
iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 1 of 44

iPhone/iPod Touch Forensics Manual

Jonathan A. Zdziarski
32 West Dr., Bedford NH 03110
jonathan@zdziarski.com

Copyright © 2008 by Jonathan Zdziarski, All Rights Reserved
Document Rev. 13; June 2, 2008
Device Firmware 1.0.2 – 1.1.4

ACKNOWLEDGEMENTS

Many thanks to Forensic Agent David C. Graham for his validation work and Windows platform
testing/troubleshooting, to Youssef Francis and Pepjin Oomen for accommodating my change
requests to adapt iLiberty+ for forensic purposes, to Arnaldo Viegas de Lima for Windows
platform troubleshooting and support, and to the iPhone Dev Team for ongoing research in legal,
ethical techniques for accessing the iPhone/iPod touch platforms.

REDISTRIBUTION AND CONFIDENTIALITY

The contents of this document are confidential information and intended only for authorized public
law enforcement personnel. Permission is hereby granted to redistribute this document in its
original form TO PUBLIC LAW ENFORCEMENT PERSONNEL ONLY. All other redistribution is
strictly prohibited without written consent. If you are not authorized to view this document, you are
hereby instructed to destroy its electronic contents and destroy or transfer any physical materials
to authorized personnel.

UPDATES

Periodic updates of this document are provided free of charge to public law enforcement
personnel. To subscribe to receive future updates, send an email to the author from a verifiable
public law enforcement account.

DISCLAIMER

THE CONTENTS PROVIDED IN THIS MANUAL ARE INTENDED FOR LAWFUL PURPOSES
ONLY. THE AUTHOR DISCLAIMS ALL RESPONSIBILITY FOR ANY DAMAGES CAUSED BY
USE OR MISUSE OF THE INSTRUCTIONS IN THIS MANUAL, INCLUDING BUT NOT LIMITED
TO PHYSICAL DAMAGE, LOSS OF DATA, LOSS OF EVIDENCE, LIABILITY INCURRED,
VOIDED WARRANTY, OR ANY OTHER DAMAGES. THE AUTHOR MAKES NO GUARANTEES
OF FITNESS OR MERCHANTABILITY FOR A PARTICULAR PURPOSE.

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 2 of 44

Table of Contents

IPHONE/IPOD TOUCH FORENSICS MANUAL 1

TABLE OF CONTENTS 2

INTRODUCTION 4

What You’ll Need 5

Contacting Me 5

ABOUT THE IPHONE 6

Determining the Firmware Version 6

Disk Layout 6

Communication 7

PowerOn Device Modifications (Disclosure) 8

Upgrading the iPhone Firmware 9

Restore Mode and Integrity of Evidence 9

CrossContamination of Evidence and Syncing 10

ACCESSING THE DEVICE 11

Installing the Forensic Toolkit 11
Step 1: Download and Install iLiberty+ 11
Step 2: Dock the iPhone and Launch iTunes 12
Step 3: Launch iLiberty+ and Ensure Connectivity 12
Step 4: Configure for Forensic‐Toolkit Payload 13

Step 5: Execute the Payload 15

Configuring WiFi and SSH 16
Ad‐Hoc Networks 16
Configuring Wireless (Device) 17
SSH into the iPhone 17

Installation Record (Disclosure) 17

Circumventing Passcode Protection 19

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 3 of 44

Step 1: Download the Passcode Bypass RAM disk 20
Step 2: Use iPHUC to Enter Recovery Mode 20
Step 3. Upload and Boot the Passcode Bypass RAM Disk 20

PERFORMING FORENSIC RECOVERY 22

Recovering the Media Partition 22
Mounting Read‐Only 22
Unencrypted Recovery of the Media Partition 22
Encrypted Recovery of the Media Partition 23

File Recovery Using Foremost /Scalpel 25
Configuring Foremost for iPhone Recovery 25
Scanning With Foremost/Scalpel 27
Finding Valid Images with ImageMagick 27
Graphical File Analysis 28
Images of Interest 29

ELECTRONIC DISCOVERY 31

SQLite 31
Opening a database 31
Querying the database 31

Property Lists 32

Important Files 32

Recovery of Google Maps® Tiles 35

DESKTOP TRACE 36

Proving Trusted Pairing Relationships 36
Pairing Records 36
Serial Number Records 37

Device Backups 37

Activation Records 39

TECHNICAL PROCEDURE 40

Source Code Examples 41

REVISION HISTORY 44

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 4 of 44

Introduction

With the iPhone quickly becoming the market leader in mobile devices, the need to effectively
perform forensic analysis of these devices has surfaced. Unlike most other smart phones, the
iPhone incorporates desktop-like features in an easy-to-use mobile package. As a result of its
wide spectrum of available features, many are likely to use it as a primary device for various
forms of data and communication. While limited portions of data can be viewed using the direct
GUI interfaces in the iPhoneʼs software, much more hidden and deleted data is available by
examining the raw disk image, which may provide for more thorough evidence gathering. Some of
the data available includes:

• Keyboard caches containing usernames, passwords, search terms, and historical
fragments of typed communication. Even after deleted, many keyboard caches can be
easily recovered, even after several weeks.

• “Last state” screenshots automatically taken as an application is quit, suspended or
terminated (used for aesthetic effects)

• Deleted images from the userʼs photo library and browsing cache

• Deleted address book entries, and other personal data

• Exhaustive call history, beyond that displayed

• Map tile images from Google® Maps application, and longitude/latitude coordinates of
previous map searches (including location lookups)

• Browser cache and deleted browser objects

• Cached and deleted email messages, SMS messages, and corresponding time stamps
and source/destination.

• Cached and deleted voicemail recordings

• Pairing records establishing trusted relationships between the device and one or more
desktop computers

… most data survives even a full restore from iTunes!

Because the device is designed to provide for more than adequate storage needs, and because
much of the content installed on the device remains static (such as music), the integrity of this
data can be preserved for long periods of time. As the device uses a solid-state flash memory, it
is designed to minimize writes, and sometimes even appears to spread out writes across the
flash, thus leaving data intact for long periods of time.

This manual is designed as an aide for lawful, warranted forensic analysis to recover this and
other data from what is an otherwise closed device, using publicly available third-party tools and
customized proprietary tools packaged into a toolkit. It is by no means a complete forensic
manual, but intended to cover the details that are specific to the iPhone. The technical notes in
this manual should be combined with best practices in forensic investigation including handling of
digital evidence, cross-contamination, and process disclosure.

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 5 of 44

What You’ll Need
• A desktop/notebook machine running either Mac OS X Leopard or Windows XP. The

tools used are also compatible with Tiger and Vista, but are not as widely tested. File
paths for desktop trace have been provided for Mac OS X, Windows XP and Windows
Vista. Examples in this document are also provided for both Mac and Windows operating
systems. Due to the nature of the iPhone and its native HFS+ file system, however, it is
by far easiest to analyze such a device using a Leopard-based Mac.

• An iPhone USB dock connector or cable. This will be required to install the forensics
recovery toolkit into a nondestructive location on the device and to keep the device
charged during the recovery process.

• Working WiFi on your desktop machine and an access point which both the iPhone and
the desktop can connect to (preferably securely). In the absence of an isolated access
point, links to instructions for creating ad-hoc networks are included. In most cases, disk
copy can be performed over an SSH tunnel to further secure the data while in transit.

• An implementation of SSH (Secure Shell) on your desktop, including ssh and scp tools.

• iTunes from Apple. Version 7.6 was used for this manual, but other versions are likely to
work as well. Source code examples will require a copy of the iTunes version 7.4.2
mobile device framework.

• Adequate disk space on the desktop machine to contain copies of the iPhoneʼs media
partition and extracted content. The minimum recommended space is three times the
deviceʼs advertised capacity.

• General knowledge of UNIX and computer forensic methodology. Procedure is not
covered here, only technical details, and so regardless of the quality of data recovered, it
will be inadmissible if not properly preserved and documented.

Contacting Me
Sworn law enforcement officers and forensic investigators are welcome to contact me with any
questions or suggested improvements at jonathan@zdziarski.com. I am also equipped to handle
examination requests if needed.

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 6 of 44

About the iPhone

The iPhone is a mobile device designed and marketed by Apple Inc. Different models may vary,
however the following components are most commonly used:

• Application Processor (CPU): Samsung/ARM S5L8900B01 512Mbit SRAM
• EDGE Baseband Processor: Infineon PMB8876 S-Gold 2
• GSM RF Transceiver: Infineon M1817A11
• MLC NAND Flash Memory: Samsung 65-nm 8/16GB (K9MCG08U5M), 4GB

(K9HBG08U1M)  
• GSM/EDGE Power Amplifier: Skyworks SKY77340-13
• WLAN Device chip: Marvell 90-nm 88W8686  
• I/O Controller Chip: Broadcom BCM5973A
• Wireless NOR Flash Memory: Intel PF38F1030W0YTQ2 (32Mbytes NOR + 16Mbytes

SRAM)
• Audio Codec Processor: Wolfson WM8758
• Bluetooth Device Chip: CSR BlueCore 4 ROM  
• Touchscreen Processor: Philips LPC2221/02992

The iPhone runs a mobile build of Mac OS X 10.5 (Leopard), which has many similarities to its
desktop counterpart. The primary differences are the architecture, user interface frameworks, and
its use of a secure (although now exploited) kernel, designed to prevent tampering. The kernel
itself is mapped into the file system, but believed to actually reside in a different location in the
NOR.

In an effort to unlock the device and develop third-party software, the iPhone has become the
subject of many hacker groups and developers. Many techniques have been found to access its
operating system and lower-level components as a result of this. This has led to a significant
software development community and the development of many tools, some of which will be used
in this manual. Also used will be a custom forensics recovery toolkit for the iPhone consisting of
OpenSSH, a basic UNIX world, and disk and network copy tools built for the iPhoneʼs ARM
architecture using an open source cross-compiler.

Determining the Firmware Version

To determine the version of operating firmware installed on the device, tap on the settings
icon, then select General > About. The version number will be displayed with a build number in
parenthesis. Before proceeding, ensure that the firmware version of the device falls within the
range of versions supported by this document.

Disk Layout
By default, the iPhone is configured with two disk partitions. A system (root) partition
approximately 300MB in size is used to house the operating system and preloaded applications,
while the remaining available space is assigned to a user “media” partition mounted at
/private/var. This scheme was used to allow iTunes to perform easy upgrades of the
operating firmware without erasing user data.

The system partition is mounted as read-only by default, meaning it will remain in a factory state
unless intentionally modified. As a result of this design, all user information (such as keyboard

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 7 of 44

cache, contacts, browser data, and other user information) is stored on the separate media
partition. The device nodes are as follows:

Block Devices:
brw-r----- 1 root operator 14, 0 Apr 7 07:46 /dev/disk0 Entire Disk
brw-r----- 1 root operator 14, 1 Apr 7 07:46 /dev/disk0s1 System (/)
brw-r----- 1 root operator 14, 2 Apr 7 07:46 /dev/disk0s2 Media (/private/var)

Raw Devices:
crw-r----- 1 root operator 14, 0 Apr 7 07:46 /dev/rdisk0 Entire Disk
crw-r----- 1 root operator 14, 1 Apr 7 07:46 /dev/rdisk0s1 System (/)
crw-r----- 1 root operator 14, 2 Apr 7 07:46 /dev/rdisk0s2 Media (/private/var)

The techniques used in this manual will use tools to mount the system (root) partition as read-
write and install a recovery toolkit payload to gain access to the iPhoneʼs operating system.
Because the system partition is not designed to store user data, this operation is considered to be
safe for conducting forensic analysis, as it leaves the media partition (including free space and
deleted files) intact.

Communication
The iPhone can communicate across several different mediums, including serial (via AFC
protocol), 802.11 WiFi, and Bluetooth. Due to Bluetooth limitations at the operating system level,
the two preferred methods are via AFC and WiFi.

The AFC protocol (Apple File Connection) is the protocol used by iTunes to copy files to/from the
device and to send firmware-level commands. This takes place over the deviceʼs USB dock
connector, and uses a private MobileDevice framework installed with iTunes. Third party tools
have been written to use this framework to perform ad-hoc operations using this protocol. By
default, the environment that AFC is permitted to access on the iPhone is restricted to its
/var/mobile/Media folder (/var/root/Media for software versions <= 1.1.2). This prevents
iTunes, as well as third-party tools, from accessing lower-level areas of the operating system
without modification. This is commonly referred to as a chroot jail. The term jailbreaking originated
from the very first iPhone modifications to break out of this restricted jail, allowing AFC to be used
to read and write files anywhere on the device. The AFC protocol will be used by some of the
tools outlined in this manual to place the device into recovery mode and install the recovery toolkit
on the system partition.

Because the AFC protocol does not support reading from raw devices, it will not be used for the
actual disk image recovery process. Instead, once access has been made to the iPhone, raw disk
imaging will be conducted over WiFi. This allows network tools, such as OpenSSH, to be installed
on the device, allowing the examiner to gain shell access directly and perform various functions.

The AFC protocol can, in fact, be tricked into transferring raw device data across the
USB, however the procedure is very ad-hoc and therefore questionable. As a result, it
would be difficult for a jury to understand. Transferring files over a secure wireless
connection is a much more widely understood technique, and provides for a more
credible level of integrity in raw device recovery as it uses standard protocols and proper
integrity checks.

To ensure evidentiary integrity, it is recommended that the disk imaging process be
conducted across a WPA-keyed encrypted access point, even when using the file copy
example occurring over an encrypted tunnel. Transfer across a WEP-keyed access point
could potentially raise questions about WEP’s initialization vector vulnerability, allowing

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 8 of 44

a malicious third party to deduce the network key, thereby making tampering a
possibility, albeit unlikely.

Power‐On Device Modifications (Disclosure)
By default, the iPhoneʼs file system is mounted with the noatime option, even if it is not specified
in /etc/fstab. This option prevents access times from being updated when a file is accessed on the
device, meaning that files will only be touched when they are opened for writing.

Until a method is devised that would allow the iPhoneʼs memory chip to be physically dumped or
mounted on another device, the iPhone must be powered on and booted into its operating system
to recover data. Furthermore, the forensic toolkit requires that the device be rebooted after the
toolkit payload is installed. Just like a desktop operating system, the iPhoneʼs Leopard operating
system performs minor writes to certain files upon booting. Most writes are performed to replace
or reset existing configuration files, which do not generally add any utilized space to the file
system. Some writes, however, append a very minor amount of data to files. Overall, the writes to
the file system are minimal, but documented here as they are changes involving the media
partition.

Filename Est. Magnitude of Change

/private/var/log/lastlog 28 bytes overwritten

/private/var/mobile/Library/Preferences/com.apple.voicemail.plist 1275 bytes overwritten

/private/var/preferences/csidata 121 bytes overwritten

/private/var/run/configd.pid 3 bytes overwritten

/private/var/run/resolv.conf 76 bytes overwritten

/private/var/root/Library/Lockdown/data_ark.plist 3252 bytes overwritten

/private/var/tmp/MediaCache/diskcacherepository.plist 320 bytes overwritten

/private/var/log/wtmp 144 bytes appended

/private/var/mobile/Library/Voicemail/_subscribed Modification time updated

/private/var/mobile/Library/Voicemail/voicemail.db 7168 bytes overwritten

/private/var/preferences/SystemConfiguration/...

 NetworkInterface.plist 783 bytes overwritten

 com.apple.AutoWake.plist 730 bytes overwritten

 com.apple.network.identification.plist 1305 bytes overwritten

 com.apple.wifi.plist 2284 bytes overwritten

 preferences.plist 4380 bytes overwritten

On iPhone firmware versions <= 1.1.2, the mobile directory is replaced with root

In addition to the files above, the following files may be written to or recreated by logging into the
device, causing the following changes to take place:

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 9 of 44

Filename Est. Magnitude of Change

/private/var/run/utmp 468 new bytes written/replaced

/private/var/run/utmpx 1256 new bytes written/repalced

Upgrading the iPhone Firmware
Apple provides periodic firmware updates, which update the operating system, radio baseband,
and possibly other device firmware of the iPhone. Thus far, these updates have not resulted in
the loss of any live user data, but do frequently rename files and may occasionally write new ones
to the media partition. It is therefore advisable not to update the iPhoneʼs firmware for forensic
purposes, except as a last resort. This will only be required if the device is running an older
version of the firmware than is supported by this manual (1.0.0 or 1.0.1), and if no other suitable
techniques are available to access these older firmware versions in a nondestructive manner.

To upgrade the iPhone firmware to the latest version, use the update button available in iTunes.
If the most recent version of device firmware is not supported in this manual, the closest
supported version may be downloaded manually and installed by using Option+Click (Mac) or
Shift+Click (Windows) when using the update button. This will allow the examiner to select
the desired firmware file to upgrade to.

This manual covers a wide range of iPhone software versions. Do not upgrade the
iPhone’s firmware unless absolutely necessary. If an upgrade is required, use the closest
supported version to the currently installed version.

The following supported iPhone firmware updates can be downloaded from Appleʼs cache
servers:

1.0.2 http://appldnld.apple.com.edgesuite.net/content.info.apple.com/iPhone/061-
3823.20070821.vormd/iPhone1,1_1.0.2_1C28_Restore.ipsw

1.1.1 http://appldnld.apple.com.edgesuite.net/content.info.apple.com/iPhone/061-
3883.20070927.In76t/iPhone1,1_1.1.1_3A109a_Restore.ipsw

1.1.2 http://appldnld.apple.com.edgesuite.net/content.info.apple.com/iPhone/061-
4037.20071107.5Bghn/iPhone1,1_1.1.2_3B48b_Restore.ipsw

1.1.3 http://appldnld.apple.com.edgesuite.net/content.info.apple.com/iPhone/061-
4061.20080115.4Fvn7/iPhone1,1_1.1.3_4A93_Restore.ipsw

1.1.4 http://appldnld.apple.com.edgesuite.net/content.info.apple.com/iPhone/061-
4313.20080226.Sw39i/iPhone1,1_1.1.4_4A102_Restore.ipsw

See Appleʼs iTunes documentation for more information about updating the iPhone firmware.

Restore Mode and Integrity of Evidence
User data is typically preserved when the “update” option is used via iTunes, however a suspect
may attempt to destroy the file system by using the iTunes restore function. When restored, the
file system is destroyed, however the NAND itself is not initialized and so much of the data should
still be recoverable following the recovery steps outlined in this manual. In addition to this, the
deviceʼs previous configuration may have been intentionally restored after the firmware has been
re-flahed, providing a full “live” backup of basic data. A backup of the deviceʼs files may also have
been written to the desktop machine that performed a sync or restore. See the section titled
Desktop Trace for more information.

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 10 of 44

Simply placing a device into restore mode does not destroy the file system. A fleeing suspect may
attempt such a feat if they are aware of incriminating evidence on their device by holding down
the Home and Power buttons on the iPhone until a Connect to iTunes message and/or icon is
displayed. The forensic examiner might also accidentally enter the device into restore mode if a
mistake is made during the recovery process, or if an unforeseen interruption occurs. DO NOT
PANIC. When the device is placed into restore mode, all data still remains intact. In restore mode,
the device can in fact be made to boot back into the operating system without a loss of data,
provided the user has initiated the recovery process via iTunes to re-image the device. If the
iPhone is simply sitting in restore mode and has not been re-imaged from iTunes, it will need to
be booted back into the operating system to perform forensic recovery. This can be done from the
iLiberty+ tool discussed in the next section. Some versions of iPhone firmware have been
reported to kick themselves out of recovery mode within ten minutes of sitting idle, while
connected to the dock.

When a full restore of an iPhone is performed (using iTunes’ Restore option), the file
system is destroyed, but the NAND is not re-initialized. This means that much of the data
previously stored on the device should still be recoverable.

Cross‐Contamination of Evidence and Syncing
Before performing any of the steps in this manual, be sure to disable all automatic syncing with
iPhone/iPod Touch devices, and never attempt to sync a suspectʼs device manually. Otherwise,
the examiner runs the risk of cross-contaminating a device with music, photos, and other data
already synced to the desktop machine. It is also advisable to conduct all forensic recovery using
a desktop machine with a fresh, write-protected installation of the operating system, iTunes, and
the tools discussed in this manual. Ideally, the examiner should consider building a bootable CD
or virtual machine to perform the recovery steps outlined throughout the rest of this manual, or
using an external storage device freshly zeroed and formatted for each investigation.

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 11 of 44

Accessing the Device

Installing the Forensic Toolkit
The first step in performing forensic examination of the iPhone is to gain access to the operating
system. This is required in order to obtain a raw disk image of the media partition for analysis. To
gain access, a forensic-friendly jailbreaking tool will be used, which does not itself write to the
user partition of the device.

The iLiberty+ program is a free tool designed by Youssef Francis and Pepijn Oomen for unlocking
and installation of various payloads onto the iPhone/iPod Touch. iLiberty+ implements the low-
level technique described in the Technical Procedure section of this manual to boot an unsigned
RAM disk. Once loaded, this RAM disk then mounts the iPhoneʼs root file system and will be used
to install a recovery toolkit which includes OpenSSH, a basic UNIX world, netcat, and the dd disk
copy/imaging tool. These will be used to recover and transmit a disk image of the deviceʼs media
partition across a network connection.

For a low-level explanation of the technical procedures used by this tool, see the
Technical Procedure section at the end of this manual.

Step 1: Download and Install iLiberty+
Download iLiberty+ from http://theiphoneproject.org/downloads/. Archives of the versions used in
this manual may also be downloaded from http://www.zdziarski.com/forensic-toolkit/iLiberty+/.

Release candidates of iLiberty v1.6 may be downloaded from the forensic toolkit link
above. Version 1.6 corrects some problems with inadvertent (yet minor) writing to the
user data partition in version 1.51 and compatibility with certain older versions of iPhone
software. It also supports an integrated passcode bypass tool, which works as effectively
in most cases as the manual process outlined at the end of this chapter.

⇒ Mac OS X (iLiberty+ v1.51)

Drag iLiberty+.app into the /Applications folder on your desktop.

iLiberty+ v1.51 ONLY

iLiberty+ v1.51 installs the NullRiver software installer as a default payload. This
performs two minor writes to the user media partition, but these writes can be avoided
altogether. Download and install the custom jailbreak payload available at
http://www.zdziarski.com/forensic-toolkit/iLiberty+/iLiberty+.bin. Use this to overwrite
the existing default payload installed inside the application located at
/Applications/iLiberty+.app/Contents/Resources/iLiberty+.bin on your Mac OS X
desktop. This new payload skips the NullRiver software installer, which is not needed.

⇒ Windows (iLiberty+ v1.3.0.113)

Run the iLiberty+ installer application. The application will be installed in C:\Program
Files\iLiberty\, and icons will be added to the desktop and/or start menu.

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 12 of 44

Step 2: Dock the iPhone and Launch iTunes
Connect the iPhone to a dock connector and connect it to your desktopʼs USB port. This will keep
the device charged as well as provide the connection needed to install the toolkit. Launch iTunes,
and ensure the device is recognized. You should see the iPhone appear in the sidebar under the
Devices section.

If the device was seized while in restore mode, use the Exit Recovery option from
iLiberty+’s advanced menu (Mac OS X) or the Jump Out of Recovery Mode option from
the Other Tools tab (Windows) to boot the device back into the operating system. Other
tools, such as iBrickr, iNdependence, and iPHUC (iPHone Utility Client) can also be
used to boot the iPhone if the iLiberty+ method fails. This will avoid reformatting the
iPhone by restoring in iTunes. In some cases, the iPhone will kick itself out of recovery
mode after approximately ten minutes, provided it remains powered on and connected to
iTunes through the USB dock cable.

Step 3: Launch iLiberty+ and Ensure Connectivity
Launch iLiberty+. The iPhone should be detected upon launch.

During the jailbreaking process, iTunes may notify you that it has detected a device in
recovery mode, and ask you if you would like to restore. This is normal, as iTunes is
oblivious to the fact that the device is being worked on by another application. Never
instruct iTunes to perform a restore, or you will damage evidence! If necessary, you
may cancel this request or simply ignore it.

⇒ Mac OS X

Click on the Device Info tab to view information about the deviceʼs system and media
partitions.

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 13 of 44

Fig. 1 iLiberty Status (Mac OS X)

⇒ Windows

Verify that iLiberty+ is reporting the status of the iPhone at the bottom right of the status
bar. The status should read Normal Mode.

Fig. 2 iLiberty Status (Windows)

Step 4: Configure for Forensic‐Toolkit Payload
Once the device has been recognized, the forensics toolkit payload should be downloaded and
activated for the target device. Releases of the toolkit are stored in a repository located at
http://www.zdziarski.com/forensic-toolkit/Payloads/. Each version of the toolkit is distributed in both
an .lby format (for Mac OS X) and .zip file format (for Windows). The two archives are identical,
and simply use a different file extension. Download the appropriate file extension for your
operating system.

⇒ Mac OS X

Click on the Apps tab in iLiberty+. Make sure all payload checkboxes are unchecked.
Check the checkbox labeled Select a custom payload manually. Download the latest (or
desired) version of the Forensic-Toolkit payload .lby file from
http://www.zdziarski.com/forensic-toolkit/Payloads/ and then click Browse. Locate the file
and click Open. It should now be selected and displayed in the custom payload field.

Some web browsers will automatically rename the .lby file to have a .zip file extension. If
you are unable to select your payload in iLiberty+, check and ensure that the file
extension is correct, and rename it back to .lby if necessary.

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 14 of 44

Fig. 3 Forensic-Toolkit Payload Selection (Mac OS X)

⇒ Windows

Download the latest (or desired) version of the Forensic-Toolkit payload .zip file from
http://www.zdziarski.com/forensic-toolkit/Payloads/. Extract the contents of the archive. This
should output two files: 90Forensics.sh and forensics-toolkit-(VERSION).zip. Copy or move
these two files into C:\Program Files\iLiberty\payload\.

Now click the Advanced tab. Click the bottom tab titled Local Payloads. Scroll to the
Forensics Toolkit payload and click its checkbox. The payload should then appear under
the Selected tab, which means it is now activated for installation.

If the toolkit does not appear on the list of local payloads, try clicking the Refresh
button or restart iLiberty+.

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 15 of 44

Fig. 4 Forensic-Toolkit Payload Selection (Windows)

Step 5: Execute the Payload
After verifying that the Forensics Toolkit payload has been activated, click the bottom button
labeled Free my (CAPACITY) iPhone (Mac OS X) or Go for it! (Windows).

⇒ Mac OS X

A window will appear informing you of the toolʼs progress. The device should boot into the
text-based screen described below to install the toolkit payload.

⇒ Windows

Before the jailbreak process commences, you will be asked to unplug the iPhone from its
USB connection and then reconnect it. Unplug the device, and wait until it disappears
from iTunes. Reconnect the device, and wait until it appears again in iTunes. Only after
this, click the OK button. A progress window will appear, but may vanish as the device
enters recovery mode. The process is still running in the background, however, and you
should see status text such as Booting Ramdisk in the status bar of the iLiberty+
application. The device itself should, after a short time, boot into the text-based screen
described below to install the toolkit payload.

In some rare cases, the device will either get stuck in recovery mode or fail to enter
recovery mode at all:

⇒ If the device becomes stuck in recovery mode, follow the steps in step 2 to boot
the device back into the operating system. This will safely boot the device without
any loss of data.

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 16 of 44

⇒ If the device fails to enter recovery mode (appearing to do nothing), manually
force it into recovery by holding down the Power and Home buttons until the
device hard-powers itself off, back on, and finally displays the recovery screen
(do not let up on the buttons until you see the Connect to iTunes text and/or icon).
In iLiberty+, click the Manual Boot option on the Other Tools tab to boot the
device manually. The device will boot out of recovery and install the forensic
toolkit payload. Should this fail, repeat steps 2-5 once more.

During the jailbreaking process, the device will go through what will appear to be various text-
based diagnostic and configuration screens. Note any errors, should they occur. Once the
process has completed, the device should briefly display Forensics Toolkit Installation Successful,
and will then reboot back into its operational state.

The device should now be ready to accept an SSH connection. See the next section to configure
WiFi and access the device.

Configuring WiFi and SSH
Now that the forensic toolkit has been installed on the device, the toolkitʼs OpenSSH daemon
should now be listening for incoming connections, and a UNIX world has been installed on the
system partition to enable basic file and disk operations. In order to access the device, WiFi must
first be configured to connect to the same network as the desktop machine.

Your access point must not enable an “AP Isolation” feature, which prevents devices on
the network from communicating with other local devices. If your access point is
configured in this fashion, you must either disable this feature, or revert to using an ad-
hoc network. Otherwise, the desktop machine and the device will not be able to
communicate.

Ad‐Hoc Networks
If no access point is available, or if insecure devices are not permitted by policy to connect to
local access points, the desktop can be configured to serve as its own access point. Both
machines will require a static IP address.

⇒ For instructions on configuring your Windows XP machine to run an ad-hoc network, visit
http://www.microsoft.com/windowsxp/using/networking/setup/adhoc.mspx

⇒ For instructions on configuring Mac OS X Leopard to run an ad-hoc network, visit
http://zdziarski.com/papers/tethering.txt

The iPhone has difficulty connecting to ad-hoc networks that are using encryption. If
using an ad-hoc network, it may need to be created as open. It has been reported that
repeated attempts to connect to an encrypted ad-hoc network sometimes succeed. To
ensure the evidence has not been tampered with while in transit, however, it may be
appropriate to use a separate, local physical access point that has been secured with
WPA. Ask your supervisor which technique is most appropriate if you are uncertain. One
may also need to consult the district attorney to ensure the desired technique will be
admissible. When using an unencrypted network, it is strongly advisable to perform the
file copy over an encrypted tunnel - an example will be provided. If you are still
uncertain, consider purchasing a WPA-capable wireless access point dedicated for
forensic recovery.

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 17 of 44

Configuring Wireless (Device)

1. To configure wireless access on the iPhone, tap on the settings icon. A list of
options will appear.

2. Tap the Wi-Fi option, second down from the top. This will transition to a window where
WiFi can be configured. If WiFi is turned off, tap the switch at the top to turn it on.

3. A list of available WiFi networks should appear in the section labeled, Choose a Network.
Tap on the network your desktop is presently connected to. A wait indicator will be
displayed while the iPhone joins the network.

4. Once joined, tap the blue disclosure arrow to the right of the selected WiFi network. This
will allow you to view and/or change the iPhoneʼs IP address and other settings on the
network.

5. Take note of the IP address of the iPhone, as youʼll need it later. Use the ping utility on
the desktop to ensure that the device is reachable. If it is not, one or both of the devices
may be misconfigured, or the access point may enforce AP isolation.

SSH into the iPhone
Once the iPhone is active on the network, you may now connect to it via ssh from your desktop:

$ ssh –l root X.X.X.X

Where x.x.x.x is replaced by the IP address of the iPhone. If you are unable to connect, try
pinging the device to ensure you have network connectivity.

The forensics toolkit automatically resets the password for the root user to alpine.

Once you have successfully logged into the device, youʼre now ready to image the media
partition. Proceed to the next section.

Installation Record (Disclosure)
The payload installed by iLiberty+ installs a forensic toolkit onto the otherwise read-only portion of
the device, resulting in no destruction to user-level data stored on the deviceʼs media partition. At
the time of payload installation, the following files are written to the system (root) partition.

File size may vary depending on the application and payload versions used. Some files
are deleted after toolkit installation.

/usr/libexec/ipluspwns (basepack)
-rwxr-xr-x 1 root wheel 25212 Mar 27 08:59 chmod*
-rwxr-xr-x 1 root wheel 38320 Mar 27 08:59 echo*
-rwxr-xr-x 1 root wheel 23292 Mar 27 08:59 iPipe*
-rwxr-xr-x 1 root wheel 14352 Mar 27 08:59 mv*
-rwxr-xr-x 1 root wheel 13760 Mar 27 08:59 reboot*
-rwxr-xr-x 1 root wheel 19128 Mar 27 08:59 rm*
-rwxr-xr-x 1 root wheel 1298880 Mar 27 08:59 sh*
-rwxr-xr-x 1 root wheel 39036 Mar 27 08:59 sleep*
-rwxr-xr-x 1 root wheel 14916 Mar 27 08:59 umount*
-rwxr-xr-x 1 root wheel 141528 Mar 27 08:59 unzip*

/bin (basepack)
-rwxr-xr-x 1 root wheel 134152 Mar 27 08:59 awk
-rwxr-xr-x 1 root wheel 23368 Mar 27 08:59 blcheck
-rwxr-xr-x 1 root wheel 14368 Mar 27 08:59 cat

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 18 of 44

-rwxr-xr-x 1 root wheel 25212 Mar 27 08:59 chmod
-rwxr-xr-x 1 root wheel 80660 Mar 27 08:59 chown
-rwxr-xr-x 1 root wheel 19644 Mar 27 08:59 cp
-rwxr-xr-x 1 root wheel 18972 Mar 27 08:59 cut
-rwxr-xr-x 1 root wheel 33288 Mar 27 08:59 dd
-rwxr-xr-x 1 root wheel 9212 Mar 27 08:59 dirname
-rw-r--r-- 1 root wheel 2971 Apr 1 20:25 functions.inc
-rwxr-xr-x 1 root wheel 158708 Mar 27 08:59 grep
-rwxr-xr-x 1 root wheel 18056 Mar 31 14:03 iEdit
-rwxr-xr-x 1 root wheel 20776 Mar 27 08:59 igsm
-rwxr-xr-x 1 root wheel 13492 Mar 31 14:03 ln
-rwxr-xr-x 1 root wheel 41028 Mar 27 08:59 ls
-rwxr-xr-x 1 root wheel 13348 Mar 31 14:03 mkdir
-rwxr-xr-x 1 root wheel 24244 Mar 27 08:59 plutil
-rwxr-xr-x 1 root wheel 13760 Mar 27 08:59 reboot
-rwxr-xr-x 1 root wheel 19172 Mar 27 08:59 rm
-rwxr-xr-x 1 root wheel 42888 Mar 27 08:59 sed
-rwxr-xr-x 1 root wheel 1298880 Mar 27 08:59 sh
-rwxr-xr-x 1 root wheel 9392 Mar 27 08:59 sleep
-rwxr-xr-x 1 root wheel 260244 Mar 27 08:59 tar
-rwxr-xr-x 1 root wheel 141528 Mar 27 08:59 unzip

/bin (payload)
-rwxr-xr-x 1 root wheel 591364 Mar 16 09:23 bash
-rwxr-xr-x 1 root wheel 45804 Feb 29 04:55 cat
-rwxr-xr-x 1 root wheel 74456 Feb 29 04:55 chgrp
-rwxr-xr-x 1 root wheel 65632 Feb 29 04:55 chmod
-rwxr-xr-x 1 root wheel 74724 Feb 29 04:55 chown
-rwxr-xr-x 1 root wheel 159704 Feb 29 04:55 cp
-rwxr-xr-x 1 root wheel 33288 Apr 7 10:25 dd
-rwxr-xr-x 1 root wheel 119948 Mar 27 07:48 grep
-rwxr-xr-x 1 root wheel 115848 Feb 29 04:55 ln
-rwxr-xr-x 1 root wheel 146360 Feb 29 04:55 ls
-rwxr-xr-x 1 root wheel 44452 Feb 29 04:55 mkdir
-rwxr-xr-x 1 root wheel 45900 Feb 29 04:55 mknod
-rwxr-xr-x 1 root wheel 169368 Feb 29 04:55 mv
-rwxr-xr-x 1 root wheel 39292 Feb 29 04:55 pwd
-rwxr-xr-x 1 root wheel 13760 Apr 8 00:35 reboot
-rwxr-xr-x 1 root wheel 142636 Feb 29 04:55 rm
lrwxr-xr-x 1 root wheel 4 Apr 8 00:18 sh -> bash
-rwxr-xr-x 1 root wheel 17004 Feb 27 18:50 sync

/etc (payload)
-rw-r--r-- 1 root wheel 1418 Jun 12 2006 ssh_config
-rw-r--r-- 1 root wheel 3230 Aug 25 2007 sshd_config

/sbin (payload)
-rwxr-xr-x 1 root wheel 185008 Apr 8 00:34 fsck_hfs
-rwxr-xr-x 1 root wheel 18052 May 7 12:12 md5
-rwxr-xr-x 1 root wheel 19236 Apr 8 00:34 mount_hfs
-rwxr-xr-x 1 root wheel 46300 Apr 8 00:35 newfs_hfs
-rwxr-xr-x 1 root wheel 191976 May 7 12:22 ping
-rwxr-xr-x 1 root wheel 14916 Apr 8 00:37 umount

/usr/bin (payload)
-rwsr-xr-x 1 root wheel 31712 Feb 27 18:50 login
-rwxr-xr-x 1 root wheel 29520 Apr 8 00:34 nc
-rwxr-xr-x 1 root wheel 56284 Aug 23 2007 scp
-rwxr-xr-x 1 root wheel 88876 Aug 23 2007 sftp
-rwxr-xr-x 1 root wheel 340340 Aug 23 2007 ssh
-rwxr-xr-x 1 root wheel 103960 Aug 23 2007 ssh-add
-rwxr-xr-x 1 root wheel 87336 Aug 23 2007 ssh-agent
-rwxr-xr-x 1 root wheel 134264 Aug 23 2007 ssh-keygen
-rwxr-xr-x 1 root wheel 198048 Aug 23 2007 ssh-keyscan

/usr/lib (payload)
lrwxr-xr-x 1 root wheel 18 Apr 8 00:18 libcurses.dylib ->
 libncurses.5.dylib
-r-xr-xr-x 1 root wheel 35392 Jan 3 20:31 libhistory.5.2.dylib
lrwxr-xr-x 1 root wheel 20 Apr 8 00:18 libhistory.5.dylib ->

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 19 of 44

 libhistory.5.2.dylib
lrwxr-xr-x 1 root wheel 20 Apr 8 00:18 libhistory.dylib ->
 libhistory.5.2.dylib
-rw-r--r-- 1 root wheel 60780 Jan 14 21:44 libintl.8.0.2.dylib
lrwxr-xr-x 1 root wheel 19 Apr 8 00:18 libintl.8.dylib ->
 libintl.8.0.2.dylib
lrwxr-xr-x 1 root wheel 19 Apr 8 00:18 libintl.dylib ->
 libintl.8.0.2.dylib
-rw-r--r-- 1 root wheel 801 Jan 14 21:44 libintl.la
-rwxr-xr-x 1 root wheel 105156 Feb 23 06:30 libncurses++.a
-rwxr-xr-x 1 root wheel 379360 Feb 23 06:30 libncurses.5.dylib
lrwxr-xr-x 1 root wheel 18 Apr 8 00:18 libncurses.dylib ->
 libncurses.5.dylib
-r-xr-xr-x 1 root wheel 239308 Jan 3 20:31 libreadline.5.2.dylib
lrwxr-xr-x 1 root wheel 21 Apr 8 00:18 libreadline.5.dylib ->
 libreadline.5.2.dylib
lrwxr-xr-x 1 root wheel 21 Apr 8 00:18 libreadline.dylib ->
 libreadline.5.2.dylib
-rwxr-xr-x 1 root wheel 247684 Jan 4 05:35 libresolv.dylib
lrwxr-xr-x 1 root wheel 17 Apr 8 00:18 terminfo -> ../share/terminfo

/usr/libexec (payload)
-rwxr-xr-x 1 root wheel 59372 Aug 23 2007 sftp-server
-rwxr-xr-x 1 root wheel 200664 Aug 23 2007 ssh-keysign
-rwxr-xr-x 1 root wheel 35280 Aug 23 2007 ssh-rand-helper
-r-xr-xr-x 1 root wheel 425 Dec 20 2006 sshd-keygen-wrapper

/usr/sbin (payload)
-rwxr-xr-x 1 root wheel 32784 Apr 8 00:36 fdisk
-rwxr-xr-x 1 root wheel 414512 Aug 23 2007 sshd

/Library/LaunchDaemons (payload)
-rw-r--r-- 1 root wheel 828 Feb 4 2006 com.openssh.sshd.plist

Circumventing Passcode Protection
There are two types of locks used on the iPhone: a SIM lock and an OS-level passcode. The SIM
lock can be bypassed by simply removing / replacing the SIM. Devices protected with a
passcode, however, must have it circumvented before the forensic toolkit can be installed.

To disable the passcode, raw commands will need to be issued to the iPhone to load a custom
passcode-circumvention RAM disk. This requires the use of an open source tool called the
iPhone Utility Client (humorously named iPHUC). Before circumventing the passcode, follow the
steps below to set up a working version of the iPhone Utility Client on your desktop machine:

⇒ Mac OS X

Download the iPHUC_Universal.tar.gz archive from http://www.zdziarski.com/forensic-toolkit/
Bypass_Passcode/. Extract the contents of the archive and copy the shared library to the
appropriate location in /usr/local/lib:

$ tar -zxvf iPHUC_Universal.tar.gz
$ sudo mkdir -p /usr/local/lib
$ sudo mv libMobileDevice742.dylib /usr/local/lib

⇒ Windows

Download the Windows version of iPHUC. This can be found here:
http://code.google.com/p/iphucwin32/. Follow the instructions in the archive to prepare an
environment using the correct readline and iTunes Mobile Device dynamic libraries.

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 20 of 44

Step 1: Download the Passcode Bypass RAM disk
This is a customized iPhone RAM disk designed to disable the passcode by deleting its
configuration file. The URL is http://www.zdziarski.com/forensic-
toolkit/Bypass_Passcode/Bypass_Passcode.bin.

In the event that the Bypass_Passcode.bin technique fails, a Bypass_Everything.bin
image has also been provided. This image moves the entire preferences folder to
/private/var on the file system, bypassing all previously set preferences including
passcode. Some particularly finicky devices require use of the Move_Preferences.bin
RAM disk instead.

Step 2: Use iPHUC to Enter Recovery Mode
Launch iPHUC from a terminal prompt and instruct the iPhone to enter recovery mode using the
enterrecovery command. The command should return 0. You must then exit the iPHUC
command line interface. Commands to be entered are emboldened below.

$./iPHUC
CFRunLoop: Waiting for iPhone.
notification: iPhone attached.
AMDeviceStartService 'com.apple.afc': 0
(iPHUC) /: enterrecovery
AMDeviceEnterRecovery: 0
(iPHUC) /: exit
Nothing left to do. Exiting.

If you are unable to issue this command through iPHUC, cleanly power the device down
by holding in the button until the “Slide to Power off” slider comes up. Slide this to
power off the device. Once powered down, press the power button, then immediately
release. When you see the device power on, press and hold both power and home buttons
until the device again power cycles and the restore logo is displayed. This ensures the
device was cleanly dismounted, which is required in order to bypass the passcode.

Wait for the iPhone to enter recovery mode. It should display the iTunes icon on the screen. If,
after repeated attempts, it does not, check the dock connector to ensure it is secured properly. If
all else fails, force the iPhone into recovery mode by holding down the Home and Power buttons
simultaneously until the iTunes icon displays on the screen.

Step 3. Upload and Boot the Passcode Bypass RAM Disk
Make sure you have excited iPHUC and then re-launch it to access the recovery options. Issue
the commands below to upload and boot the passcode circumvention tool. Be sure to escape the
spaces as shown.

$./iPHUC
(iPHUC Recovery) #: filecopytophone Bypass_Passcode.bin
filecopytophone: 0
(iPHUC Recovery) #: cmd setenv\ boot-args\ rd=md0\ -x\ -s\ pmd0=0x9340000.0xA00000
(iPHUC Recovery) #: cmd saveenv
(iPHUC Recovery) #: cmd bootx
(iPHUC Recovery) #: exit

At this stage, the iPhone should boot into verbose mode. The passcode tool will be invoked and
move the SpringBoard configuration file located at
/private/var/mobile/Library/Preferences/com.apple.springboard.plist. This property list contains the
userʼs passcode preferences, which default to “no passcode”. This file is moved to /private/var for
later examination, if so desired. This preserves the original preferences file, but causes the
iPhone to, upon reboot, default to having no passcode set.

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 21 of 44

If successful, you should see the text "Passcode Bypassed” or similar text appear at the bottom of
the screen briefly and then the iPhone will reboot back into normal mode. The device should no
longer require a passcode.

Should the device’s passcode fail to be circumvented, retry steps 3 and 4, but instead of
issuing the bootx command, use fsboot instead. This may work on older versions of
iPhone firmware.

If you see errors concerning mount_hfs, this suggests that the device was not properly
shut down. Try powering the device off properly using the “Slide to Power off” method
and then, on power on, force the device into recovery mode.

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 22 of 44

Performing Forensic Recovery

Once the device can be accessed via ssh, it is now ready for recovery.

Recovering the Media Partition
The first step in performing examination is to recover a raw disk image of the media partition. To
do this, you will require two UNIX tools: dd and nc. The dd tool is used to copy the raw drive
image, while the nc tool is used to send the data across the WiFi network to the desktop machine.
Both of these tools must be installed on both the desktop and the iPhone. The Forensic-Toolkit
payload automatically installs the iPhone builds of these tools, leaving the desktop portion up to
the examiner.

The file copy over netcat is insecure unless forwarded through an SSH tunnel. In both
cases, for evidentiary integrity, it is recommended that this copy be conducted over a
private, encrypted wireless network.

⇒ Mac OS X Leopard includes these tools by default. Open a terminal window by opening
the applications folder, opening the utilities folder, and double clicking on the Terminal
application. Execute ʻwhich dd ncʼ to ensure both are visible to your current path.

⇒ Windows versions of these tools may be downloaded at http://www.chrysocome.net/dd and
http://www.vulnwatch.org/netcat/. An archive is also available at
http://www.zdziarski.com/forensic-toolkit/Archive/.

Mounting Read‐Only
Before transmitting the media partition to the desktop machine, it may be appropriate to remount
the partition read-only, and generate an md5 checksum of the raw disk on the device. To do this,
connect to the iPhone using ssh and issue the commands below, replacing x.x.x.x with the IP
address of the device:

$ ssh –l root x.x.x.x
cd /
umount –f /private/var
mount –o ro /private/var
md5 /dev/rdisk0s2

While the user partition is mounted as read-only, the user interface (via the touch screen)
may not be used, except to touch an inactive portion of the screen to keep the backlight
active. If, at any time, the operating system layer becomes non-responsive, rebooting the
device will cause the user partition to be remounted back in read-write mode. This will
allow the operating system to write to the partition, however, and so should this occur,
another md5 checksum will need to be made on the device.

Unencrypted Recovery of the Media Partition
Youʼre now ready to perform recovery of the media partition. To do this, youʼll need to run
separate commands from the desktop and the iPhone to transmit the contents across the
network.

On the desktop, instruct the netcat tool to listen on a local port (in this example, 7000). The
information sent to the desktop will be piped to the disk copy utility to write to disk:

⇒ Mac OS X

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 23 of 44

$ nc –l 7000 | dd of=./rdisk0s2 bs=4096

Some versions of netcat built for Mac OS X use the arguments –l –p 7000

⇒ Windows

$ nc -L -p 7000 | dd of=./rdisk0s2 bs=4096

Now connect to the iPhone using ssh and perform a disk dump. Below, x.x.x.x represents the IP
address of the iPhone, and y.y.y.y represents the IP address of the desktop machine.

$ ssh –l root x.x.x.x
/bin/dd if=/dev/rdisk0s2 bs=4096 | nc y.y.y.y 7000

The raw partition should transfer over the network, and this should be reflected in the size of the
file on the local desktop increasing. This operation may take a few hours, depending on the
capacity of the iPhone. Only the media portion of the deviceʼs storage will be sent, so the actual
file size will be less than the advertised capacity. When the file reaches its maximum size, it may
be necessary to cancel the operation on the iPhoneʼs side by issuing a control-c.

If the operation fails prematurely, ensure that the iPhone is connected to the dock
connector and is charging; the iPhone automatically shuts down its WiFi when on battery
as it enters sleep mode. If necessary, also set the Auto-Lock feature to never in the
iPhone’s general settings to keep the display awake and unlocked.

If the operation fails entirely, check with your systems administrator to ensure that it is
not being hindered by firewall policies, and check the desktop machine to ensure its
firewall is configured to allow access on the desired port (in this example, 7000).

Once complete, the disk image can be fingerprinted or a checksum created, and checked into a
digital vault. It is assumed that all further file operations will be performed on a copy of the disk
image.

Never perform examination of an original disk image, but only a copy. Some tools have
been known to slightly alter the disk image in the course of their operation, thereby
altering the checksum. It is also likely to be altered if mounted as a file system.

Now that the media partition has been copied, the iPhone itself may be analyzed by hand to
obtain any information available through the standard interfaces. The next section will cover
forensic analysis of the media partition for data that is otherwise unavailable from the GUI.

Encrypted Recovery of the Media Partition
Using a technique similar to the above technique, the disk image can be transmitted across an
encrypted SSH tunnel by creating a remote forwarding port to the iPhone. This helps prevent
tampering and ensures that the data traveling across the wireless network is encrypted on an
application level.

In some cases, certain combinations of the ssh client and server can result in packet size
errors. In the event this occurs, try using a different version of ssh on the desktop
machine, or revert to using the unencrypted netcat technique described in the last section
– it is recommended, however, that the unencrypted technique be performed over an
encrypted wireless access point.

When connecting to the iPhone via ssh, add parameters to both compress and remote port-
forward data on a given port, where x.x.x.x represents the IP address of the iPhone:

$ ssh –l root –C –R 7000:127.0.0.1:7000 x.x.x.x

If using a GUI tool, such as PuTTY, instead of a command line tool, configure a remote port
forward as shown in Fig. 5.

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 24 of 44

Fig. 5 Remote Port Forwarding Configuration in PuTTY

On the desktop, instruct the netcat tool to listen on a local port (in this example, 7000). The
information sent to the desktop will be piped to the disk copy utility to write to disk:

⇒ Mac OS X

$ nc –l 7000 > rdisk0s2

⇒ Windows

$ nc -L -p 7000 > rdisk0s2

On the iPhone, perform a disk dump. Instead of using the IP address of the desktop machine, use
127.0.0.1, which feeds the data through the iPhoneʼs loopback interface, and ultimately back
through the reverse tunnel to the desktop.

cat /dev/rdisk0s2 | nc 127.0.0.1 7000

The raw partition should transfer over the encrypted SSH tunnel, and this should be reflected in
the size of the file on the local desktop increasing. This operation may take a few hours,
depending on the capacity of the iPhone. Only the media portion of the deviceʼs storage will be
sent, so the actual file size will be less than the advertised capacity. When the file reaches its
maximum size, it may be necessary to cancel the operation on the iPhoneʼs side by issuing a
control-c.

If the operation fails prematurely, ensure that the iPhone is connected to the dock
connector and is charging; the iPhone automatically shuts down its WiFi when on battery
as it enters sleep mode. If necessary, also set the Auto-Lock feature to never in the
iPhone’s general settings to keep the display awake and unlocked.

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 25 of 44

If the operation fails entirely, check with your systems administrator to ensure that it is
not being hindered by firewall policies, and check the desktop machine to ensure its
firewall is configured to allow access on the desired port (in this example, 7000).

Once complete, the disk image can be fingerprinted or a checksum created, and checked into a
digital vault. It is assumed that all further file operations will be performed on a copy of the disk
image.

Never perform examination of an original disk image, but only a copy. Some tools have
been known to slightly alter the disk image in the course of their operation, thereby
altering the checksum. It is also likely to be altered if mounted as a file system.

File Recovery Using Foremost /Scalpel
The Foremost tool is a free forensics tool developed by Special Agents Kris Kendall and Jesse
Kornblum of the U.S. Air Force Office of Special Investigations. Foremost can be downloaded
from http://foremost.sourceforge.net/ and compiled/installed on most desktop operating systems.
Mac OS systems may either build from sources or install using MacPorts:

$ sudo port install foremost

The Scalpel tool is based on Foremost and performs much faster analysis, using an identical
configuration file. Scalpel is available at http://www.digitalforensicssolutions.com/Scalpel/.

Both tools recover files by scanning for specific headers, footers, and internal data structures of a
file. This process is commonly referred to data carving. It is ideal for extracting deleted files from
raw disk images, such as the one created in the last section.

Configuring Foremost for iPhone Recovery
The Foremost tool uses a foremost.conf file for configuration. Scalpel uses an identical
configuration, traditionally named scalpel.conf. Either sample configuration file allows the examiner
to specify what types of files they would like to extract from the image. Additional files may also
be defined in the configuration. The iPhone includes some proprietary file types, which may be of
interest to the forensic examiner:

 dat y 16384 DynamicDictionary

Dynamic dictionary files are keyboard caches used for learning specific spellings of words used
frequently by the iPhoneʼs user. Whenever a user enters text – whether a username, some
passwords, website URL, chat message, email message, or other form of input – many of the
words are stored in the keyboard cache. Adding the line above to the configuration file will search
for deleted and/or existing caches. An example of such a file is shown below, containing
fragments from multiple emails sent across a dayʼs time period. Also included are various
Google® search words (“evo500ii”) and other user input.

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 26 of 44

Fig. 6 A deleted, two-week old dynamic keyboard cache

 amr y 65535 #!AMR

The AMR codec is considered the standard speech codec by 3GPP. It yields high quality audio
playback for voice content, and is used on the iPhone to store voicemail messages. To extract
larger chunks of voicemail messages, adjust the file size specified above.

 plist y 4096 <plist </plist

A .plist file is a configuration file used heavily in the Mac OS world, including the iPhone. Many
preloaded applications, as well as Appleʼs operating system components, use .plist files to store
anything from basic configuration data to history and cache information. By examining these files,
the examiner can get an idea of what websites the suspect may have previously visited, even
after deleting a cache. Other useful information may include location lookup caches (revealing
maps the suspect has looked up), mail server information, and etc.

 sqlitedb y 5000000 SQLite\x20format

The SQLite database format is used widely in the Mac OS X world, and is used to store calendar,
addressbook, Google Maps® tiles, and other information on the iPhone. SQLite databases are
generally “live” on the file system, however older, deleted databases may be recovered in the
event that the device was restored recently.

 email y 40960 From:

Scanning for email headers is an effective way to recover messages.

The following configuration terms are already present in foremost.conf but are
commented out. These types, in particular, should be considered for inclusion depending
on recovery needs.

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 27 of 44

 htm n 50000 <html </html>

In addition to scanning for email headers, HTML files are used to store email messages as well
as web browser content. It is possible to recover deleted email messages by scanning for HTML.

 pdf y 5000000 %PDF- %EOF
 doc y 12500000 \xd0\xcf\x11\xe0\xa1\xb1

Adobe PDF and Microsoft Word files can be stored locally when sent to the suspect via email or
navigated to using the iPhoneʼs Safari web browser.

 txt y 100000 -----BEGIN

PGP encrypted messages are generally not of great use without a key, however they can
frequently be found on disk to include unencrypted messages within the same thread, should any
have been sent/received.

Finally, GIF, JPG, and PNG image formats are all used on the iPhone, and can be enabled for
scanning by removing the comments preceding the corresponding lines in the configuration file.

 png y 40960 \x89PNG

This particular format of PNG is used to store small icons and Google Maps® tiles.

Scanning With Foremost/Scalpel
Once a valid configuration file has been created, Foremost/Scalpel can then be instructed to scan
the image from a command-line:

$ foremost –c foremost.conf rdisk0s2
foremost version 0.69
Written by Kris Kendall and Jesse Kornblum.
Opening /usr/local/sandbox /rdisk0s2
rdisk0s2: 0.9% | | 130.0 MB 11:07 ETA

The entire process may take several hours to complete using foremost, or less than an hour
using scalpel. Potentially useful information will be recovered to a directory named foremost-
output (or scalpel-output) within the current working directory. The tool will also create an audit.txt
file within the output directory containing a manifest of the information recovered.

Finding Valid Images with ImageMagick
Recovery tools generally err on the side of generating too much data, rather than missing files it
believes may be important. As a result, they extract much data that is otherwise unwanted.
Finding valid images to examine can be a time consuming process, however a few simple recipes
can greatly help reduce the amount of time needed.

The ImageMagick package contains a set of image processing utilities, one of which can be used
to display information about images. The identify tool included with ImageMagick is perfect for
sifting through the thousands of files created by Foremost to identify only the readable images.
ImageMagick can be downloaded from http://www.imagemagick.org/script/index.php. Mac OS users
may build from sources or use MacPorts to install the package:

$ sudo port install imagemagick

Once installed, a simple bash script is written to test the validity of an image file. For the purposes
of this example, name the file test-script.sh:

#!/bin/bash
mkdir invalid
identify $1 || mv $1 ./invalid/

Alternatively, the script can be modified to delete any image files it does not believe are valid.

#!/bin/bash
identify $1 || rm –f $1

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 28 of 44

Some images may be corrupt, but still somewhat recognizable. These images may appear
to the identify tool as invalid. It is therefore recommended that images only be moved,
and not deleted, so that invalid images can be later reviewed by hand.

When calling ImageMagickʼs identify tool on a given file, a successful exit code will be returned if
the image can be read. In the first example above, all valid images will be moved to a directory
named valid, leaving the invalid images in the output directory. In the second example, invalid
files are deleted, leaving valid images in the output directory. Either script can then be invoked for
a given supported image type (jpg, gif, png, etc) using a simple find recipe:

$ mkdir valid
$ chmod 755 test-script.sh
$ find foremost-output –type f –name “*.jpg” \
 –exec ./test-script.sh {} \;

Graphical File Analysis
Both Mac OS X and Windows support preview browsers. Mac OS X, in particular, provides a very
useful interface for browsing the contents of the Foremost output directory in a graphical manner.

Using Mac OS, browser to the foremost-output folder. At the top of the finder window, a series of
buttons should be visible. Click the right-most icon, designated as Cover Flow:

The contents of the directory will now appear in a graphical representation, including previews of
images, HTML, and other readable files. The entire directory can now be visually scrolled, saving
time:

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 29 of 44

Fig. 7 Cover-Flow View of Recovered Data (Mac OS X)

Many image files are likely to appear more than once, as they are sometimes rewritten when the
iPhone syncs with its desktop. Album covers are likely to appear several times – once for each
song.

Images of Interest
Recovery of image files should provide some of the following images of interest:

• Photos taken with the iPhoneʼs camera

• Photos synced to the device from a desktop photo library

• Photos from the web browsing cache / history

• Multiple snapshots of running applications in the last state before they were
exited/suspended, including:

o Web browser “last page” visited (as shown in Fig. 7)

o Contacts and dialer application screens

o Google® Maps and YouTube “last viewed” captures

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 30 of 44

Many other images will also be recovered which are not necessarily useful, such as album covers
(one cover per song), operating system images, and other stock images. Paths to “live” versions
of these various images on the file system will be provided in the next section.

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 31 of 44

Electronic Discovery

In addition to performing forensic recovery, the “live” file system at the time it was imaged can
also be browsed. This will allow the examiner to recover the most recent information on the
device.

⇒ Mac OS X

The rdisk0s2 disk image can be renamed to have a .dmg extension, and then directly
mounted from the finder:

$ mv rdisk0s2 rdisk0s2.dmg
$ hdid rdisk0s2.dmg

⇒ Windows

The rdisk0s2 disk image can be converted to an ISO image using the dmg2iso tool
available at http://vu1tur.eu.org/tools/. Many commercial forensic tools are also able to read
and manage HFS+ file systems.

$ rename rdisk0s2 rdisk0s2.dmg
$ perl dmg2iso.pl rdisk0s2.dmg rdisk0s2.iso

SQLite
The device makes use of database files in SQLite v3 format to store much information. SQLite is
a public domain database utility and can be downloaded at http://www.sqlite.org. SQLite can be
used on the command line to easily access the individual files and issue SQL queries. Seek a
guide on the structured query language for more information about SQL. The most basic
commands needed by the examiner are described below.

Opening a database
To open a SQLite database, install SQLite and then invoke the sqlite3 tool from the command
line. The tool will dump you to an input prompt, allowing queries to be issued:

$ sqlite3 filename
SQLite version 3.4.0
Enter ".help" for instructions
sqlite>

Querying the database
Once opened, the following commands may be issued against the open database. For more
information about these and other commands, see the SQLite document at http://www.sqlite.org.

.tables

Lists all of the tables available within the database

.schema table-name

Displays the SQL statement used to construct the table specified. This displays every column in the
table and its data type. The following example queries the schema for the mailboxes table inside the
Envelope Index database used to store mail on the device:

sqlite> .schema mailboxes
CREATE TABLE mailboxes (ROWID INTEGER PRIMARY KEY,
 url UNIQUE,
 total_count INTEGER DEFAULT 0,

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 32 of 44

 unread_count INTEGER DEFAULT 0,
 deleted_count INTEGER DEFAULT 0);

.dump table-name

Dumps the entire contents of a table into SQL insert statements. Binary data is outputted as long
hexadecimal sequences which can later be converted to individual bytes with simple scripting.

.output filename

Redirects output to a file on disk. Useful when dumping data.

.headers on

Turns display headers on so that the column title will be displayed in output from a SELECT statement

SELECT * FROM table-name;

Returns all fields and columns stored within the table specified. If the display headers were turned on,
the first row returned will contain the column names. Be sure to end the statement with a semicolon
(;). The following example queries the actual records from the mailboxes table, displaying the
existence of an IMAP mailbox located at imap.domain.com. This mailbox contains 3 total messages,
all of which have been read, and 0 deleted messages.

sqlite> SELECT * FROM mailboxes;
1|imap://username@imap.domain.com/INBOX|3|0|0
2|local:///Outbox|0|0|0

.exit

Exits the SQLite command shell.

Property Lists
Property lists are XML manifests used to describe various configurations, state, or other
information. Property lists can be formatted in either ASCII or binary format. When formatted for
ASCII, the file can be easily read using any standard text editor. When formatted for binary, the
file must be opened by an application capable of reading or converting the format to ASCII.

⇒ Mac OS X

Mac OS X comes standard with a tool named Property List Editor. This can be invoked by simply
double-clicking on a file ending with a .plist extension

⇒ Windows

o An online tool is available to convert property lists to ASCII format. The tool can be
found at http://140.124.181.188/~khchung/cgi-bin/plutil.cgi.

o The property list converter is open source and available on Appleʼs website, where it
may be downloaded and compiled. The source code can be found at
http://www.opensource.apple.com/darwinsource/10.4/CF-
368/Parsing.subproj/CFBinaryPList.c. An Apple developer account will be required and
is free to register.

Important Files
Though each case may call for different evidence, the following files are generally useful for most
types of examination.

Database files may still contain deleted records in de-allocated portions of the file. Be
sure to examine the files using a hex editor or other analysis tool to discover any
additional information.

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 33 of 44

/mobile/Library/AddressBook/AddressBook.sqlitedb

/mobile/Library/AddressBook/AddressBookImages.sqlitedb

SQLite database containing address book entries and images, respectfully

/mobile/Library/Caches/MapTiles/MapTiles.sqlitedb

SQLite database containing Google® Maps tile cache. Contains image data of previously displayed
map tiles for the Maps application. Each record contains an X, Y coordinate on a virtual plane at a
given zoom level and a binary data field containing the actual image data in PNG formatted images.
See the section Recovery of Google Maps® Tiles for more information.

/mobile/Library/Calendar/Calendar.sqlitedb

SQLite database containing calendar events, times, and descriptions.

/mobile/Library/CallHistory/call_history.db

SQLite database containing an exhaustive call record. This database contains more phone numbers
than are displayed through the normal GUI interface. The database logs each call, phone number
dialed, timestamp, duration in seconds, and other call flags.

/mobile/Library/Cookies/Cookies.plist

Properly list (ASCII format) containing website cookies from the Safari web browser

/mobile/Library/Keyboard/dynamic-text.dat

Binary keyboard cache containing text entered by the user.

The text displayed may be out of order or consist of various “slices” of different threads
assembled together. View using a hex editor or a paging utility such as less.

/mobile/Library/LockBackground.jpg

The current background wallpaper set for the device

/mobile/Library/Mail/Accounts.plist

Property list (binary format) containing email server account information and additional directories
within the Mail directory where additional email is stored.

/mobile/Library/Mail/Envelope Index

SQLite database containing information about messages stored locally on the device. This database
includes message headers, mailboxes, and the message data itself. This database contains six tables:
mailboxes, messages, message_data, properties, pop_uids, and threads.

Non-local mail, such as that from an IMAP mailbox, is stored in a separate directory
structure specified in /mobile/Library/Mail/Accounts.plist

/mobile/Library/Maps/History.plist

Property list (ASCII format) containing Google® Maps history, including longitude and latitude of
various lookups, query name (if specified), zoom level, and the name of the city or province where the
query was made.

/mobile/Library/Notes/notes.db

SQLite database containing note bodies and various information about all notes stored in the device’s
Notes application.

/mobile/Library/Preferences

Various preferences files containing configuration data for applications and services on the device.

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 34 of 44

/mobile/Library/SMS/sms.db

SQLite database containing information about SMS messages on the device including phone number,
timestamp, actual text, and various carrier information.

/mobile/Library/Safari/Bookmarks.plist

Property list (binary format) containing all web browser bookmarks set on the device. These may have
been set either directly on the device, or by syncing with a desktop machine.

/mobile/Library/Safari/Bookmarks.plist.anchor.plist

Property list (binary format) containing the timestamp for when bookmarks were last modified.

/mobile/Library/Safari/History.plist

Property list (binary format) containing the web browser history stored on the device.

/mobile/Library/Safari/SuspendState.plist

Propery list (binary format) containing the last state of the web browser when it was suspended. This
contains a list of windows and web sites that were open so that the device can re-open them should the
brower be restarted.

/mobile/Library/Voicemail/

Voicemail recordings in AMR codec are stored in this directory using the .amr file extension.

/mobile/Library/Voicemail/voicemail.db

SQLite database containing information about the senders of the voicemail stored on the device.
Includes the sender’s phone number, timestamp, callback number, message duration, expiration of the
message, and the timestamp (if any) that the message was moved to the trash.

/mobile/Media/WebClips

Contains a list of web pages assigned as buttons on the device’s home screen. Each page will be
housed in a separate directory containing a property list named Info.plist. This property list
contains the title and website URL of each page.

/mobile/Media/DCIM/100APPLE

Photos taken with the device’s built-in camera and accompanying thumbnails

/mobile/Media/iTunes_Control/Music

Location of all music synced with the device

/root/Library/Lockdown/data_ark.plist

Property list (ASCII format) containing various information about the device and its account holder.
This includes the owner’s Apple Store ID, specified with com.apple.mobile.iTunes.store-
AppleID and com.apple.mobile.iTunes.store-UserName, time zone information, SIM
status, device name as it appears in iTunes, and firmware revision.

/root/Library/Lockdown/pair_records

This directory contains private keys used for pairing the device to a desktop machine. These records
can be used to prove that a specific desktop machine was paired with the device at a given time.
Certificates from this file will match certificates located on the desktop machine in one of the property
lists located in either /Users/username/Library/Lockdown (Mac OS X) or :\Documents and
Settings\Username\Local Settings\Application Data\Apple Computer\Lockdown (Windows).

On iPhone firmware versions <= 1.1.2, the mobile directory is replaced with root

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 35 of 44

Recovery of Google Maps® Tiles
The Google Maps® application stores a cache of all viewed map tiles as well as a cache of all
lookups performed. The lookup cache is stored at the path /mobile/Library/Maps/History.plist on the
user partition, and can therefore be easily extracted. Actual map tiles, however, reside in a SQLite
database stored at the path /mobile/Library/Caches/MapTiles/MapTiles.sqlitedb on the user partition.
To extract the actual images, perform the following steps:

1. Install the command-line SQLite client available at http://www.sqlite.org.

2. Copy the MapTiles.sqlitedb file onto the desktop machine and dump the images table
using the command line client, as shown below. This will create a new file named
maptiles.sql, which will contain SQL insert statements containing the map tile data,
including the binary image data represented in hexadecimal format.

$ sqlite3 MapTiles.sqlitedb
SQLite version 3.4.0
Enter ".help" for instructions
sqlite> .output maptiles.sql
sqlite> .dump images
sqlite> .exit

3. If necessary, install Perl. Use the parse_maptiles.pl script available at
http://www.zdziarski.com/forensic-toolkit/Scripts/ to convert the file to a set of PNG images.
These will be created in a directory named maptiles under the current working
directory.

$ perl parse_maptiles.pl maptiles.dat

4. Each map tile will be extracted and given the name X,Y@Z, denoting the X, Y position on
a plane and the zoom level; each zoom level essentially constitutes a separate plane.

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 36 of 44

Desktop Trace

Recovering data from an iPhone or iPod Touch device can be an important step in building
evidence for a case, however information on desktop machines having been synced with the
device is also of interest. Desktop information can provide evidence of trusted pairing
relationships as well as store backup copies of various data files that can be used as both
evidence and to further prove a relationship between the desktop and mobile device.

Desktop trace should be gathered through standard forensic recovery procedures applied to the
desktop machine. Both live and deleted data can be of great use to the examiner. In this section,
the types of relevant data present on the desktop will be described.

Proving Trusted Pairing Relationships
Proving that the device was paired with a particular desktop machine can be of vital importance.
When paired with an iPhone or iPod Touch, the desktop and the device share certificate records.
In some cases, the serial numbers of devices paired with a particular desktop can also be stored.

Pairing Records
In the last section, the directory /root/Library/Lockdown/pair_records was mentioned as containing
pairing records. Certificates inside of these pairing records are shared with the desktop machine(s) they are
paired with. For example, the pairing record on our test device was located at:

/var/root/Library/Lockdown/pair_records/38798B80-D800-4691-916A-01640D8CECCD.plist

This pairing record contained the following certificate:

<key>DeviceCertificate</key>
 <data>
 LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNOakNDQVI2Z0F3SUJBZ0lCQURB
 TkJna3Foa2lHOXcwQkFRVUZBREFBTUI0WERUQTRNRFF3T0RFek1qUXkKTlZvWERURTRN
 RFF3TmpFek1qUXlOVm93QURDQm56QU5CZ2txaGtpRzl3MEJBUUVGQUFPQmpRQXdnWWtD
 Z1lFQQp3djBzSDgycW9pcFM4Z2hZSnJPV1BLT0U3UUR5QmIxTkpuRmF2eDZEVVdwWGEx
 NXhmN2JiN2VaVlAzaXZrZGtUCkpBd0FPM1puT0pGQTBFUzU4NzlBTnVDM1R6cFpOT29S
 WFBhZWNlU3BmSG1RWEN6RUdCdUNDb0E5TmYwSWwxSjgKYUcxdnZPUjZTbWdFNE9ES2da
 by9UdGcybHIzTlRUSGlFbmVUWTJpSHp1OENBd0VBQWFNL01EMHdEQVlEVlIwVApBUUgv
 QkFJd0FEQWRCZ05WSFE0RUZnUVU0dnpKcGpUMDloNEVPZHFuUi9mTjVmYVhVZDB3RGdZ
 RFZSMFBBUUgvCkJBUURBZ1dnTUEwR0NTcUdTSWIzRFFFQkJRVUFBNElCQVFCa256SUZP
 ZFBYcUkrSGQ0KzJNdDRjQTM2QWgwVDgKY0NVVDJ2ZnF6WExIL3k2OFZFdnJkbU5zR1V5
 YmMwN0g4V2lIb1FtaDROMDFPdE5uNFpOUUdzK2k1QmxSRHRFcwpxUnJtanRNdGFGMkh2
 NFRpdGlBcWtsRXl3cHY2azRLRFlRUkN5OTB1MCtQbTkwempzRy8zTzR5eHJhdk51Y05M
 CnFjalRGN0hHbmZ2Y2tGSVBYeGlSMlBhb2dySUxGLytpbDVGcThIVWxldW5qbnAwbElz
 T3lqQ29sbyt4c2NpeDgKZ0FIU2pJMDBvdU85cTVkSFc2cmRRRGlKaXlLbDRUd1dOeDJH
 VEU4Sm1PZmRteFgwb21MQ2RXNWUyN0JGTHNnVgprZWh2bzZlWlpuK3EyWU5NWDFkaTNt
 akx6aHFHRXRHUisxZk5RSUtDUWEzN3ptY3lpWUtHeDFmOAotLS0tLUVORCBDRVJUSUZJ
 Q0FURS0tLS0tCg==
 </data>

This certificate was also found on a desktop machine paired with the device. In this case, the certificate was
located in a property list named d5d9f86cfc06f8ace3d31c551ccc69788c4579e5.plist located on the desktop
machine. The filename refers to the unique identifier assigned to the iPhone device when it was activated.
See the section Activation Records for more information on matching the unique device identifier itself.

The location of the pairing files on a machine depend on the operating system:

⇒ Mac OS X

/Users/username/Library/Lockdown/

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 37 of 44

⇒ Windows XP

:\Documents and Settings\Username\Local Settings\Application Data\Apple Computer\Lockdown
⇒ Windows Vista

:\Users\Username\AppData\Roaming\Apple Computer\Lockdown

Use of tools such as grep and diff can make manual matching a relatively effortless process.

Serial Number Records
A manifest is written to the desktop machineʼs hard disk to keep track of the names and serial
numbers of devices paired with it, allowing the examiner to verify that a desktop has trace
evidence of a pairing with a mobile device. This manifest can be used to make a visual match
between the serial number recorded in the file and the serial number of the mobile device. The
serial number of the mobile device can be obtained by tapping the settings button on the device
and then selecting General > About.

⇒ Mac OS X

A binary property list with a filename beginning with com.apple.iTunes may be found in the
directory located at /Users/username/Library/Preferences/ByHost/. Each host paired with the
device will be assigned a separate file in this directory. Inside the property list, binary data
containing information about the device is stored, but by using the strings tool, the
examiner can dump the ASCII data encapsulated within the binary information and search for
the presence of the mobile deviceʼs serial number.

⇒ Windows XP

A match to this serial may be found in the iPodDevices.xml file located on the Windows
desktop machine, found at :\Documents and Settings\Username\Local Settings\Application
Data\Apple Computer\iTunes\iPodDevices.xml

⇒ Windows Vista

A match to this serial may be found in the iPodDevices.xml file located on the Windows
desktop machine, found at :\Users\Username\AppData\Local\Apple
Computer\iTunes\iPodDevices.XML

The serial number can also be found in device backup files, if they exist on the desktop machine.
See the next section for more information. This will be explained in the next section.

Device Backups
When a device is synced with a desktop machine, a backup of its configuration, address book,
SMS database, camera photo cache, and other contents are stored locally. Each device paired
with the desktop is assigned a unique identifier within the userʼs backup directory. Within this
directory resides a manifest, device information, and individual data files. These are copied back
to the device in the event that the device is restored to its factory settings. While a suspect can
manually delete such backups, many are not aware that such backups are being made, or
choose to store the backups.

⇒ Mac OS X

Device backups are stored in

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 38 of 44

/Users/username/Library/Application Support/MobileSync/Backup/deviceid/

⇒ Windows XP

Device backups are stored in

:\Documents and Settings\Username\Application Files\MobileSync\Backup\deviceid\

⇒ Windows Vista

Device backups are stored in

:\Users\Username\AppData\Roaming\Apple Computer\MobileSync\Backup\deviceid\

The information file, Info.plist, contains a device profile including the serial number of the paired
device, firmware revision, phone number, and timestamp. Within this directory, multiple files
ending with a .mdbackup extension will exist. Each file is a binary property list containing the
filename and binary data for a file backed up from the device. The binary data can be extracted
by dumping it from the property list using a property list reader or by manual techniques. A copy
of the file can be renamed to have a .plist file extension, allowing it to be opened with a property
list editor.

Once the binary data has been exported from a binary property list, and stored in a file specified
as the filename within the property list, it can be analyzed using the techniques described in the
section File System Analysis.

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 39 of 44

Fig. 8 Extracting a Camera Photo from a Desktop Backup File

Activation Records
Various information about the device can be obtained by decoding activation records found in
/privat/var/root/Library/Lockdown/activation_records on the device, which will be accessible as
/root/Library/Lockdown/activation_records if the user partition disk image is mounted locally. This
information is base64 encoded and can be easily decoded to plain text using the openssl
command line tool or other base64 decoder. The property list contained in this directory includes
several different certificates including the FairPlay certificate for music on the device, however the
most useful section is the AccountToken data. This data follows after the AccountToken key
referenced inside the property list:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>AccountToken</key>
 <data>
 ... data follows ...

The data section, when decoded, contains the unique device ID assigned when the pairing
relationship is made. This identifier will determine the filename of pairing records on the desktop
machine. An activation ticket and hardware identities (including the IC Card, mobile subscriber,
and mobile equipment identity) are also stored. For example, pasting the data portion of the
AccountToken data into a file, the decoding process is as follows:

$ openssl enc -d -base64 -in filename
{
 "ActivationRandomness" = "AEC80D06-1948-494C-846E-9A9FC02CF175";
 "UniqueDeviceID" = "d5d9f86cfc06f8ace3d31c551ccc69788c4579e5";
 "ActivationTicket" =
"0200000029338284e1a7309dd143c60aa20a7176fba9d1db44860ba2e8b214c471e3d06b92089c068
26dcc7a4f06e8200228d974cf6b5518baebe3457ccaffe9395a81d5a94a8e3a7c1c71746aaebc39d9d
dc3acf2fd359448dd2d2379782606a4eec99e62298c26439d299606bbadb00d9439b63cfed42921f76
7d8316ce42e212082c58a1e5ee1fb619e0fb2f753b0f86a2db7cace003e5a47efb32a2b4e33d1787d0
f6681edfc0737877ee6a28cec242418402cfda695060bd75f396c909c0b1ba3236519d29291012fbda
dd2c8d0d7caae1ea33ac6841b3b6d64ca69145f7b072304a4f980d907d10b18bee9dd5df8cd8aea6ff
11b339e8cc34d7f572c6de69c53076e8a4f057e46cf6ebe879480f62e1f966abb1f05049b328a3cb47
d7208521901e6772c393251f13ce9ed9daaf21240617a89a813e7c48dbacd099d84979984deecc01e8
42da38a199e9e6ef67b84325f18a73c2f9f0fb4c11ce4933eed7728960ad637565e5589dc0faeb84a2
8990d71fceb0757f9131e4c151a48df520d427a66c2d2f2d0d4270d4e756c9baa9600da7f62f8dacf7
ab83bb454d5e48e078bad04ade6b98661859c3e9606a5e983a8f7e37d8fac3b9cc091d518e5b153e84
04486533bfc1aa20af4a6633245bc2de2afbf820f9065bae956690481d0df591dc1073011e6caf8d47
f8278f7a0d526a14948c33cc8f252e03c40d6f91c9a6229770eac49b2498630a468061892420518576
dfc0e045598475b68cedb071e1bf41476569da801081a39e7e658698bb54875ba74ed0af5c95c3fe03
7b9c8f5f547c926baa9dd055a4264";
 "IntegratedCircuitCardIdentity" = "89014103211656554643";
 "InternationalMobileSubscriberIdentity" = "310410165655464";
 "InternationalMobileEquipmentIdentity" = "011472002196598";

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 40 of 44

Technical Procedure

In this section, the low level technical details used by the iLiberty+ tool will be explained. These
techniques are intended for those desiring a technical explanation of the procedure or who seek
to reproduce or re-implement it, and is not necessary information for general forensic
examination.

Many different methods have been devised by the iPhone development community to gain
access to an iPhone or iPod Touchʼs operating system, however very few of them are able to do
so without destroying evidence, or the entire file system altogether. The technique used in this
manual is one considered to be forensically safe in that it is capable of accessing the device
without corrupting user data.

This technique gains access to the operating system by booting an unsigned RAM disk from the
iPhoneʼs resident memory. This RAM disk is copied into the iPhoneʼs memory and booted using
the Appleʼs private MobileDevice framework. Version 7.4.2 of the device framework is specifically
used here, and the procedure changes for newer versions of the framework. You will therefore
require this framework from a copy of iTunes 7.4.2 in order to reproduce the procedure.

Once the unsigned RAM disk is booted, it is then capable of mounting the deviceʼs system
partition and install a payload to enable shell access, surveillance, or any other type of package.
When the device boots back into its normal operating mode, the installed payload will be
executed, thereby granting access to the device. A custom RAM disk is used in order to install
this recovery payload. The RAM disk is a disk image containing the necessary ARM-architecture
files to boot and install such a custom payload on the iPhone. The RAM disk itself is padded with
0x800 bytes to contain an 8900 header, and may additionally pad between 0xCC2000 and
0xD1000 zero bytes to assist in aligning the execution space of the disk.

Once a custom RAM disk has been assembled, it is executed using private and undocumented
function calls within Appleʼs MobileDevice framework. In short, the procedure involves the
following:

1. The device is placed into recovery mode either manually (by holding the Home + Power
buttons until forced into recovery mode), or using the MobileDevice function
AMDeviceEnterRecovery.

2. The RAM disk image is sent to the device using the private __sendFileToDevice
function after looking up its symbol address in the framework.

3. The following commands are sent to the device using the private
__sendCommandToDevice function after looking up its symbol address in the
framework. This sets the kernelʼs boot arguments to boot from a RAM disk, and specifies
its memory address to the approximate location of the custom image copied to the device
in step 1.

setenv boot-args rd=md0 -s -x pmd0=0x9340000.0xA00000
saveenv
fsboot

Depending on the capacity and firmware version of the device, different memory
addresses may be necessary. The memory address 0x09CC2000.0x0133D000 has
also been reported to succeed.

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 41 of 44

4. Once the RAM disk has booted, and the payload has been delivered, the device can be
booted back into normal operating mode by sending the following commands to the
device using __sendCommandToDevice:

setenv boot-args [Empty]
setenv auto-boot true
saveenv
fsboot

Depending on the version of iPhone firmware, the fsboot command may be replaced
with bootx.

Source Code Examples
The following source code illustrates the process of booting an unsigned RAM disk in C. The
example waits for the device to be connected in recovery mode and then issues the commands to
send and boot a RAM disk as described in the last section. The RAM disk image and needed
framework library are provided by the implementer. This code was designed to run on the Mac
OS X operating system running iTunes 7.4.2 MobileDevice framework. Comments are provided in-
line.

To build this example, use the following command:

$ gcc –o inject-ramdisk inject-ramdisk.c –framework CoreFoundation –framework
MobileDevice –F/System/Library/PrivateFrameworks

The complete code for inject-ramdisk.c follows:

#include <stdio.h>
#include <mach-o/nlist.h>
#include <CoreFoundation/CoreFoundation.h>

/* Path to the MobileDevice framework is used to look up symbols and offsets */
#define MOBILEDEVICE_FRAMEWORK
"/System/Library/PrivateFrameworks/MobileDevice.framework/Versions/A/MobileDevice"

/* Used as a pointer to the iPhone/iTouch device, when booted into recovery */
typedef struct AMRecoveryModeDevice *AMRecoveryModeDevice_t;

/* Memory pointers to private functions inside the MobileDevice framework */
typedef int(*symbol) (AMRecoveryModeDevice_t, CFStringRef) \
 __attribute__ ((regparm(2)));
static symbol sendCommandToDevice;
static symbol sendFileToDevice;

/* Very simple symbol lookup. Returns the position of the function in memory */
static unsigned int loadSymbol (const char *path, const char *name)
{
 struct nlist nl[2];
 memset(&nl, 0, sizeof(nl));
 nl[0].n_un.n_name = (char *) name;
 if (nlist(path, nl) < 0 || nl[0].n_type == N_UNDF) {
 return 0;
 }
 return nl[0].n_value;
}

/* How to proceed when the device is connected in recovery mode.
 * This is the function responsible for sending the ramdisk image and booting
 * into the memory location containing it. */

void Recovery_Connect(AMRecoveryModeDevice_t device) {
 int r;

 fprintf(stderr, "Recovery_Connect: DEVICE CONNECTED in Recovery Mode\n");

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 42 of 44

 /* Upload RAM disk image from file */
 r = sendFileToDevice(device, CFSTR("ramdisk.bin"));
 fprintf(stderr, "sendFileToDevice returned %d\n", r);

 /* Set the boot environment arguments sent to the kernel */
 r = sendCommandToDevice(device,
 CFSTR("setenv boot-args rd=md0 -s -x pmd0=0x9340000.0xA00000"));
 fprintf(stderr, "sendCommandToDevice returned %d\n", r);

 /* Instruct the device to save the environment variable change */
 r = sendCommandToDevice(device, CFSTR("saveenv"));
 fprintf(stderr, "sendCommandToDevice returned %d\n", r);

 /* Invoke boot sequence (bootx may also be used) */
 r = sendCommandToDevice(device, CFSTR("fsboot"));
 fprintf(stderr, "sendCommandToDevice returned %d\n", r);
}

/* Used for notification only */
void Recovery_Disconnect(AMRecoveryModeDevice_t device) {

 fprintf(stderr, "Recovery_Disconnect: Device Disconnected\n");
}

/* Main program loop */
int main(int argc, char *argv[]) {
 AMRecoveryModeDevice_t recoveryModeDevice;
 unsigned int r;

 /* Find the __sendCommandToDevice and __sendFileToDevice symbols */
 sendCommandToDevice = (symbol) loadSymbol
 (MOBILEDEVICE_FRAMEWORK, "__sendCommandToDevice");
 if (!sendCommandToDevice) {
 fprintf(stderr, "ERROR: Could not locate symbol: "
 "__sendCommandToDevice in %s\n", MOBILEDEVICE_FRAMEWORK);
 return EXIT_FAILURE;
 }
 fprintf(stderr, "sendCommandToDevice: %08x\n", sendCommandToDevice);

 sendFileToDevice = (symbol) loadSymbol
 (MOBILEDEVICE_FRAMEWORK, "__sendFileToDevice");
 if (!sendFileToDevice) {
 fprintf(stderr, "ERROR: Could not locate symbol: "
 "__sendFileToDevice in %s\n", MOBILEDEVICE_FRAMEWORK);
 return EXIT_FAILURE;
 }

 /* Invoke callback functions for recovery mode connect and disconnect */
 r = AMRestoreRegisterForDeviceNotifications(
 NULL,
 Recovery_Connect,
 NULL,
 Recovery_Disconnect,
 0,
 NULL);
 fprintf(stderr, "AMRestoreRegisterForDeviceNotifications returned %d\n", r);
 fprintf(stderr, "Waiting for device in restore mode...\n");

 /* Loop */
 CFRunLoopRun();
}

Once the RAM disk has been injected and booted, the operation has been complete, and
whatever payload the RAM disk was written to deliver has been delivered. The device can then
be returned to normal operating mode by issuing the following commands in place of those in the
Recovery_Connect function:

 /* Reset and save the default boot-related environment variables */
 sendCommandToDevice(device, CFSTR("setenv auto-boot true"));
 sendCommandToDevice(device, CFSTR("setenv boot-args "));

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 43 of 44

 sendCommandToDevice(device, CFSTR("saveenv"));

 /* Boot the device (bootx may also be used) */
 sendCommandToDevice(device, CFSTR("fsboot"));

The device will now boot into normal operating mode for all subsequent boots.

iPhone/iPod Touch Forensics Manual Zdziarski, J

Page 44 of 44

Revision History

Rev. 0 Initial Release
Rev. 1 Formatting Improvements
 Addition of AMR Foremost rule
 Added note about /var/mobile <= 1.1.2
 Added this Change History
 Added Captions
 Image Conversion to B/W
Rev. 2 Added note about iLiberty detection and iTunes
 Updated screen captures
 Simplified instructions by adding custom Forensic-Toolkit payload
 Added information for custom jailbreak payload for v1.51 Mac
 Removed warnings about SSH key generation (now generated on toolkit install)
Rev. 3 Minor technical enhancements
 Elaborated on Windows instructions
 Included Windows screenshots
Rev. 4 Added Scalpel as faster variant of Foremost
 Added “images of interest” section
Rev. 5 New document versioning system

Editorial changes
 Added information about restore mode and evidence destruction
 Elaborated on update mode
 Provided links to Apple firmware packages
Rev. 6 Added Power-On Device Modifications and accompanying audit
Rev. 7 Elaborated on Windows toolkit installation and caveats
 Provided forced-recovery mode installation technique, for troublesome devices
 Added section regarding cross-contamination by syncing
 Added instructions for booting devices out of recovery mode
 Updated iLiberty+ for Windows documentation for manual payload activation
 Changed links to new forensic toolkit repository URLs
Rev. 8 Added low-level technical procedure for booting unsigned RAM disk
 Editorial changes
Rev. 9 Added source code examples
 Moved low-level technical procedures to end of manual
Rev. 10 Minor corrections to Power-On Device Modifications

Added section Encrypted Recovery of the Media Partition
Added section Determining Firmware Version
Expanded section File System Analysis
Added section Proving Evidentiary Pairing Relationships

Rev. 11 Mentioned use of virtual machines in section Cross-Contamination of Evidence and Syncing
 Added section Device Backups to new heading Desktop Trace
Rev. 12 Corrected netcat command line arguments for Windows
 Added remote port forwarding example for PuTTY (GUI SSH client)
 Added section Activation Records

Added additional information for Windows Vista file paths
Formatting fixes
Elaborated on various warnings and explanations
Added new discovery that user data is preserved after a full restore
Added alternative OS X arguments for netcat
Added file installation disclosure (for files written safely)
Added instructions for mounting media partition read-only
Added instructions for md5 checksum of read-only partition (requires 0507 payload or newer)

Rev. 13 Added section Circumventing Passcode Protection
Added icon and Map Tile format for PNG recovery with Scalpel/Foremost
Added additional sqlite3 syntax
Added Scaplel/Foremost rule for SQLite databases
Added recovery of Google Maps® Tile images

