? One minor error, when many are possible, can cause the target to be missed.

    (2)   The answer is simple. Select a checkpoint (reasonably close to the destination) that is not so difficult to find or recognize. Then plan a short, fine-tuned last leg from the new expanded objective to the final destination. For example, you may be able to plan and execute the move as a series of sequenced movements from one checkpoint or landmark to another using both the terrain and a compass to keep you on the correct course. Finally, after arriving at the last checkpoint, you might follow a specific compass azimuth and pace off the relatively short, known distance to the final, pinpoint destination. This procedure is called point navigation. A short movement out from a unit position to an observation post or to a coordination point may also be accomplished in the same manner.


    Staying on the route is accomplished through the use of one or two navigation techniques dead reckoning and terrain association. These methods are discussed in detail below.

    a.   Moving by Dead Reckoning. Dead reckoning consists of two fundamental steps. The first is the use of a protractor and graphic scales to determine the direction and distance from one point to another on a map. The second step is the use of a compass and some means of measuring distance to apply this information on the ground. In other words, it begins with the determination of a polar coordinate on a map and ends with the act of finding it on the ground.

    (1)   Dead reckoning along a given route is the application of the same process used by a mapmaker as he establishes a measured line of reference upon which to construct the framework of his map. Therefore, triangulation exercises (either resection or intersection) can be easily undertaken by the navigator at any time to either determine or confirm precise locations along or near his route. Between these position-fixes, establish your location by measuring or estimating the distance traveled along the azimuth being followed from the previous known point. You might use pacing, a vehicle odometer, or the application of elapsed time for this purpose, depending upon the situation.

    (2)   Most dead reckoned movements do not consist of single straight-line distances because you cannot ignore the tactical and navigational aspects of the terrain, enemy situation, natural and man-made obstacles, time, and safety factors. Another reason most dead reckoning movements are not single straight-line distances is because compasses and pace-counts are imprecise measures. Error from them compounds over distance; therefore, you could soon be far afield from your intended route even if you performed the procedures correctly. The only way to counteract this phenomenon is to reconfirm your location by terrain association or resection. Routes planned for dead reckoning generally consist of a series of straight-line distances between several checkpoints with perhaps some travel running on or parallel to roads or trails.

    (3)   There are two advantages to dead reckoning. First, dead reckoning is easy to teach and to learn. Second, it can be a highly accurate way of moving from one point to another if done carefully over short distances, even where few external cues are present to guide the movements.

    (4)   During daylight, across open country, along a specified magnetic azimuth, never walk with the compass in the open position and in front of you. Because the compass will not stay steady or level, it does not give an accurate reading when held or used this way. Begin at the start point and face with the compass in the proper direction, then sight in on a landmark that is located on the correct azimuth to be followed. Close the compass and proceed to that landmark. Repeat the process as many times as necessary to complete the straight-line segment of the route.

    (5)   The landmarks selected for this purpose are called steering marks, and their selection is crucial to success in dead reckoning. Steering marks should never be determined from a map study. They are selected as the march progresses and are commonly on or near the highest points that you can see along the azimuth line that you are following when they are selected. They may be uniquely shaped trees, rocks, hilltops, posts, towers, and buildings anything that can be easily identified. If you do not see a good steering mark to the front, you might use a back azimuth to some feature behind you until a good steering mark appears out in front. Characteristics of a good steering mark are:

    (a)   It must have some characteristics about it, such as color, shade of color, size, or shape (preferably all four), that will assure you that it will continue to be recognized as you approach it.

    (b)   If several easily distinguished objects appear along your line of march, the best steering mark is the most distant object. This procedure enables you to travel farther with fewer references to the compass. If you have many options, select the highest object. A higher mark is not as easily lost to sight as is a lower mark that blends into the background as you approach it. A steering mark should be continuously visible as you move toward it.

    (c)   Steering marks selected at night must have even more unique shapes than those selected during daylight. As darkness approaches, colors disappear and objects appear as black or gray silhouettes. Instead of seeing shapes, you begin to see only the general outlines that may appear to change as you move and see the objects from slightly different angles.

    (6)   Dead reckoning without natural steering marks is used when the area through which you are traveling is devoid of features, or when visibility is poor. At night, it may be necessary to send a member of the unit out in front of your position to create your own steering mark in order to proceed. His position should be as far out as possible to reduce the number of chances for error as you move. Arm-and-hand signals or a radio may be used in placing him on the correct azimuth. After he has been properly located, move forward to his position and repeat the process until some steering marks can be identified or until you reach your objective.

    (7)   When handling obstacles/detours on the route, follow these guidelines:

    (a)   When an obstacle forces you to leave your original line of march and take up a parallel one, always return to the original line as soon as the terrain or situation permits.

    (b)   To turn clockwise (right) 90 degrees, you must add 90 degrees to your original azimuth. To turn counterclockwise (left) 90 degrees from your current direction, you must subtract 90 degrees from your present azimuth.

    (c)   When making a detour, be certain that only paces taken toward the final destination are counted as part of your forward progress. They should not be confused with the local pacing that takes place perpendicular to the route in order to avoid the problem area and in returning to the original line of march after the obstacle has been passed.

    (8)   Sometimes a steering mark on your azimuth of travel can be seen across a swamp or some other obstacle to which you can simply walk out around. Dead reckoning can then begin at that point. If there is no obvious steering mark to be seen across the obstacle, perhaps one can be located to the rear. Compute a back azimuth to this point and later sight back to it once the obstacle has been passed in order to get back on track.

    (9)   You can use the deliberate offset technique. Highly accurate distance estimates and precision compass work may not be required if the destination or an intermediate checkpoint is located on or near a large linear feature that runs nearly perpendicular to your direction of travel. Examples include roads or highways, railroads, power transmission lines, ridges, or streams. In these cases, you should apply a deliberate error (offset) of about 10 degrees to the azimuth you planned to follow and then move, using the lensatic compass as a guide, in that direction until you encounter the linear feature. You will know exactly which way to turn (left or right) to find your destination or checkpoint, depending upon which way you planned your deliberate offset.

    (10)   Because no one can move along a given azimuth with absolute precision, it is better to plan a few extra steps than to begin an aimless search for the objective once you reach the linear feature. If you introduce your own mistake, you will certainly know how to correct it. This method will also cope with minor compass errors and the slight variations that always occur in the earth's magnetic field.

    (11)   There are disadvantages to dead reckoning. The farther you travel by dead reckoning without confirming your position in relation to the terrain and other features, the more errors you will accumulate in your movements. Therefore, you should confirm and correct your estimated position whenever you encounter a known feature on the ground that is also on the map. Periodically, you should accomplish a resection triangulation using two or more known points to pinpoint and correct your position on the map. Pace counts or any type of distance measurement should begin anew each time your position is confirmed on the map.

    (a)   It is dangerous to select a single steering mark, such as a distant mountaintop, and then move blindly toward it. What will you do if you must suddenly call for fire support or a medical evacuation? You must periodically use resection and terrain association techniques to pinpoint your location along the way.

    (b)   Steering marks can be farther apart in open country, thereby making navigation more accurate. In areas of dense vegetation, however, where there is little relief, during darkness, or in fog, your steering marks must be close together. This, of course, introduces more chance for error.

    (c)   Finally, dead reckoning is time-consuming and demands constant attention to the compass. Errors accumulate easily and quickly. Every fold in the ground and detours as small as a single tree or boulder also complicate the measurement of distance.

    b.   Moving by Terrain Association. The technique of moving by terrain association is more forgiving of mistakes and far less time-consuming than dead reckoning. It best suits those situations that call for movement from one area to another. Once an error has been made in dead reckoning, you are off the track. Errors made using terrain association are easily corrected, however, because you are comparing what you expected to see from the map to what you do see on the ground. Errors are anticipated and will not go unchecked. You can easily make adjustments based upon what you encounter. After all, you do not find the neighborhood grocery store by dead reckoning you adjust your movements according to the familiar landmarks you encounter along the way (Figure 11-8). Periodic position-fixing through either plotted or estimated resection will also make it possible to correct your movements, call for fire, or call in the locations of enemy targets or any other information of tactical or logistical importance.

    Figure 11-8. Terrain association navigation.

    (1)   Identifying and Locating Selected Features. Being able to identify and locate the selected features, both on the map and on the ground, are essential to the success in moving by terrain association. The following rules may prove helpful.

    (a)   Be certain the map is properly oriented when moving along the route and use the terrain and other features as guides. The orientation of the map must match the terrain or it can cause confusion.

    (b)   To locate and identify features being used to guide the movement, look for the steepness and shape of the slopes, the relative elevations of the various features, and the directional orientations in relation to your position and to the position of the other features you can see.

    (c)   Make use of the additional cues provided by hydrography, culture, and vegetation. All the information you can gather will assist you in making the move. The ultimate test and the best practice for this movement technique is to go out in the field and use it. The use of terrain, other natural features, and any man-made objects that appear both on the map and on the ground must be practiced at every opportunity. There is no other way to learn or retain this skill.

    (2)   Using Handrails, Catching Features, and Navigational Attack Points. First, because it is difficult to dead reckon without error over long distances with your compass, the alert navigator can often gain assistance from the terrain.

    (a)   Handrails are linear features like roads or highways, railroads, power transmission lines, ridgelines, or streams that run roughly parallel to your direction of travel. Instead of using precision compass work, you can rough compass without the use of steering marks for as long as the feature travels with you on your right or left. It acts as a handrail to guide the way.

    (b)   Second, when you reach the point where either your route or the handrail changes direction, you must be aware that it is time to go your separate ways. Some prominent feature located near this point is selected to provide this warning. This is called a catching feature; it can also be used to tell you when you have gone too far.

    (c)   Third, the catching feature may also be your navigational attack point; this point is the place where area navigation ends and point navigation begins. From this last easily identified checkpoint, the navigator moves cautiously and precisely along a given azimuth for a specified distance to locate the final objective. The selection of this navigational attack point is important. A distance of 500 meters or less is most desirable.

    (3)   Recognizing the Disadvantages of Terrain Association. The major disadvantage to navigation by terrain association is that you must be able to interpret the map and analyze the world around you. Recognition of terrain and other features, the ability to determine and estimate direction and distance, and knowing how to do quick-in-the-head position fixing are skills that are more difficult to teach, learn, and retain than those required for dead reckoning.

    c.   Combination of Techniques. Actually, the most successful navigation is obtained by combining the techniques described above. Constant orientation of the map and continuous observation of the terrain in conjunction with compass-read azimuths, and distance traveled on the ground compared with map distance, used together make reaching a destination more certain. One should not depend entirely on compass navigation or map navigation; either or both could be lost or destroyed.

    NOTE: See Appendix F for information on orienteering.


    Darkness presents its own characteristics for land navigation because of limited or no visibility. However, the techniques and principles are the same as that used for day navigation. The success in nighttime land navigation depends on rehearsals during the planning phase before the movement, such as detailed analysis of the map to determine the type of terrain in which the navigation is going to take place and the predetermination of azimuths and distances. Night vision devices (Appendix H) can greatly enhance night navigation.

    a.   The basic technique used for nighttime land navigation is dead reckoning with several compasses recommended. The point man is in front of the navigator but just a few steps away for easy control of the azimuth. Smaller steps are taken during night navigation, so remember, the pace count is different. It is recommended that a pace count obtained by using a predetermined 100-meter pace course be used at night.

    b.   Navigation using the stars is recommended in some areas; however, a thorough knowledge of constellations and location of stars is needed (paragraph 9-5c). The four cardinal directions can also be obtained at night by using the same technique described for the shadow-tip method. Just use the moon instead of the sun. In this case, the moon has to be bright enough to cast a shadow.


    CHAPTER 12


    A vehicle commander should be able to navigate from one point on the ground to another with or without a compass. If separated from his unit and given an azimuth and distance from their position to his, he should be able to reach the unit and continue the mission. To move effectively while mounted, he must know the principles of mounted navigation.

    12-1. PRINCIPLES

    The principles of land navigation while mounted are basically the same as while dismounted. The major difference is the speed of travel. Walking between two points may take one hour, but riding the same distance may only take 15 minutes. To be effective at mounted land navigation, the travel speed must be considered.


    The duties of a navigator are so important and exacting that he should not be given any other duties. The leader should never try to be the navigator, since his normal responsibilities are heavy, and one or the other job would suffer.

    a.   Assembling Equipment. The navigator must gather all the equipment that will help him perform his job (maps, pencils, and so forth). He must do this before the mission starts.

    b.   Servicing Equipment. It is the navigator's duty to make sure that all the equipment he may use or require is working.

    c.   Recording Data for Precise Locations. During movement, the navigator must make sure that the correct direction and distance are recorded and followed. Grid coordinates of locations must be recorded and plotted.

    d.   Supplying Data to Subordinate Leaders. During movement, any change in direction or distance must be given to the subordinate leaders in sufficient time to allow them to react.

    e.   Maintaining Liaison with the Commander. The commander normally selects the route that he desires to use. The navigator is responsible for following that route; however, there may be times when the route must be changed during a tactical operation. For this reason, the navigator must maintain constant communication with the commander. The navigator must inform the commander when checkpoints are reached, when a change in direction of movement is required, and how much distance is traveled.

    12-3. MOVEMENT

    When preparing to move, the effects of terrain on navigating mounted vehicles must be determined. You will cover great distances very quickly, and you must develop the ability to estimate the distance you have traveled. Remember that 0.1 mile is roughly 160 meters, and 1 mile is about 1,600 meters or 1.6 kms. Having a mobility advantage helps while navigating. Mobility makes it much easier if you get disoriented to move to a point where you can reorient yourself.

    NOTE: To convert kmph to mph, multiply by .62. (9 kmph x .62 = 5.58 mph). To convert mph to kmph, divide mph by .62 (10 mph 0.62 = 16.12 kmph).

    a.   Consider Vehicle Capabilities. When determining a route to be used when mounted, consider the capabilities of the vehicles to be used. Most military vehicles are limited in the degree of slope they can climb and the type of terrain they can negotiate. Swamps, thickly wooded areas, or deep streams may present no problems to dismounted soldiers, but the same terrain may completely stop mounted soldiers. The navigator must consider this when selecting a route.

    (1)   Most vehicles will knock down a tree. The bigger the vehicle, the bigger the tree it can knock down. Vehicles cannot knock down several trees at once. It is best to find paths between trees that are wide enough for your vehicle. Military vehicles are designed to climb 60 percent slopes on a dry, firm surface (Figure 12-1).

    Figure 12-1. Tracked vehicle capabilities.

    (2)   You can easily determine approximate slope; just look at the route you have selected. If there is a contour line in any 100 meters of map distance on that route, it is a 10 percent slope. If there are two contour lines, it is 20 percent, and so forth. If there are four contour lines in any 100 meters, look for another route.

    (3)   Side slope is even more important than the slope you can climb. Normally, a 30 percent slope is the maximum in good weather. If you traverse a side slope, do it slowly and without turns. Rocks, stumps, or sharp turns can cause you to throw the downhill track under the vehicle, which would mean a big recovery task.

    (4)   For tactical reasons, you will often want to move in draws or valleys because they give you cover. However, side slopes force you to move slowly.

    NOTE: The above figures are true for a 10-meter or a 20-foot contour interval. If the map has a different contour interval, just adjust the arithmetic. For instance, with one contour line in 100 meters, a 20-meter interval would give a 20 percent slope.

    b.   Know the Effects of Weather on Vehicle Movement. Weather can halt mounted movement. Snow and ice are obvious dangers, but more significant is the effect of rain and snow on soil load-bearing ability. Cross-country vehicles may be restricted to road movement in heavy rain. If it has rained recently, adjust your route to avoid flooded or muddy areas. A mired vehicle only hinders combat capability.

    c.   Prepare Before Movement. Locate the start point and finish point on the map. Determine the map's grid azimuth from start point to finish point and convert it to a magnetic azimuth. Determine the distance between the start point and finish point or any intermediate points on the map and make a thorough map reconnaissance of that area.


    This is currently the most widely used method of navigation. The navigator plans his route so that he moves from terrain feature to terrain feature. An automobile driver in a city uses this technique as he moves along a street or series of streets, guiding on intersections or features such as stores and parks. Like the driver, the navigator selects routes or streets between key points or intersections. These routes must be capable of sustaining the travel of the vehicle or vehicles, should be relatively direct, and should be easy to follow. In a typical move, the navigator determines his location, determines the location of his objective, notes the position of both on his map, and then selects a route between the two. After examining the terrain, he adjusts the route by the following actions:

    a.   Consider Tactical Aspects. Avoid skylining, select key terrain for overwatch positions, and select concealed routes.

    b.   Consider Ease of Movement. Use the easiest possible route and bypass difficult terrain. Remember that a difficult route is harder to follow, is noisier, causes more wear and tear (and possible recovery problems), and takes more time. Tactical surprise is achieved by doing the unexpected. Try to select an axis or corridor instead of a specific route. Make sure you have enough maneuver room for the vehicles (Figure 12-2).

    Figure 12-2. Primary route.

    c.   Use Terrain Features as Checkpoints. These checkpoints must be easily recognizable in the light and weather conditions and at the speed at which you will move. You should be able to find a terrain feature from your location that can be recognized from almost anywhere and used as a guide. An example is checkpoint 2, the church, and checkpoint 3, the orchard, in Figure 12-2.

    (1)   The best checkpoints are linear features that cross your route. Use streams, rivers, hard-top roads, ridges, valleys, and railroads.

    (2)   The next best checkpoints are elevation changes, such as hills, depressions, spurs, and draws. Look for two contour lines of change. You will not be able to spot less than two lines of change while mounted.

    (3)   In wooded terrain, try to locate checkpoints at no more than 1,000-meter intervals. In open terrain, you may go to about 5,000 meters.

    d.   Follow Terrain Features. Movement and navigation along a valley floor or near (not necessarily on) the crest of a ridgeline is easiest.

    e.   Determine Directions. Break the route down into smaller segments and determine the rough directions that will be followed. You do not need to use the compass; just use the main points of direction (north, northeast, east, and so forth). Before moving, note the location of the sun and locate north. Locate changes of direction, if any, at the checkpoints picked.

    f.   Determine Distance. Get the total distance to be traveled and the approximate distance between checkpoints. Plan to use the vehicle odometer to keep track of distance traveled. Use the pace-count method and keep a record of the distance traveled. When using a pace count, convert from map distance to ground distance by adding the conversion factors of 20 percent for cross-country movement.

    g.   Make Notes. Mental notes are usually adequate. Try to imagine what the route is like and remember it.

    h.   Plan to Avoid Errors. Restudy the route selected. Try to determine where errors are most apt to occur and how to avoid any trouble.

    i.   Use a Logbook. When the routes have been selected and the navigator has divided the distance to be traveled into legs, prepare a logbook. The logbook is an informal record of the distance and azimuth of each leg, with notes to aid the navigator in following the correct route. The notes list easily identifiable terrain features at or near the point where the direction of movement changes (Figure 12-3).

    Figure 12-3. Sample of a logbook format.


    Dead reckoning is moving a set distance along a set line. Generally, it involves moving so many meters along a set line, usually an azimuth in degrees. There is no accurate method of determining a direction in a moving vehicle. A magnetic vehicle-heading reference unit may be available in a few years; for now, use a compass.

    a.   With Steering Marks. This procedure is the same for vehicle travel as on foot.

    (1)   The navigator dismounts from the vehicle and moves away from the vehicle (at least 18 meters).

    (2)   He sets the azimuth on the compass and picks a steering mark (rock, tree, hilltop) in the direction on that azimuth (Figure 12-4).

    (3)   He remounts and has the driver identify the steering mark and proceeds to it in as straight a line as possible.

    (4)   On arrival at the steering mark or on any changes in direction, he repeats the first three steps above for the next leg of travel.

    Figure 12-4. Determining an azimuth, dismounted.

    b.   Without Steering Marks. This procedure is used only on flat, featureless terrain.

    (1)   The navigator dismounts from the vehicle, which is oriented in the direction of travel, and moves at least 18 meters to the front of the vehicle.

    (2)   He faces the vehicle and reads the azimuth to the vehicle. By adding or subtracting 180�, he determines the forward azimuth (direction of travel).

    (3)   On order from the navigator, the driver drives on a straight line to the navigator.

    (4)   The navigator remounts the vehicle, holds the compass as it will be held while the vehicle is moving, and reads the azimuth in the direction of travel.

    (5)   The compass will swing off the azimuth determined and pick up a constant deviation. For instance, say the azimuth was 75� while you were away from the vehicle. When you remounted and your driver drove straight forward, your compass showed 67�. You have a deviation of -8�. All you need to do is maintain that 67� compass heading to travel on a 75� magnetic heading.

    (6)   At night, the same technique can be used. From the map, determine the azimuth you are to travel. Convert the grid azimuth to a magnetic azimuth. Line the vehicle up on that azimuth, then move well in front of it. Be sure it is aligned correctly. Then mount, have the driver move slowly forward, and note the deviation. If the vehicle has a turret, the above procedure works unless you traverse the turret; this changes the deviation.

    (7)   The distance factor in dead reckoning is easy. Just determine the map distance to travel and add 20 percent to convert to ground distance. Use your vehicle odometer to be sure you travel the proper distance.


    Another method, if you have a vehicle with a stabilized turret, is to align the turret on the azimuth you wish to travel, then switch the turret stabilization system on. The gun tube remains pointed at your destination no matter which way you turn the vehicle. This technique has been proven; it works. It is not harmful to the stabilization system. It is subject to stabilization drift, so use it for no more than 5,000 meters before resetting.

    NOTE: If you have to take the turret off-line to engage a target, you will have to start all over, re-do the entire process.


    Some mounted situations may call for you to combine and use both methods. Just remember the characteristics of each.

    a.   Terrain association is fast, is error-tolerant, and is best under most circumstances. It can be used day or night if you are proficient in it.

    b.   Dead reckoning is very accurate if you do everything correctly. You must be very precise. It is also slow, but it works on very flat terrain.

    c.   You frequently will combine both. You may use dead reckoning to travel across a large, flat area to a ridge, then use terrain association for the rest of the move.

    d.   You must be able to use both methods. You should remember that your probable errors, in order of frequency, will be 

  • Failure to determine distance(s) to be traveled.

  • Failure to travel the proper distance.

  • Failure to properly plot or locate the objective.

  • Failure to select easily recognized checkpoints or landmarks.

  • Failure to consider the ease of movement factor.



    CHAPTER 13


    The information, concepts, and skills already presented will help you to navigate anywhere in the world; however, there are some special considerations and helpful hints that may assist you in various special environments. The following information is not doctrine.


    About 5 percent of the earth's land surface is covered by deserts (Figure 13-1). Deserts are large arid areas with little or no rainfall during the year. There are three types of deserts mountain, rocky plateau, and sandy or dune deserts. All types of forces can be deployed in the desert. Armor and mechanized infantry forces are especially suitable to desert combat except in rough mountainous terrain where light infantry may be required. Airborne, air assault, and motorized forces can also be advantageously employed to exploit the vast distances characteristic of desert warfare.

    Figure 13-1. Deserts.

    a.   Desert Regions. In desert regions, terrain varies from nearly flat to lava beds and salt marshes. Mountain deserts contain scattered ranges or areas of barren hills or mountains. Table 13-1 lists some of the world's major desert regions and their locations.

    Table 13-1. Major desert regions.

    (1)   Finding the way in a desert presents some degree of difficulty for a person who has never been exposed to this environment. Desert navigators have learned their way through generations of experience.

    (2)   Normally, desert people are nomadic, constantly moving in caravans. Navigating becomes second nature to them. Temperature in the tropical deserts reaches an average of 110° to 115° during the day, so most navigation takes place at night using the stars. Most deserts have some prevailing winds during the seasons. Such winds arrange the sand dunes in a specific pattern that gives the navigator the opportunity to determine the four cardinal directions. He may also use the sun's shadow-tip method.

    (3)   A sense of direction can be obtained by watching desert animals on their way to and from water holes (oases). Water, navigation, and survival are closely related in desert areas. Most deserts have pigeons or doves, and their drinking habits are important to the navigator. As a rule, these birds never drink in the morning or during the day, making their evening flights the most important. When returning from the oases, their bodies are heavier from drinking and their flight is accompanied by a louder flapping of their wings.

    (4)   Visibility is also an important factor in the desert, especially in judging distance. The absence of trees or other features prevents comparison between the horizon and the skyline.

    b.   Interpretation and Analysis. Many desert maps are inaccurate, which makes up-to-date air, aerial photo, and ground reconnaissance necessary. In desert mountain areas contour intervals are generally large, so many of the intermediate relief features are not shown.

    (1)   The desert normally permits observation and fire to maximum ranges. The terrain is generally wide open and the exceptionally clear atmosphere offers excellent long-range visibility. Combine this with a powerful sun and low cloud density and you have nearly unlimited light and visual clarity, which often contribute to gross underestimations of ranges. Errors of up to 200 or 300 percent are not uncommon. However, visibility conditions may be severely affected by sandstorms and mirages (heat shimmer caused by air rising from the extremely hot daytime desert surface), especially if the observer is looking into the sun through magnifying optical instruments.

    (2)   Cover can be provided only by terrain feature masking because of the lack of heavy vegetation and man-made objects. It only takes a few meters of relief to provide cover. Concealment in the desert is related to the following factors:

    (a)   Shape. In order not to be observed by the enemy, attempt to alter the standard shapes of vehicles so they and their shadows are not instantly recognized.

    (b)   Shine. Shine or glitter is often the first thing that attracts the observer's eye to movement many kilometers away. It must be eliminated.

    (c)   Color and texture. All equipment should either be pattern painted or mudded to blend in with the terrain.

    (d)   Light and noise. Light and noise discipline are essential because sound and light travel great distances in the desert.

    (e)   Heat. Modern heat image technology makes shielding heat sources an important consideration when trying to hide from the enemy. This technology is especially important during night stops.

    (f)   Movement. Movement itself creates a great deal of noise and dust, but a rapid execution using all the advantages the topography offers can help conceal it.

    c.   Navigation. When operating in the broad basins between mountain ranges or on rocky plateau deserts, there are frequently many terrain features to guide your movement by. But, observing these known features over great distances may provide a false sense of security in determining your precise location unless you frequently confirm your location by resection or referencing close-in terrain features. It is not uncommon to develop errors of several kilometers when casually estimating a position in this manner. Obviously, this can create many problems when attempting to locate a small checkpoint or objective, calling for CAS, reporting operational or intelligence information, or meeting CSS requirements.

    (1)   When operating in an area with few visual cues, such as in a sandy or dune desert, or restricted visibility by a sandstorm or darkness, you must proceed by dead reckoning. The four steps and two techniques for navigation presented earlier remain valid in the desert. However, understanding the special conditions found there are extremely helpful as you apply them.

    (2)   Tactical mobility and speed are key to successful desert operations. Obstacles and areas such as lava beds or salt marshes, which preclude surface movements, do exist. But most deserts permit two-dimensional movement by ground forces similar to that of a naval task force at sea. Speed of execution is essential. Everyone moves farther and faster on the desert. Special navigation aids sometimes used in the desert include:

    (a)   Sun compass. It can be used on moving vehicles and sextants. It requires accurate timekeeping. However, the deviation on a magnetic compass that is caused by the metal and electronics in the vehicle is usually less than +10°.

    (b)   Gyro compass. The gun azimuth stabilizer is in fact a gyro compass. If used on fairly flat ground, it is useful for maintaining direction over limited distances.

    (c)   Fires. Planned tracer fire or mortar and artillery concentrations (preferably smoke during the day and illumination at night) provide useful checks on estimated locations.

    (d)   Prepositioned lights. This method consists of placing two or more searchlights far apart, behind the line of contact, beyond enemy artillery range, and concealed from enemy ground observation. Units in the area can determine their own locations through resection, using the vertical beams of the lights. These lights must be moved on a time schedule known to all friendly units.

    (3)   One final note on desert navigation is that the sand, hard-baked ground, rocky surfaces, thorny vegetation, and heat generally found in the desert impose far greater demands for maintenance than you would plan for in temperate regions. It may also take longer to perform that maintenance.


    Mountains are generally understood to be larger than hills. Rarely do mountains occur individually; in most cases, they are found in elongated ranges or circular groups. When they are linked together, they constitute a mountain system (Figure 13-2). Light forces (infantry, airborne, and air assault forces) can operate effectively in mountainous regions because they are not terrain limited. Heavy forces must operate in passes and valleys that are negotiable by vehicle.

    Figure 13-2. Mountain systems.

    a.   Major Systems. Major systems are listed in Table 13-2.

    Table 13-2. Major systems.

    b.   Minor Systems. Some other systems are in Antarctica, Hawaii, Japan, New Zealand, and Oceania. Mountain systems are characterized by high, inaccessible peaks and steep slopes. Depending on the altitude, they may be snow covered. Prominent ridges and large valleys are also found. Navigating in this type of terrain is not difficult providing you make a careful examination of the map and the terrain.

    c.   Climate. Because of the elevations, it is always colder (3° to 5° per 300-meter gain in altitude) and wetter than you might expect. Wind speeds can increase the effects of the cold even more. Sudden severe storms and fog are encountered regularly. Below the tree line, vegetation is heavy because of the extra rainfall and the fact that the land is rarely cleared for farming.

    d.   Interpretation and Analysis. The heights of mountainous terrain permit excellent long-range observation. However, rapidly fluctuating weather with frequent periods of high winds, rain, snow, or fog may limit visibility. Also, the rugged nature of the terrain frequently produces significant dead space at mid-ranges.

    (1)   Reduced mobility, compartmented terrain, and the effects of rapidly changing weather increase the importance of air, ground, aerial photo, and map reconnaissance. Since mountain maps often use large contour intevals, microrelief interpretation and detailed terrain analysis require special emphasis.

    (2)   At first glance, some mountainous terrain may not appear to offer adequate cover and concealment; however, you can improve the situation. When moving, use rock outcroppings, boulders, and heavy vegetation for cover and concealment; use terrain features to mask maneuvers. Use harsh weather, which often obscures observation, to enhance concealment.

    (3)   Since there are only a few routing options, all-round security must be of primary concern. Natural obstacles are everywhere, and the enemy can easily construct more.

    e.   Navigation. Existing roads and trails offer the best routes for movement. Off-road movement may enhance security provided there is detailed reconnaissance, photo intelligence, or information from local inhabitants to ensure the route is negotiable. Again, the four steps and two techniques for navigation presented earlier remain valid in the mountains. Nevertheless, understanding the special conditions and the terrain will help you navigate. Other techniques that are sometimes helpful in mountains are:

    (1)   Aspect of Slope. To determine the aspect of slope, take a compass reading along an imaginary line that runs straight down the slope. It should cut through each of the contour lines at about a 90° angle. By checking the map and knowing the direction of slope where you are located, you will be able to keep track of your location, and it will help guide your cross-country movement even when visibility is poor.

    (2)   Use of an Altimeter. Employment of an altimeter with calibrations on the scale down to 10 or 20 meters is helpful to land navigators moving in areas where radical changes in elevation exist. An altimeter is a type of barometer that gauges air pressure, except it measures on an adjustable scale marked in feet or meters of elevation rather than in inches or centimeters of mercury. Careful use of the altimeter helps to pinpoint your position on a map through a unique type of resection. Instead of finding your position by using two different directional values, you use one directional value and one elevation value.


    These large geographic regions are found within the tropics near the equator (Central America, along the Amazon River, South-Eastern Asia and adjacent islands, and vast areas in the middle of Africa and India) (Figure 13-3). Jungles are characterized as rainy, humid areas with heavy layers of tangled, impenetrable vegetation. Jungles contain many species of wildlife (tigers, monkeys, parrots, snakes, alligators, and so forth). The jungle is also a paradise for insects, which are the worst enemy of the navigator because some insects carry diseases (malaria, yellow fever, cholera, and so forth). While navigating in these areas, very little terrain association can be accomplished because of the heavy foliage. Dead reckoning is one of the methods used in these areas. A lost navigator in the jungle can eventually find his way back to civilization by following any body of water with a downstream flow. However, not every civilization found is of a friendly nature.

    Figure 13-3. Jungles and savannas.

    a.   Operations. Operations in jungles tend to be isolated actions by small forces because of the difficulties encountered in moving and in maintaining contact between units. Divisions can move cross-country slowly; but, aggressive reconnaissance, meticulous intelligence collection, and detailed coordination are required to concentrate forces in this way. More commonly, large forces operate along roads or natural avenues of movement, as was the case in the mountains. Patrolling and other surveillance operations are especially important to ensure security of larger forces in the close terrain of jungles.

    (1)   Short fields of observation and fire, and thick vegetation make maintaining contact with the enemy difficult. The same factors reduce the effectiveness of indirect fire and make jungle combat primarily a fight between infantry forces. Support by air and mechanized forces can be decisive at times, but it will not always be available or effective.

    (2)   Jungles are characterized by high temperatures, heavy rains, high humidity, and an abundance of vegetation. The climate varies with location. Close to the equator, all seasons are nearly alike with heavy rains all year. Farther from the equator (India and Southeast Asia), there are distinct wet (monsoon) and dry seasons. Both zones have high temperatures (averaging 75 to 95+ degrees Fahrenheit), heavy rainfall (as much as 400+ inches annually, and high humidity (90 percent) all year.

    (3)   In temperate climates, it is the areas of vegetation that are most likely to be altered and incorrectly portrayed on a map. In jungle areas, the vegetation grows so rapidly that it is more likely to be cleared and make these areas be shown incorrectly.

    b.   Interpretation and Analysis. The jungle environment includes dense forests, grasslands, swamps, and cultivated areas. Forests are classified as primary and secondary based upon the terrain and vegetation. Primary forests include tropical rain forests and deciduous forests. Secondary forests are found at the edges of both rain forests and deciduous forests and in areas where jungles have been cleared and abandoned. These places are typically overgrown with weeds, grasses, thorns, ferns, canes, and shrubs. Movement is especially slow and difficult. The extremely thick vegetation reaches a height of 2 meters and severely limits observation to only a few meters.

    (1)   Tropical rain forests consist mostly of large trees whose branches spread and lock together to form canopies. These canopies, which can exist at two and three different levels, may form as low as 10 meters from the ground. They prevent direct sunlight from reaching the ground, causing a lack of undergrowth on the jungle floor. Extensive above-ground root systems and hanging vines are common and make vehicular travel difficult; foot movement is easier. Ground observation is limited to about 50 meters and air observation is nearly impossible.

    (2)   Deciduous forests are in semitropical zones that have both wet and dry seasons. In the wet season, trees are fully leaved; in the dry season, much of the folliage dies. Trees are usually less dense than in rain forests, which allows more sunlight to filter to the ground. This procedure produces thick undergrowth. During the wet season, air and ground observation is limited and movement is difficult. During the dry season, both improve.

    (3)   Swamps are common to all low, jungle areas where there is poor drainage. When navigating in a swampy area, a careful analysis of map and ground should be taken before any movement. The soldiers should travel in small numbers with only the equipment required for their mission, keeping in mind that they are going to be immersed in water part of the time. The usual technique used in swamp navigation is dead reckoning. There are two basic types of swamps mangrove and palm. Mangrove swamps are found in coastal areas wherever tides influence water flow. Mangrove is a shrub-like tree that grows 1 to 5 meters high. These trees have a tangled root system, both above and below the waterline, which restricts movement either by foot or small boat. Observation on the ground and from the air is poor, but concealment is excellent.

    (4)   Grassy plains or savannas are generally located away from the equator but within the tropics. These vast land areas are characterized by flatlands with a different type of vegetation than jungles. They consist mainly of grasses (ranging from 1 to more than 12 feet in height), shrubs, and isolated trees. The most difficult areas to navigate are the ones surrounded by tall grass (elephant grass); however, vehicles can negotiate here better than in some areas. There are few or no natural features to navigate by, making dead reckoning or navigation by stars the only technique for movement (Figure 13-3). Depending on the height of the grass, ground observation may vary from poor to good. Concealment from air observation is poor for both soldiers and vehicles.

    (5)   Bamboo stands are common throughout the tropics. They should be bypassed whenever possible. They are formidable obstacles for vehicles, and soldier movement through them is slow, exhausting, and noisy.

    (6)   Cultivated areas exist in jungles also. They range from large, well-planned, well-managed farms and plantations to small tracts, cultivated by farmers. The three general types of cultivated areas are rice paddies, plantations, and small farms.

    c.   Navigation. Areas such as jungles are generally not accurately mapped because heavy vegetation makes aerial surveys difficult. The ability to observe terrain features, near or far, is extremely limited. The navigator must rely heavily upon his compass and the dead reckoning technique when moving in the jungle. Navigation is further complicated by the inability to make straight-line movements. Terrain analysis, constant use of the compass, and an accurate pace count are essential to navigation in this environment.

    (1)   Rates of movement and pace counts are particularly important to jungle navigators. The most common error is to overestimate the distance traveled. The distances below can be used as a rough guide for the maximum distances that might be traveled in various types of terrain during one hour in daylight.

    Table 13-3. Guide for maximum distance.

    (2)   Special navigation strategies that are helpful in jungles include:

    (a)   Personal pace table. You should either make a mental or written personal pace table that includes your average pace count per 100 meters for each of the types of terrain through which you are likely to navigate.

    (b)   Resection using indirect fire. Call for mortar or artillery fire (airbursts of white phosphorous or illumination) on two widely separated grids that are not on terrain features like the one you are occupying and are a safe distance from your estimated location. Directions to the airbursts sometimes must be determined by sound.

    (c)   Modified area/point navigation. Even when making primary use of the compass for dead reckoning, you are frequently able to area navigate to an expanded objective, which is easily identified by terrain association. Then, simply develop a short, point-navigation leg to your final destination.


    Arctic terrain includes those areas that experience extended periods of below freezing temperatures. In these areas, the ground is generally covered with ice or snow during the winter season. Although frozen ground and ice can improve trafficability, a deep accumulation of snow can reduce it. Vehicles and personnel require special equipment and care under these adverse conditions.

    a.   Operations. Both the terrain and the type and size of unit operations vary greatly in arctic areas. In open terrain, armored and mechanized forces will be effective although they will have to plan and train for the special conditions. In broken terrain, forests, and mountains, light forces will predominate as usual. However, foot movement can take up to five times as long as it might under warmer conditions.

    b.   Interpretation and Analysis. Both the terrain and cultural features you may confront in winter may vary to any extreme, as can the weather. The common factor is an extended period of below-freezing temperatures. The terrain may be plains, plateaus, hills, or mountains. The climate will be cold, but the weather will vary greatly from place to place. Most arctic terrain experiences snow, but some claim impressive accumulations each season, such as the lake-effected snow belts off Lake Ontario near Fort Drum, New York. Other areas have many cold days with sunshine and clear nights, and little snow accumulation.

    (1)   In areas with distinct local relief and scattered trees or forests, the absence of foliage makes movement by terrain association easier; observation and fields of fire are greatly enhanced except during snowstorms. But in relatively flat, open areas covered with snow (especially in bright sunlight), the resulting lack of contrast may interfere with your being able to read the land. With foliage gone, concealment (both from the ground and from the air) is greatly reduced. As in desert areas, you must make better use of the terrain to conceal your movements.

    (2)   Frozen streams and swamps may no longer be obstacles, and thus identification of avenues of approach may be difficult in winter. However, the concept as to what is key terrain is not likely to be affected.

    c.   Navigation. Special skills may be required in arctic terrain, such as the proper use of winter clothing, skis, and snowshoes; but this does not affect your navigation strategies. There are no special techniques for navigating in arctic terrain. Just be aware of the advantages and disadvantages that may present themselves and make the most of your opportunities while applying the four steps and two techniques for land navigation.

    (1)   Remember, the highest caliber of leadership is required to ensure that all necessary tasks are performed, that security is maintained, and that soldiers and their equipment are protected from the physical effects of very low temperatures. There is a great temptation to do less than a thorough job at whatever the task may be when you are very cold.

    (2)   Night navigation may be particularly enhanced when operating in arctic terrain. Moonlight and starlight on a clear night reflect off the snow, thus enabling you to employ daytime terrain association techniques with little difficulty. Even cloudy winter nights are often brighter than clear moonlit summer nights when the ground is dark and covered with foliage. Movements with complete light discipline (no black-out drives) can often be executed. On the other hand, areas with severe winter climates experience lengthy periods of darkness each day, which may be accompanied by driving snow and limited visibility.

    13-5. URBAN AREAS

    The world continues to become more urbanized each year; therefore, it is unlikely that all fighting will be done in rural settings. Major urban areas represent the power and wealth of a particular country in the form of industrial bases, transportation complexes, economic institutions, and political and cultural centers. Therefore, it may be necessary to secure and neutralize them. When navigating in urban places, it is man-made features, such as roads, railroads, bridges, and buildings that become important, while terrain and vegetation become less useful.

    a.   Interpretation and Analysis. Military operations on urbanized terrain require detailed planning that provides for decentralized execution. As a result of the rapid growth and changes occurring in many urban areas, the military topographic map is likely to be outdated. Supplemental use of commercially produced city maps may be helpful, or an up-to-date sketch can be made.

    (1)   Urbanized terrain normally offers many AAs for mounted maneuver well forward of and leading to urban centers. In the proximity of these built-up areas, however, such approach routes generally become choked by urban sprawl and perhaps by the nature of adjacent natural terrain. Dismounted forces then make the most of available cover by moving through buildings and underground systems, along edges of streets, and over rooftops. Urban areas tend to separate and isolate units, requiring the small-unit leader to take the initiative and demonstrate his skill in order to prevail.

    (2)   The urban condition of an area creates many obstacles, and the destruction of many buildings and bridges as combat power is applied during a battle further limits your freedom of movement. Cover and concealment are plentiful, but observation and fields of fire are greatly restricted.

    b.   Navigation. Navigation in urban areas can be confusing, but there are often many cues that will present themselves as you proceed. They include streets and street signs; building styles and sizes; the urban geography of industrial, warehousing, residential housing, and market districts; man-made transportation features other than streets and roads (rail and trolley lines); and the terrain features and hydrographic features located within the built-up area. Strategies for staying on the route in an urban area include:

    (1)   Process Route Descriptions. Write down or memorize the route through an urban area as a step-by-step process. For example, "Go three blocks north, turn left (west) on a wide divided boulevard until you go over a river bridge. Turn right (north) along the west bank of the river, and. . . "

    (2)   Conceptual Understandings of the Urban Area. While studying the map and operating in a built-up area, work hard to develop an understanding (mental map) of the entire area. This advantage will allow you to navigate over multiple routes to any location. It will also preclude your getting lost whenever you miss a turn or are forced off the planned route by obstacles or the tactical situation.

    (3)   Resection. Whenever you have a vantage point to two or more known features portrayed on the map, do not hesitate to use either estimated or plotted resection to pinpoint your position. These opportunities are often plentiful in an urban setting.


    CHAPTER 14


    Land navigation is a skill that is highly perishable. The soldier must continually make use of the skills he has acquired to remain proficient in them. The institution is responsible for instruction in the basic techniques of land navigation. The institution tests these skills each time a soldier attends a leadership course. However, it is the unit's responsibility to develop a program to maintain proficiency in these skills between institution courses. The unit sustainment program provides training that builds on and reinforces the skills the soldier learned in the institution. It should use the building-block approach to training: basic map reading instruction or review, instruction on land navigation skills, dead reckoning training, dead reckoning practice, terrain association training, terrain association practice, land navigation testing, and building of leader skills. These leader skills should include following a route selected by the commander and planning and following a route selected by the leader. The unit trainer should be able to set up a sustainment program, a train-the-trainer program, and a land navigation course for his unit's use. It is recommended that units develop a program similar to the one outlined in this chapter. Complete lesson outlines and training plans are available by writing to Commander, 29th Infantry Regiment, ATTN: ATSH-INB-A, Fort Benning, GA 31905-5595.


    The purpose of setting up a sustainment program in the unit is to provide soldiers with training that reinforces and builds on the training that they have received in the institution. All soldiers should receive this training at least twice a year. The program also provides the unit with a means of identifying the areas in which the soldiers need additional training.

    a.   Training Guidance. The unit commander must first determine the levels of proficiency and problems that his unit has in land navigation. This determination can be done through after-action reports from the unit's rotations to NTC/JRTC, ARTEP final reports, feedback from his subordinates, personal observation, and annual training. Once the unit commander decides where his training time should be concentrated, he can issue his training guidance to his subordinate leaders. He also directs his staff to provide training sites, resources, and time for the units to train land navigation. It is recommended that land navigation be trained separately, not just included as a subtask in tactical training.

    b.   Certification. The unit commander must also provide his subordinate commanders with a means of certifying training. The unit staff must provide subject matter experts to ensure the training meets the standards decided upon by the unit commander. Instructors should be certified to instruct, and courses should be certified before the unit uses it.

    c.   Program Development. The sustainment program should meet the requirements of all of the unit's soldiers. It should address all skills from basic map reading to leaders' planning and executing a route. The program should cover the following:

  • Diagnostic examination.

  • Map reading instruction/review.

  • Land navigation skills training.

  • Dead reckoning training/practice.

  • Terrain association training/practice.

  • Land navigation written/field examination.

  • Leaders' training and testing.

    The sustainment program should be developed and then maintained in the unit's training files. The program should be developed in training modules so that it can be used as a whole program or used separately by individual modules. It should be designed so the commander can decide which training modules he will use, depending on the proficiency of the unit. The unit commander need only use those modules that fit his training plan.


    The purpose of a train the trainer program in the unit is to develop trainers capable of providing soldiers with the confidence and skills necessary to accomplish all assigned land navigation tasks.

    a.   Development of the Program. The unit commander should appoint a cadre of officers and NCOs to act as primary and alternate instructors for land navigation training. Use the training modules the unit has developed and have these soldiers go through each module of training until they can demonstrate expertise. Determine which instructors conduct each module of training and have them practice until they are fully prepared to give the training. These instructors act as training cadre for the entire unit. They train their peers to instruct the subordinate units, and they certify each unit's training.

    b.   Conduct of Training. Conduct training at the lowest level possible. Leaders must be included in all training to keep unit integrity intact.


    The unit commander provides specific guidance on what he requires in the development of a land navigation course. It depends upon the unit's mission, training plan, and tasks to be trained. There are basic guidelines to use when setting up a course.

    a.   Determine the Standards. The unit commander determines the standards for the course. Recommended standards are as follows:

    (1)   Distance between points: no less than 300 meters; no more than 1,200 meters.

    (2)   Total distance of lanes: no less than 2,700 meters; no more than 11,000 meters.

    (3)   Total number of position stakes: no less than seven for each lane; no more than nine for each lane.

    (4)   Time allowed: no less than three hours; no more than four hours.

    b.   Decide on the Terrain. The unit should use terrain that is similar to terrain they will be using in tactical exercises. Terrain should be different each time training is conducted; the training area for a dismounted course needs to be at least 25 square kilometers. Mounted courses require twice as much terrain so that vehicles are not too close to each other.

    c.   Perform a Map and Ground Reconnaissance. Check the terrain to determine position stake locations, look for hazards, and to develop training briefings.

    (1)   Plot the locations of your position stakes on a 1:50,000-scale map.

    (2)   Fabricate or order position stakes.

    (3)   Request support from the local engineer or field artillery unit to survey the position stakes in.

    (4)   Survey the position stakes in and emplace them.

    (5)   Certify the course by having your SMEs negotiate each lane of the course.

    (6)   Prepare course requirement sheets and print them.

    (7)   Complete a risk assessment of the training area.

    (8)   Begin teaching.

    This sequence can be used to develop any type of land navigation course. The difference in each course depends on the commander's guidance.


    Go to

    Table of Contents
    Chapters 1 - 6

    Chapters 7 - 10

    Chapters 11 - 14