TR45.AHAG

Interface Specification

for

Common Cryptographic Algorithms, Revision D.1

Publication Version

September 13, 2000

NOTICE

TIA Engineering Standards and Publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating inter-changeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for their particular need. Existence of such Standards and Publications shall not in any respect preclude any member or non-member of TIA from manufacturing or selling products not conforming to such Standards and Publications, nor shall the existence of such Standards and Publications preclude their voluntary use by those other than TIA members, whether the standard is to be used either domestically or internationally.

Standards and Publications are adopted by TIA without regard to whether or not their adoption may involve patents or articles, materials, or processes. By such action, TIA does not assume any liability to any patent owner, nor does it assume any obligation whatever to parties adopting the Recommended Standard or Publication.

Standards and Publications are adopted by EIA/TIA without regard to whether or not their adoption may involve patents or articles, materials, or processes. By such action, EIA/TIA does not assume any liability to any patent owner, nor does it assume any obligation whatever to parties adopting the Recommended Standard or Publication.

TIA TR45 Ad Hoc Authentication Group Documents

TIA TR45 Ad Hoc Authentication Group Documents contain information deemed to be of technical value to the industry, and are published at the request of the TR45 Ad Hoc Authentication Group without necessarily following the rigorous public review and resolution of comments which is a procedural part of the development of a TIA Standard.

Contact

TELECOMMUNICATIONS INDUSTRY ASSOCIATION Engineering Department 2500 Wilson Boulevard, Suite 300 Arlington, Virginia 22201 Copyright 2000 TELECOMMUNICATIONS INDUSTRY ASSOCIATION All rights reserved Printed in the United States _____

Revision	Date	Remarks	
0	02-05-93	Frozen for PN-3118 Ballot	
0.1	04-21-93	Adopted by TR45 AHAG	
1.00	10-20-94	Draft including data encryption and A-key checksum calculation	
А	12-14-94	Major revision, incorporating ORYX data encryption algorithms and ANSI C algorithm descriptions	
В	08-06-96	Added wireless residential extension authentication	
B.1	04-15-97	Version for PN-3795 ballot.	
С	10-27-98	Add ECMEA and related key management procedures	
D	03-14-00	Add SCEMA and related procedures	
D.1	09-13-00	Corrections to SCEMA key scheduling	

Document History

Table of Contents

1.	Intro	Introduction			
	1.1.	Definitions	2		
2.	Proc	Procedures			
	2.1.	Authentication Key (A-Key) Procedures 2.1.1. A-Key Checksum Calculation 2.1.2. A-Key Verification	4 4 5		
	2.2.	SSD Generation and Update	6 6 7		
	2.3.	Authentication Signature Calculation Procedure	8		
	2.4.	 Secret Key and Secret Parameter Generation	9 . 10 . 11 . 11 . 12		
	2.5.	Message Encryption/Decryption Procedures2.5.1.CMEA Encryption/Decryption Procedure2.5.2.ECMEA Encryption/Decryption Procedure	. 13 . 13 . 14		
	2.6.	 Wireless Residential Extension Procedures 2.6.1. WIKEY Generation 2.6.2. WIKEY Update Procedure 2.6.3. Wireline Interface Authentication Signature Calculation Procedure 2.6.4. Wireless Residential Extension Authentication Signature Calculation Procedure 	. 15 . 15 . 16 . 17 . 18		
	2.7.	 Basic Wireless Data Encryption	. 19 . 20 . 21 . 22		
	2.8.	Enhanced Voice and Data Privacy	. 23 . 23 . 24 . 25 . 26		
		 2.8.2. SCEMA Encryption/Decryption Procedure (Level 1)	. 27 . 29 . 29 . 30 . 31		
		2.8.4. Voice, Message, and Data Encryption Procedures (Level 3) 2.8.4.1. Enhanced Voice Privacy	. 32 . 32		

2.8.4.2.	Enhanced Message Encryption	. 34
2.8.4.3.	Enhanced Wireless Data Encryption	. 36

No text

1. Introduction

2	This document describes the interfaces to cryptographic procedures for
-	wireless system applications. These procedures are used to perform the
5	where so system applied to its. These proceedines are used to perform the
4	security services of mobile station authentication, subscriber message
5	encryption, and encryption key and subscriber voice privacy key
6	generation within wireless equipment. The procedures are described in
7	detail in "Common Cryptographic Algorithms"
8	The purpose of this specification is to describe the cryptographic
9	functions without revealing the technical details that are subject to the
10	export jurisdiction of the US Department of Commerce as specified in
11	Export Administration Regulations (EAR), Title 15 CFR parts 730
12	through 774 inclusive. It is intended that developers of FIA/TIA
13	standards for systems using these cryptographic functions use the
13	standards for systems using these cryptographic functions use the
14	information in this document in standards that are not subject to EAR
15	restrictions.
16	The procedures are described in the document as follows:
	F
47	\$2.1 describes the procedure to verify the manual entry of the
17	§2.1 describes the procedure to verify the manual entry of the
18	subscriber authentication key (A-key).
19	§2.2 describes the generation of intermediate subscriber
20	cryptovariables. Shared Secret Data (SSD) from the unique and private
21	subceriber A-key
21	subscriber A-key.
22	§2.3 describes the procedure to calculate an authentication signature
23	used by wireless base station equipment for verifying the authenticity of
24	a mobile station.
25	82.4 describes the procedure used for generating cryptographic keys
20	§2.4 deserves the procedure used for generating cryptographic keys.
26	§2.5 describes the procedure used for enciphering and deciphering
27	subscriber data exchanged between the mobile station and the base
28	station.
29	82.6 describes the procedures for wireless residential extension
20	suthentication
30	autientication.
31	§2./ describes the procedures for key and mask generation for
32	encryption and decryption in wireless data services.
33	82.8 describes key generation and encryption procedures for the
34	following TDMA content: voice DTC and DCCH massages and DID
	data
30	uata.
36	Manufacturers are cautioned that no mechanisms should be provided
37	for the display at the ACRE, PB or mobile station (or any other
38	equipment that may be interfaced with it) of valid A-key SSD A
30	SSD B MANIJEACT KEV WIKEV WDE KEV or other
10	om m to voriable a second with the aments are his functions described in
40	cryptovariables associated with the cryptographic functions described in
A1	
41	this document. The invocation of test mode in the ACRE, PB or mobile
42	station must not alter the operational values of A-key, SSD_A, SSD_B

1.1. Definitions

2 3	ACRE	Authorization and Call Routing Equipment. A network device which authorizes the Personal Base and provides automatic call routing.
4 5	ACRE_PHONE_NUMBER	A 24-bit pattern comprised of the last 6 digits of the ACRE's directory number.
6 7 8 9 10 11 12	A-key	A 64-bit cryptographic key variable stored in the semi-permanent memory of the mobile station and also known to the Authentication Center (AC or HLR/AC) of the wireless system. It is entered when the mobile station is first put into service with a particular subscriber, and usually will remain unchanged unless the operator determines that its value has been compromised. The A-key is used in the SSD generation procedure.
13	Boolean	Describes a quantity whose value is either TRUE or FALSE.
14	CMEA	Cellular Message Encryption Algorithm.
15	CMEAKEY	A 64-bit cryptographic key used to encrypt certain messages.
16 17	DataKey	A 32-bit cryptographic key used for generation of masks for encryption and decryption in wireless data services.
18 19	Data_type	A one-bit value indicating whether the financial or non-financial data encryption parameters are used.
20	Directory Number	The telephone network address.
21	ECMEA	Enhanced Cellular Message Encryption Algorithm.
22	ECMEA_KEY	A 64-bit cryptographic key used to encrypt financial messages.
23	ECMEA_NF_KEY	A 64-bit cryptographic key used to encrypt non-financial messages.
24	ESN	The 32-bit electronic serial number of the mobile station.
25 26	Internal Stored Data	Stored data that is defined locally within the cryptographic procedures and is not accessible for examination or use outside those procedures.
27	LSB	Least Significant Bit.
28	MSB	Most Significant Bit.
29 30	offset_key	A 32-bit cryptographic key used to create offsets that are passed to ECMEA.
31 32	offset_nf_key	A 32-bit cryptographic key used to create offsets that are passed to ECMEA for use in encryption of non-financial data.
33 34	РВ	Personal Base. A fixed device which provides cordless telephone like service to a mobile station.
35	PBID	Personal Base Identification Code.
36	RAND_ACRE	A 32-bit random number which is generated by the PB.
37	RAND_PB	A 32-bit random number which is generated by the ACRE.
38	RAND_WIKEY	A 56-bit random number which is generated by the ACRE.
39	RAND_WRE	A 19-bit random number which is generated by the PB.
40 41 42	SEED_NF_KEY	Five 8-bit registers whose content constitutes the 40-bit binary quantity generated after the CMEA key and used to initialize the CAVE algorithm for generation of the ECMEA_NF key and offset_nf keys.

1 2	SSD	SSD is an abbreviation for Shared Secret Data. It consists of two quantities, SSD_A and SSD_B.	
3 4 5 6	SSD_A	A 64-bit binary quantity in the semi-permanent memory of the mobile station and also known to Authentication Center. It may be shared with the serving MSC. It is used in the computation of the authentication response.	
7 8	SSD_A_NEW	The revised 64-bit quantity held separately from SSD_A, generated as a result of the SSD generation process.	
9 10 11 12	SSD_B	A 64-bit binary quantity in the semi-permanent memory of the mobile station and also known to the Authentication Center. It may be shared with the serving MSC. It is used in the computation of the CMEA and VPM.	
13 14	SSD_B_NEW	The revised 64-bit quantity held separately from SSD_B, generated as a result of the SSD generation process.	
15 16	Sync	A 16-bit value provided by the air interface used to generate offsets for ECMEA.	
17 18 19	VPM	Voice Privacy Mask. This name describes a 520-bit entity that may be used for voice privacy functions as specified in wireless system standards.	
20 21	WIKEY	Wireline Interface key. A 64-bit pattern stored in the PB and the ACRE (in semi-permanent memory).	
22 23	WIKEY_NEW	A 64-bit pattern stored in the PB and the ACRE. It contains the value of an updated WIKEY.	
24 25	WRE_KEY	Wireless Residential Extension key. A 64-bit pattern stored in the PB and the mobile station in semi-permanent memory.	

Procedures 2. 1 2 Authentication Key (A-Key) Procedures 2.1. 3 2.1.1. A-Key Checksum Calculation 4 Procedure name: 5 A Key Checksum 6 Inputs from calling process: 7 A KEY DIGITS 20 decimal digits 8 32 bits **ESN** 9 Inputs from internal stored data: 10 (internal definition only) 11 Outputs to calling process: 12 A KEY CHECKSUM 6 decimal digits 13 Outputs to internal stored data: 14 None. 15 This procedure computes the checksum for an A-key to be entered into 16 a mobile station. In a case where the number of digits to be entered is 17 less than 20, the leading most significant digits will be set equal to zero. 18 The generation of the A-key is the responsibility of the service 19 provider. A-keys should be chosen and managed using procedures that 20 minimize the likelihood of compromise. 21 The checksum provides a check for the accuracy of the A-Key when 22 entered into a mobile station. The checksum is calculated for the 20 23 A-Key digits input to the algorithm. The checksum is returned as 6 24 decimal digits for entry into the mobile station. 25 The first decimal digit of the A-Key to be entered is considered to be 26 the most significant of the 20 decimal digits, followed in succession by 27 the other nineteen. A decimal to binary conversion process converts the 28 digit sequence into its equivalent mod-2 representation. For example, 29 the 20 digits 30 12345678901234567890 31 have a hexadecimal equivalent of 32 A B 5 4 A 9 8 C E B 1 F 0 A D 2. 33

2.1.2. A-Key Verification

2	Procedure name	
3	A_Key_Verify	
4	Inputs from calling process:	
5 6	A_KEY_DIGITS ESN	from 6 to 26 decimal digits 32 bits
7	Inputs from internal stored data:	
8		(internal definition only)
9	Outputs to calling process:	
10	A_KEY_VERIFIED	Boolean
11	Outputs to internal stored data:	
12	A-key	64 bits
13	SSDA	64 bits (set to zero)
14	SSD_B	64 bits (set to zero)
15	The A-key may be entered into the	he mobile station by any of several
16	methods. These include direct elec	tronic entry, over-the-air procedures,
17	and manual entry via the mobile	station's keypad. This procedure
18	verifies the A-key entered into a mo	obile station via the keypad.
19	The default value of the A-key who	en the mobile station is shipped from
20	the factory will be all binary zeros.	The value of the A-key is specified
21	by the operator and is to be comm	unicated to the subscriber according
22	to the methods specified by each	operator. A multiple NAM mobile
23	station will require multiple A-ke	eys, as well as multiple sets of the
24	corresponding cryptovariables per	A-key.
25	While A-key digits are being enter	ed from a keypad, the mobile station
26	transmitter shall be disabled.	
27	When the A-key digits are entered	from a keypad, the number of digits
28	entered is to be at least 6, and ma	y be any number of digits up to and
29	including 26 digits. In a case when	e the number of digits entered is less
30	than 26, the leading most significa	nt digits will be set equal to zero, in
31	order to produce a 26-digit quantity	called the "entry value".
32	The verification procedure checks	the accuracy of the 26 decimal digit
33	entry value. If the verification	is successful, the 64-bit pattern
34	determined by the first 20 digits of	the entry value will be written to the
35	subscriber's semi-permanent memo	bry as the A-key. Furthermore, the
36	SSD_A and the SSD_B will be	e set to zero. The return value
37	A_KEY_VERIFIED is set to TH	RUE. In the case of a mismatch,
38	A_KEY_VERIFIED is set to FALS	SE, and no internal data is updated.
39	The first decimal digit of the "entry	y value" is considered to be the most
40	significant of the 20 decimal digits	, followed in succession by the other
41	nineteen. The twenty-first digit i	s the most significant of the check

	09/13/2000	Interface Specification for Common Cryptographic Algorithms, Revision D.1
1 2		digits, followed in succession by the remaining five. For example, the 26 digits
3		1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0, 1 3 1 1 3 6
4		has a hexadecimal equivalent of
5		A B 5 4 A 9 8 C E B 1 F 0 A D 2, 2 0 0 4 0.
6	2.2.	SSD Generation and Update
7		2.2.1. SSD Generation Procedure
8		Procedure name:
9		SSD_Generation
10		Inputs from calling process:
11 12		RANDSSD56 bitsESN32 bits
13		Inputs from internal stored data:
14		A-key 64 bits
15		Outputs to calling process:
16		None.
17		Outputs to internal stored data:
18 19		SSD_A_NEW64 bitsSSD_B_NEW64 bits
20 21 22		This procedure performs the calculation of Shared Secret Data. The result is held in memory as SSD_A_NEW and SSD_B_NEW until the SSD_Update procedure (§2.2.2) is invoked.

2.2.2. SSD Update Procedure

2	Procedure name:		
3	SSD_Update		
4	Inputs from calling process	:	
5	None.		
6	Inputs from internal stored	data:	
7	SSD A NEW	64 bits	
8	SSD_B_NEW	64 bits	
9	Outputs to calling process:		
10	None.		
11	Outputs to internal stored d	lata:	
12	SSD A	64 bits	
13	SSD_B	64 bits	
14	This procedure copies the	values SSD A NEW and SSD B NEW into	
15	the stored SSD_A and SSD	D_B.	
16	The values SSD A NEV	W and SSD B NEW calculated by the	
17	SSD Generation procedure	SSD Generation procedure ($\{2,2,1\}$) should be validated prior to storing	
18	them permanently as SSD	A and SSD_B. The base station and the	
19	mobile station should exch	hange validation data sufficient to determine	
20	that the values of the Share	that the values of the Shared Secret Data are the same in both locations.	
21	When validation is comple	ted successfully, the SSD_Update procedure	
22	is invoked, setting SSD_4	A to SSD_A_NEW and setting SSD_B to	
23	SSD_B_NEW.		

2.3. Authentication Signature Calculation Procedure

2	Procedure name:	
3	Auth_Signature	
4	Inputs from calling process:	
-	DAND CHALLENCE	22 hita
5	RAND_CHALLENGE	32 bits
6		32 bits
7	AUIN_DAIA	24 bits
8	SAVE REGISTERS	Boolean
9	SAVE_REDISTERS	Doorean
10	Inputs from internal stored data:	
11		(internal definition only)
12	Outputs to calling process:	
13	AUTH_SIGNATURE	18 bits
14	Outputs to internal stored data:	
15	Saved register data	(internal definition only)
	This was a low is used to sale lat	
16	the authenticity of measured used	to request wireless system services
17	and for varifying Shared Secret Date	
10	and for verifying Shared Secret Da	ta.
19	For authentication of mobile stat	tion messages and for base station
20	challenges of a mobile station,	RAND_CHALLENGE should be
21	selected by the authenticating er	ntity (normally the HLR or VLR).
22	RAND_CHALLENGE must be	received by the mobile station
23	executing this procedure. Results	returned by the mobile station should
24	include check data that can	be used to verify that the
25	RAND_CHALLENGE value used	by the mobile station matches that
26	used by the authenticating entity.	
27	For mobile station challenges of a	base station as performed during the
28	verification of Shared Secret Dat	a, the mobile station should select
29	RAND CHALLENGE. The selected value of RAND CHALLENGE	
30	must be received by the base station	n executing this procedure.
	W/here this proceeding is used to	and an authoritication is start of
31	when this procedure is used to get	include a part of the massage to be
32	a message, AUIH_DAIA should	menue a part of the message to be
24	possibility that other messages wo	uld produce the same authentication
35	signature	and produce the same authentication
36	SSD AUTH should be either SSI	D A or SSD A NEW computed by
37	the SSD_Generation procedure,	or SSD_A as obtained from the
38	HLR/AC.	—
20	If the colling process sets SAVE	DECISTEDS to TRUE the internal
39 40	in the calling process sets SAVE_	ACUISTERS WIRUE, the internal
40	for use in computing the encryption	on key and voice privacy mask (see
	ior use in computing the eneryptic	in hey and voice privacy mask (see

1 2 3			2.4). If the calling process sets SAVE_REGISTERS to FALSE, the contents of internal storage are not changed A means should be provided to indicate whether the internal storage contents are valid
4	2.4.	Secret Key	y and Secret Parameter Generation
5			This section describes four procedures used for generating secret keys
6 7			and other secret parameters for use in CMEA, Enhanced CMEA (ECMEA) and the voice privacy mask. The generation of distinct
8			secrets for ECMEA encryption of financial and non-financial messages
9			(e.g. user data) is addressed.
10			The first procedure uses SSD_B and other parameters to generate
11			• the secret CMEA key for message encryption, and
12			• the voice privacy mask.
13			The second procedure uses the secret CMEA key produced in the first
14			procedure to generate the secrets used by ECMEA to encrypt financial
15			messages.
16			The third procedure uses the secret CMEA key produced in the first
17			procedure to generate the secret non-financial seed key needed to start the fourth procedure
18			the fourth procedure.
19			The fourth procedure uses the secret non-financial seed key produced in
20			the third procedure to generate the secrets used by ECMEA to encrypt
21			For head and the state of the CMEA and the Content of the state of the
22			be executed. The secret CMEA key will exist in both the infrastructure
24			and the mobile station.
25			When ECMEA is implemented, the second, third, and fourth
26			procedures will be executed to produce the secret keys and parameters
27			needed to encrypt both financial and non-financial messages.

2.4.1. CMEA Encryption Key and VPM Generation Procedure

2	Procedure name:	
3	Key_VPM_Generation	
4	Inputs from calling process:	
5	None.	
6	Inputs from internal stored data:	
7	SSD B	64 hits
8	saved register data	(internal definition only)
9	(see §2.3)	(
10	Outputs to calling process:	
11	None.	
12	Outputs to internal stored data:	
13	CMEAKEY	64 bits
14	VPM	520 bits
15	This procedure computes the CM	EA key for message energition and
16	the voice privacy mask Prio	r to invoking this procedure the
17	authentication signature calculation procedure (§2.3) must have been	
18	invoked with SAVE REGISTERS set to TRUE. This procedure must	
19	be invoked prior to execution of th	e encryption procedure (§2.5).
20	For this procedure, the saved int	ernal variables to be used are those
21	from the last authentication signature calculation for which the calling	
22	process set SAVE_REGISTERS to true. This should generally be the	
23	authentication calculation for the	message that establishes the call for
24	which encryption and/or voice priv	vacy is to be invoked.

2.4.2. ECMEA Secrets Generation for Financial Messages 1 Procedure 2 Procedure name: 3 ECMEA Secret Generation 4 Inputs from calling process: 5 6 None. Inputs from internal stored data: 7 CMEAKEY 64 bits 8 Outputs to calling process: 9 None. 10 Outputs to internal stored data: 11 12 ECMEA KEY 64 bits OFFSET KEY 32 bits 13 The CMEA Encryption Key and VPM Generation Procedure defined in 14 §2.4.1 is used to generate a CMEA key on a per-call basis. ECMEA for 15 financial messages requires additional secret values to be generated on 16 a per-call basis. This procedure accomplishes this by running the CAVE 17 algorithm initialized by the original CMEA key (64 bits). 18 2.4.3. Non-Financial Seed Key Generation Procedure 19 Procedure name: 20 21 Non-Financial_Seed_Key_Generation 22 Inputs from calling process: None. 23 Inputs from internal stored data: 24 CMEAKEY 64 bits 25 Outputs to calling process: 26 None. 27 Outputs to internal stored data: 28 40 bits 29 SEED NF KEY The CMEA Encryption Key and VPM Generation Procedure defined in 30 §2.4.1 is used to generate a CMEA key on a per-call basis. A non-31 financial seed key is required before generating the ECMEA secrets for 32 non-financial messages. This procedure accomplishes this by running 33

the CAVE algorithm initialized by the original CMEA key (64 bits).

2.4.4. ECMEA Secrets Generation for Non-Financial Messages 1 **Procedure** 2 Procedure name: 3 Non-Financial Secret Generation 4 Inputs from calling process: 5 6 None. Inputs from internal stored data: 7 SEED_NF_KEY 40 bits 8 Outputs to calling process: 9 None. 10 11 Outputs to internal stored data: 12 ECMEA NF KEY 64 bits OFFSET NF KEY 32 bits 13 The Non-Financial Seed Key Generation Procedure defined in §2.4.3 is 14 used to generate a seed key on a per-call basis. ECMEA for non-15 financial messages requires additional secret values to be generated on 16

17

18

a per-call basis. This procedure accomplishes this by running the CAVE

algorithm initialized by the original seed key (40 bits).

2.5. Message Encryption/Decryption Procedures

1

2

2.5.1. CMEA Encryption/Decryption Procedure

3	Procedure name:	
4	Encrypt	
5	Inputs from calling process:	
6	msg_buf[n]	n*8 bits, $n > 1$
7	Inputs from internal stored data:	
8	CMEAKEY[0-7]	64 bits
9	Outputs to calling process:	
10	msg_buf[n]	n*8 bits
11	Outputs to internal stored data:	
12	None.	
13	This algorithm encrypts and decry	pts messages that are of length n*8
14	bits, where $n > 1$. Decryption is performed in the same manner as	
15	encryption.	
16	The message is first stored in an	n-octet buffer called msg buf[],
17	such that each octet is assigned to one "msg_buf[]" value.	
18	msg_buf [] will be encrypted and the encrypted values returned in the	
19	same storage buffer.	
20	This process uses the CMEA key t	o produce enciphered messages via a
21	unique CMEA algorithm. The CMEA key generation procedure is	
22	described in §2.4.	

2.5.2. ECMEA Encryption/Decryption Procedure

2	Procedure name:	
3	ECMEA	
4	Inputs from calling process:	
5	msg huffnl	n*8 hits $n > 1$
6	Svnc	16 bits
7	Decrypt	1 bit
8	Data_type	1 bit
9	Inputs from internal stored data:	
10	ECMEA KEY[0-7]	64 hits
11	offset_key[0-3]	32 bits
12	Outputs to calling process:	
13	msg_buf[n]	n*8 bits
14	Outputs to internal stored data:	
15	None.	
	This algorithm another and door	mts masses that are of longth at \$9
16	This argonullin encrypts and decrypts messages that are of length $\Pi^*\delta$ bits where $n > 1$	
17	ons, where $n > 1$.	
18	The message is first stored in an	n-octet buffer called msg buf[],
19	such that each octet is assigned to one "msg buf []" value. The input	
20	variable sync should have a unique value for each message that is	
21	encrypted. The same value of sync is used again for decryption.	
22	This process uses the ECMEA	eight-octet session key to produce
23	enciphered messages via an enhanced CMEA algorithm. The process	
24	of ECMEA key generation is descr	ribed in §2.4.2.
25	The decrypt variable shall be set to 0 for encryption, and to 1 for	
26	decryption.	
27	The data type variable shall be	e set to 0 for financial messages, and
28	to 1 for non-financial messages.	
29	ECMEA encryption of financial messages uses ECMEA key and	
30	offset_key.	
		ist managers uses FOMEA NE 1
31	and offset nf key	
52		

2.6. Wireless Residential Extension Procedures

This section describes detailed cryptographic procedures for wireless mobile telecommunications systems offering auxiliary services. These procedures are used to perform the security services of Authorization and Call Routing Equipment (ACRE), Personal Base (PB) and Mobile Station (MS) authentication.

2.6.1. WIKEY Generation

Procedure name:		
WIKEY_Generati	ion	
Inputs from calling proc	ess:	
MANUFACT_KE PBID	EY 122 bits 30 bits	
Inputs from internal stor	red data:	
AAV	8 bits	
Outputs to calling proce	SS:	
None.		
Outputs to internal store	ed data:	
WIKEY	64 bits	

21 permanent memory of the PB.

2.6.2. WIKEY Update Procedure

2	Procedure name:	
3	WIKEY_Update	
4	Inputs from calling process:	
5	RAND_WIKEY	56 bits
6	PBID	30 bits
7	Inputs from internal stored data:	
8	WIKEY	64 bits
9	AAV	8 bits
10	Outputs to calling process:	
11	None.	
12	Outputs to internal stored data:	
13	WIKEY_NEW	64 bits
14	This procedure is used to calculate	a new WIKEY value.

1	2.6.3. Wireli	ne Interface Authenticatio	on Signature Calculation
2	Proce	aure	
3		Procedure name:	
4		WI_Auth_Signature	
5		Inputs from calling process:	
6		RAND_CHALLENGE	32 bits
7		PBID	30 bits
8		ACRE_PHONE_NUMBER	24 bits
9		Inputs from internal stored data:	
10		WIKEY	64 bits
11		AAV	8 bits
12		Outputs to calling process:	
13		AUTH_SIGNATURE	18 bits
14		Outputs to internal stored data:	
15		None.	
16		This procedure is used to calculate	e 18-bit signatures used for verifying
17		WIKEY values.	
18		For authentication of an ACRE,	RAND_CHALLENGE is received
19		from the PB as RAND_ACRE.	
20		For authentication of a PB, RAND	CHALLENGE is received from the
21		ACRE as RAND_PB.	_
22		The ACRE_PHONE_NUMBER	is 24 bits comprised of the least
23		significant 24 bits of the ACRE's	directory number (4 bits per digit).
24		The digits 1 through 9 are repre	sented by their 4-bit binary values
26		a case where the number of ACRE	E directory number digits is less than
27		six, the leading most significant bi	ts of the ACRE_PHONE_NUMBER
28		will be set equal to binary zero.	For example, the ACRE directory
29		number	
30		(987) 654-3210	
31		has a binary ACRE_PHONE_NUM	IBER
32		0101 0100 0011 0010 0001 1010).
33		The ACRE directory number	
34		8695	
35		has a binary ACRE_PHONE_NUM	IBER of
36		0000 0000 1000 0110 1001 0101	l.

2.6.3. Wireline Interface Authentication Signature Calculation

1 2	2.6.4. Wireless Residential Extensi Calculation Procedure	on Authentication Signature
3	Procedure name:	
4	WRE_Auth_Signature	
5	Inputs from calling process:	
6	RAND WRE	19 bits
7	ESN -	32 bits
8	PBID	30 bits
9	Inputs from internal stored data	:
10	WRE_KEY	64 bits
11	AAV	8 bits
12	Outputs to calling process:	
13	AUTH_SIGNATURE	18 bits
14	Outputs to internal stored data:	
15	None.	
16	This procedure is used to calcu	late 18-bit signatures used for verifying
17	a mobile station.	

2.7. Basic Wireless Data Encryption

2 3 4	Data encryption for wireless data services is provided by the ORYX algorithm (as named by its developers) which is described in the following.	
5 6	ORYX comprises three procedures, of which the first two provide input to the third:	
7 8 9 10	• The DataKey Generation Procedure generates a DataKey. SSD_B provides the sole input to this procedure. If the data encryptor has access to SSD_B, DataKey may be generated locally. If not, DataKey is calculated elsewhere, then sent to the encryptor.	
11 12 13 14	In the network, this procedure executes at the initial serving system if SSD_B is shared or at the authentication center if SSD_B is not shared. DataKey may be precomputed when the mobile station registers.	
15 16 17 18 19	• The LTable Generation Procedure generates a lookup table. RAND provides the sole input to this procedure. L is generated locally. In the network, this procedure executes at the initial serving system, and after intersystem handoff, it may execute at subsequent serving systems.	
20 21	• The Data_Mask Procedure provides an encryption mask of the length requested by the calling process. It uses four inputs:	
22 23	1. DataKey from the DataKey Generation Procedure via the call- ing process;	
24	2. HOOK directly from the calling process;	
25	3. len directly from the calling process; and	
26	4. L as stored from the LTable Generation Procedure.	
27	The encryption mask is generated locally.	

2.7.1. Data Encryption Key Generation Procedure

2	Procedure name:
3	DataKey_Generation
4	Inputs from calling process:
5	None.
6	Inputs from internal stored data:
7	SSD_B 64 bits
8	Outputs to calling process:
9	DataKey 32 bits
10	Outputs to internal stored data:
11	None.
12 13	This procedure generates DataKey, a key used by the Data_Mask procedure (see 2.7.1.3).
14	The calculation of DataKey depends only on SSD_B, therefore DataKey may be computed at the beginning of each call using the
16	current value of SSD_B, or it may be computed and saved when SSD is
17	updated. The value of DataKey shall not change during a call.

2.7.2. L Table Generation Procedure

2	Procedure name:
3	LTable_Generation
4	Inputs from calling process:
5	RAND 32 bits
6	Inputs from internal stored data:
7	None.
8	Outputs to calling process:
9	None.
10	Outputs to internal stored data:
11	L 256*8 bits
12 13	This procedure generates L, a table used in the Data_Mask procedure (see 2.7.1.3).
14	The LTable_Generation procedure shall be executed at the beginning of each call and may be executed after intersystem handoff using the
16 17	value of RAND in effect at the start of the call. The value of L shall not change during a call.

2.7.3. Data Encryption Mask Generation Procedure

2	Procedure name:		
3	Data_Mask		
4	Inputs from calling process:		
5	DataKey	32 bits	
6	HOOK	32 bits	
7	len	integer	
8	Inputs from internal stored data:		
9	L	256*8 bits	
10	Outputs to calling process:		
11	mask	len*8 bits	
12	Outputs to internal stored data:	Outputs to internal stored data:	
13	None.		
14	This procedure generates an encry	ption mask of length len*8 bits.	
15	Implementations using data encry	ption shall comply with the following	
16	requirements. These requirements	requirements. These requirements apply to all data encrypted during a	
17	call.		
18	• The least-significant bits of H	• The least-significant bits of HOOK shall change most frequently.	
19	• A mask produced using a	value of HOOK should be used to	
20	encrypt only one set of data.		
21	• A mask produced using a va	alue of HOOK shall not be used to	
22	encrypt data in more than one	direction of transmission, nor shall it	
23	be used to encrypt data on mo	re than one logical channel.	
24	The DataKey and the look up	The DataKey and the look up table L must be computed prior to	
25	executing Data_Mask.	executing Data_Mask.	

2.8. Enhanced Voice and Data Privacy

This section defines key generation and encryption procedures for the following TDMA content: voice, DTC and DCCH messages, and RLP data.

There are three key generation procedures: DTC key schedule generation, DCCH key schedule generation, and a procedure that each of these call termed the SCEMA Secrets Generation. The DCCH key schedule is based on a CMEA Key instance which is generated at Registration and remains for the life of the Registration. The DTC key is generated from the CMEA Key on a per call basis.

The encryption procedures contained herein are grouped into three levels, where the higher level procedures typically call procedures from a lower level. Level 1 has one member: the SCEMA encryption algorithm. Level 2 contains three procedures: a Long Block Encryptor for blocks of 48 bits, a Short Block Encryptor for blocks less than 48 bits, and a KSG used in voice and message encryption. Level 3 contains voice, message, and RLP data encryption procedures which interface directly to TIA/EIA-136-510.

2.8.1. SCEMA Key Generation

This section describes the procedures used for generating secret key schedules for use in Enhanced Privacy and Encryption (EPE). Separate schedules are generated for the TDMA DTC (Digital Traffic Channel) and the DCCH (Digital Control Channel).

2.8.1.1. DTC Key Generation

1

19 20

2	
3	Procedure name:
4	DTC_Key_Generation
5	Inputs from calling process:
6	None.
7	Inputs from internal stored data:
8	CMEA Key (implicitly)
9	Outputs to calling process:
10	None.
11	Outputs to internal stored data:
12 13 14	dtcScheds[] DTC key schedule structure
15 16 17 18	This procedure creates an array of DTC key schedule structures. Currently, the array contains a single element but allows the option to be extended in the future to accommodate multiple key schedules of different strengths.

dtcScheds[0] is generated from the CMEA Key. In TIA/EIA-136-510, this 45-octet schedule is termed DTCKey.

2.8.1.2. DCCH Key Generation

2		
3	Procedure name:	
4	DCCH_Key_Generation	
5	Inputs from calling process:	
6	None.	
7	Inputs from internal stored data:	
8	CMEA Key (implicitly)	
9	Outputs to calling process:	
10	None.	
11	Outputs to internal stored data:	
12	dcchScheds[]	DCCH key schedule structure
13		-
14		
15	This procedure creates an array o	f DCCH key schedule structures.
16	Currently, the array contains a single element but allows the option to	
17	be extended in the future to accommodate multiple key schedules of	
18	different strengths.	
19	dcchScheds[0] is generated from the	CMEA Key. In TIA/EIA-136-510,
20	this 45-octet schedule is termed DCC	CHKey.

2.8.1.3. SCEMA Secret Generation

2		
3	Procedure name:	
4	SCEMA_Secret_Genera	ation
5	Inputs from calling process:	
6	None.	
7	Inputs from internal stored dat	ta:
8	CMEAKEY[0-7]	64 bits
9	Outputs to calling process:	
10	None.	
11	Outputs to internal stored data	i:
12	SCEMA_KEY [0-7]	64 bits
13	oboxSchedFin[0-15]	16 words (256 bits)
14	offKeyAuxFin[0-1]	2 words (32 bits)
15		
16	The CMEA Encryption Key	and VPM Generation Procedure, defined
17	in section 2.5.1, is used to ge	enerate a CMEA key on a per-call basis.
18	SCEMA requires additional se	ecret values to be generated on a per-call
19	or per-registration basis. This	procedure accomplishes this by running
20	the CAVE algorithm initialized	d by the original CMEA key (64 bits).

2.8.2. SCEMA Encryption/Decryption Procedure (Level 1)

2	Procedure name:	
3	SCEMA	
.	JULIVIA	
4	Inputs from calling process:	
5	msg_buf[n]	n*8 bits, $n > 2$
6	csync[0-1]	32
7	id	1 octet
8	idMask	1 octet
9	decrypt	1 bit
10	schedPtr	pointer to key schedule
11		containing scemaKey, obox,
12		offKey, and neededLength
13	Inputs from internal stored data:	
14	None.	
15	Outputs to calling process:	
		*0.1.1.
16	msg_but[n] n	*8 bits
17	Outputs to internal stored data:	
18	None.	
19	This algorithm encrypts and decrypt octets where $n > 2$	ots messages that are of length n
20		
21	The message is first stored in an n	-octet buffer called msg_buf[],
22	such that each octet is assigned to on	e "msg_buf []" value. The input
23	variable csync should have a uniq	ue value for each message that is
24	encrypted, with the portion that varie	es quickly in its lower 16 bits. The
25	same value of csync is used again to	or decryption.
26	The parameters id and idMask allow	the internal copy of the top octet
27	of cryptosync to be forced to a given	n value. idMask defines which bits
28	are forced, and id defines the values	s of those bits. These inputs allow
29	differentiation of scema instances.	In particular, the following are
30	differentiated: instances within a s	single procedure, and those with
31	attacks is prevented that was recurring	a energy doing this, a class of
33	well-known member of this class are	replay attacks
		repraj atmonto.
34	This SCEMA procedure uses the SC	CEMA variable-length session key
35	to produce enciphered messages vi	a an enhanced CMEA algorithm.
36	I ne process of SUMEA key generation	on is described in §2.8.1.
37	The decrypt variable shall be set	to 0 for encryption, and to 1 for
38	decryption.	
39	SCEMA is given a pointer, sched	Ptr. to the desired key schedule
40	structure. The structure contains the	e following elements: *scemaKev.
41	*obox, *offKey, and neededLength	The first three are pointers to keys

1	(cryptovariables). The fourth, neededLength, generally corresponds to
2	the true entropy of the key. A key generation mechanism may be
3	implemented such that it outputs the scemaKey into a constant buffer
4	size, independent of the true strength of the key. This parameter allows
5	SCEMA to track the true strength of the key, which in turn allows for
6	faster operation with lower strength keys.

2.8.3. Block and KSG Encryption Primitives (Level 2)

These Level 2 primitives call SCEMA at Level 1 and are called by the voice privacy and message encryption procedures at Level 3.

2.8.3.1. SCEMA KSG

5	Procedure name:	
6	SCEMA_KSG	
7	Inputs from calling process:	
8	keystreamBuf[n]	n octets, 1 <= n <= 256
9	requestedStreamLen	1 - 256
10	inputBuf[n]	1 - 6 octets
11	inputLen	1 octet
12	contentType	1 octet defining voice or message
13	schedPtr	pointer to SCEMA key schedule
14	direction	l bit
15	Inputs from internal stored data:	
16	None.	
17	Outputs to calling process:	
18	keystreamBuf [n]	n octets, 1 <= n <= 256
19	Outputs to internal stored data:	
20	None.	
21	This encryption primitive general	tes a buffer of keystream of length
22	requestedStreamLen based on the	value of input buffer inputBuf[n] of
23	length inputLen. It runs SCEMA in a KSG mode where the input is fed	
24	to both SCEMA's PT (plaintext) in	put and its CS (cryptosync) input.
25	The content type variable allow	s it to generate unique keystream
26	depending upon whether it is	used in voice privacy or message
27	encryption. (This primitive is not	called in RLP encryption (Enhanced
28	Data Encryption).)	
29	The pointer schedPtr is the SCE	MA key schedule pointer described
30	earlier in Section 2.8.2.	· 1
31	Direction indicates either the for	ward channel by 1, or the reverse
32	channel by 0.	

2.8.3.2. Long Block Encryptor

2	Procedure name:		
3	Long_Block_Encryptor		
4	Inputs from calling process:		
5	contentBuf[n]	6 octets	
6	contentType	1 octet defining voice or message	
7	decrypt	1 bit	
8	schedPtr	pointer to SCEMA key schedule	
9	direction	1 bit	
10	Inputs from internal stored da	ta:	
11	None.		
12	Outputs to calling process:		
13	contentBuf [n]	6 octets	
14	Outputs to internal stored data	a:	
15	None.		
16	This encryption primitive bloc	ck encrypts or decrypts a 6-octet buffer by	
17	running three instances of SC	EMA. The content type variable allows it	
18	to generate unique keystrear	n depending upon whether it is used in	
19	voice privacy or message en	voice privacy or message encryption. (This primitive is not called in	
20	RLP encryption (Enhanced D	ata Encryption).)	
21	The parameter decrypt is set t	to 0 for encryption and 1 for decryption. It	
22	is needed here to determine	e the instance id number. This number	
23	uniquely identifies the partic	cular SCEMA instance to prevent certain	
24	types of attacks.		
25	The pointer schedPtr is the	SCEMA key schedule pointer described	
26	earlier in Section 2.8.2.		
27	Direction indicates either th	e forward channel by 1, or the reverse	
28	channel by 0.		

2	Procedure name:	
3	Short_Block_Encryptor	
4	Inputs from calling process:	
5	contentBuf[n]	1 - 6 octets, 1 – 47 bits
6	numBits	1 - 47 number of content bits in
7	a antant Trima	contentBuf buffer
8 9	entropy[4]	4 octets of possible added entropy
10	decrypt	1 bit
11	schedPtr	pointer to SCEMA key schedule
12	direction	1 bit
13	Inputs from internal stored data:	
14	None.	
15	Outputs to calling process:	
16	contentBuf [n]	1 - 6 octets, 1 – 47 bits
17	Outputs to internal stored data:	
18	None.	
19	This encryption primitive block e	encrypts or decrypts a 1- to 6 octet
20	buffer that contains a minimum of	of 1 bit and a maximum of 47 bits.
21	(48 bits are also acceptable but the	Short Block Encryptor will never be
22	called with this amount since the 48 bits	e Long Block Encryptor is used for
23	48 bits.)	
24	The contentType parameter allo	we the Short Block Encryptor to
25	generate unique keystream depend	ling upon whether it is used in voice
26 27	encryption (Enhanced Data Encryp	ption).)
28	The entropy parameter is used in	n for message encryption where the
29	variables Message Type, and RAI	ND (for DCCH only) provide added
30	entropy to the encryption.	
31	The parameter decrypt is set to 0 f	or encryption and 1 for decryption. It
32	is needed here to determine the	e instance id number. This number
33	uniquely identifies the particular	SCEMA instance to prevent certain
34	types of attacks.	
35	The pointer schedPtr is the SCE	MA key schedule pointer described
36	earlier in Section 2.8.2.	
37	The direction parameter indicates	either the forward channel by 1, or
38	the reverse channel by 0.	

2.8.4. Voice, Message, and Data Encryption Procedures (Level 3)

These top-level procedures interface directly TIA/EIA-136-510 and call the Level 2 procedures and, in the case of Enhanced Data Encryption only, the Level 1 (SCEMA) procedure.

6 2.8.	4.1. Enhanced Voice Privacy	
7	Procedure name:	
8	Enhanced_Voice_Privacy	
9	Inputs from calling process:	
10	coderVer	0, 1, 2, etc.
11	speechBuf1[n]	n octets, 1 <= n <= 256
12	num1aBits	n >= 1
13	speechBufRem [n]	n octets, $0 \le n \le 256$
14	numRemBits	$n \ge 0$
15	decrypt	1 bit
16	keyGenerator	1,2,3, etc.
17	direction	1 bit
18	Inputs from internal stored data:	
19	None.	
20	Outputs to calling process:	
21	speechBuf1[n]	n octets. 1 <= n <= 256
22	speechBufRem [n]	n octets, $0 \le n \le 256$
	1 1 1	,
23	Outputs to internal stored data:	
24	None.	
25	This Level 3 procedure encrypt	s or decrypts a frame of speech. The
26	frame is separated into two bu	ffers, speechBufl and speechBufRem.
27	containing speech coders' Class	s 1A and remaining (Class 1B and 2)
28	bits, respectively. Class 1A bits a	are those that are protected by a CRC in
29	the speech coder algorithm. Th	e respective numbers of these bits are
30	numlaBits and numRemBits.	1
31	The parameter coderVer is set to	0 in TIA/EIA-136-510 and is not used
32	here. It comprises a hook in c	ase the CCA would ever need to be
33	revised in the future due to a s	peech coder architecture incompatible
34	with this current procedure.	
35	The parameter decrypt is set to	0 for encryption and 1 for decryption.
36	The encryptor and decryptor are	chitectures are not isomorphic and thus
37	the decryptor parameter is neede	d to select the architecture.
38	The parameter keyGenerator is	currently set to 1 in TIA/EIA-136-510
39	to indicate CaveKey1, a key s	chedule based on the current CAVE

1 2	algorithm running at its full strength. Internal to this procedure, the parameter is used to point to the DTCKey CaveKey1.
3 4	Direction indicates either the forward channel by 1, or the reverse channel by 0 .
5 6 7 8 9	If the number of Class 1A bits is 48, then this procedure calls the Long Block Encryptor for these bits. If the number is greater than 48, the excess above 48 are encrypted by the SCEMA KSG. However, prior to encryption, their entropy is folded in to the first 48 bits that are encrypted by the Long Block Encryptor.
10 11	If the number of Class 1A bits is less than 48, these bits are encrypted by the Short Block Encryptor.
12 13	The remaining bits are encrypted by the SCEMA KSG using the Class 1A ciphertext as input (entropy).

2.8.4.2. Enhanced Message Encryption

2	Procedure name:	
-		
3	Enhanced_Message_Encrypt	ion
4	Inputs from calling process:	
5	msgBuf [n]	n octets, 1 <= n <= 256
6	numBits	n >= 1
7	dcchDTC	1 bit
8	rand[4]	4 octets
9	msgType	1 octet
10	decrypt	1 bit
11	keyGenerator	1,2,3, etc.
12	direction	1 bit
13	Inputs from internal stored data:	
14	None.	
15	Outputs to calling process:	
16	msgBuf[n]	n octets, 1 <= n <= 256
17	Outputs to internal stored data:	
18	None.	
19	This Level 3 procedure encrypts of	or decrypts the Layer 3 content of a
20	message as a whole. The message	and its number of bits are denoted by
21	the parameters msgBuf and numBi	ts respectively.
22	The parameter dcchDTC indicates	to this procedure whether messages
23	are on the DCCH channel (dcch	DTC = 0), or on the DTC channel
24	(dcchDTC = 1). For DCCH encrypt	otion only, the value rand is used for
25	added entropy in addition to ms	sgType (Message Type). For DTC
26	encryption, only msg l ype is used.	
27	The parameter decrypt is set to 0	for encryption and 1 for decryption.
28	The encryptor and decryptor archi	tectures are not isomorphic and thus
29	the decryptor parameter is needed t	to select the architecture.
30	The parameter keyGenerator is cu	rrently set to 1 in TIA/EIA-136-510
31	to indicate CaveKey1, a key sch	edule based on the current CAVE
32	algorithm running at its full stren	ngth. Internal to this procedure, the
33	parameter is used to point to	the DTC CaveKey1 key schedule
34	(DTCKey) for DTC messages,	and to the DCCH CaveKey1 key
35	schedule (DCCHKey) for DCCH n	nessages.
36	Direction indicates either the for	ward channel by 1, or the reverse
37	channel by 0.	
38	If the number of message bits is 4	8, then this procedure calls the Long
39	Block Encryptor for these bits. If	this number is greater than 48, the
40	excess above 48 are encrypted by	the SCEMA KSG. However, prior to

1 2	encryption, their entropy is folded in to the first 48 bits that are encrypted by the Long Block Encryptor.
3 4	If the number of message bits is less than 48, these bits are encrypted by the Short Block Encryptor.

1 2 Procedure name: Enhanced Data Mask 3 Inputs from calling process: 4 mask[len] len octets 5 HOOK 32 bits 6 $1 \le len \le 256$ len 7 keyGenerator 1,2,3, etc. 8 Inputs from internal stored data: 9 None. 10 Outputs to calling process: 11 mask[len] len octets 12 Outputs to internal stored data: 13 None. 14 15 Enhanced data encryption for 136 wireless data services is provided by 16 running SCEMA in the encrypt mode as a KSG. This procedure generates an encryption mask of length len octets, between 1 and 256 17 inclusive. A pointer for the output value "mask" buffer containing 18 keystream mask of length len octets. 19

2.8.4.3. Enhanced Wireless Data Encryption

HOOK is a 32-bit value that serves as cryptosync, and is input both to SCEMA's cryptosync input and repeated across its plaintext field.

The parameter keyGenerator is currently set to 1 in TIA/EIA-136-510 to indicate CaveKey1, a key schedule based on the current CAVE algorithm running at its full strength. Internal to this procedure, the parameter is used to point to the DTC CaveKey1.

Internal to this procedure is a mechanism for differentiating this keystream from that produced by other uses of SCEMA in the KSG mode. To accomplish, it uses the identifier RlpContent.

29

20

21

22

23

24

25

26

27