
 
 
 
 
 
 
 

MARYLAND STATE POLICE 
COMPUTER FORENSICS LABORATORY 
 
 
 

      MDSP-CFL2006 
 
 
 
 
 
 

 
 
 
DIGITAL MEDIA ANALYSIS OF 
GNUTELLA PEER-TO-PEER NETWORKS 

 
 LIMEWIRE CASE STUDY 
 
 
 

David B. Heslep 
Detective Sergeant 
 
 
 
 
 
 
 
 
DO NOT DISSEMINATE WITHOUT THE EXPRESS PERMISSION OF THE AUTHOR 

Copyright © 2006, David B. Heslep, All Rights Reserved 
 
 
 
 



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             2 of 32                                                      6/13/2006 
  

Contents 
 
TITLE - Digital Media Analysis – Gnutella Peer-to-Peer Networks: Limewire................................3 
Introduction.........................................................................................................................................3 
Intended Audience..............................................................................................................................3 
Goals and Objectives .........................................................................................................................3 
The Gnutella Protocol.........................................................................................................................4 

Gnutella Descriptors ...............................................................................................................4 
Handshaking .....................................................................................................................................5 

Gnutella Handshake ...............................................................................................................5 
Ultrapeer Handshaking......................................................................................................................6 

Examples of interactions between Leaves and Ultrapeers may include the following: ...............6 
Standard Message Architecture ........................................................................................................7 
Payloads (Information Contained in the Different Types of Messages).............................................7 

Ping ............................................................................................................................................7 
Pong...........................................................................................................................................8 
Query .........................................................................................................................................8 
Query Hit ....................................................................................................................................8 
Query Hit Result Item.................................................................................................................9 
Push...........................................................................................................................................9 

Normal File Transfer (HTTP 1.1 GET Command) ...........................................................................10 
Partial File Transfer (Parallel Downloads) (Swarming) ....................................................................11 
Examples:........................................................................................................................................12 
PUSH Messages .............................................................................................................................13 

LimeWire Design...............................................................................................................................14 
LimeWire Anti-Spam Technology ....................................................................................................14 
Limewire Installation........................................................................................................................15 

Other Gnutella Clients ......................................................................................................................18 
Analysis Methodology......................................................................................................................19 

Identify open ports at the time of seizure.........................................................................................20 
How to determine if Limewire installed on the computer .................................................................21 
Are the Limewire program’s properties set to allow file sharing?.....................................................22 
Identify the File Name, MD5 hash value, and the SHA1 value for a known file. ..............................23 
Was the file uploaded by another servent? .....................................................................................25 
Keyword Searches ..........................................................................................................................26 

r@ygold Search Hits.............................................................................................................26 
Other Keywords to Consider.................................................................................................26 
How to compare SHA1 values recovered from the target computer with known files. ..........26 

Appendix ...........................................................................................................................................27 
Known HTTP Connection Headers .................................................................................................27 
Known HTTP Download Headers....................................................................................................27 
Ultrapeer Election Principles ...........................................................................................................28 
Definitions........................................................................................................................................29 

File Sharing Networks ..............................................................................................................29 
HASH Algorithms .....................................................................................................................30 
Internet Protocols .....................................................................................................................31 
Child Pornography Search Terms (http://www.urbandictionary.com).......................................31 

 



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             3 of 32                                                      6/13/2006 
  
TITLE - Digital Media Analysis – Gnutella Peer-to-Peer Networks: Limewire  
 

Abstract – Peer-to-peer networks are used for file sharing between users of these networks. Peer-
to-peer networks provide the capability to share any type of file and appear, at least to the user, to 
offer a certain amount of anonymity. The result is the use of these networks for a variety of illegal 
activities, including the sharing and distribution of Child Pornography. Our experiences in the 
examination of digital evidence would suggest that when computers communicate and exchange 
data, artifacts of those interactions are left behind.  This document attempts to explore the use of 
digital forensics to recover those artifacts and demonstrate with reasonable certainty that these 
interactions did indeed occur.  
 

Introduction 
 

Computer systems running Limewire or other Gnutella based peer-to-peer file sharing 
programs leave artifacts that can be demonstrated through digital media analysis, providing evidence 
of illegal file sharing on these networks. This document provides a basic explanation of the Gnutella 
network protocol; explains how programs such as Limewire utilize this protocol in conjunction with 
HTTP1.1 and TCP/IP protocols to share files over the network; and provides an overview of the 
artifacts that may be left behind on the digital media. Analysis methods for locating, interpreting and 
documenting this usage are also discussed. By using the model developed here and following the 
Limewire example, the investigator should be able to extend this experience to other Gnutella GUI 
programs and to a lesser extent other file sharing networks. Many of the illustrations shown below are 
from a Child Pornography Distribution criminal case that was generated, as the result of an out of 
state, ICAC Peer Precision investigation.  

 

Intended Audience 
 
 Information in this paper is Law Enforcement Sensitive. It is intended for trained digital 
forensics practitioners who have a firm understanding of data structures, the use of hash analysis, 
and digital forensics principles. As it includes a study case involving child pornography, readers are 
forewarned that this document contains sexually explicit text that may be offensive.  
 
Goals and Objectives 
 

Given a target file, the digital forensics practitioner should be able to identify or determine the 
File Name, MD5 hash value, and the SHA1 value, as well as answer the following questions: 

1. Is a Gnutella peer-to-peer file sharing program installed? 
2. Are the program’s properties set to allow file sharing? 
3. Was the target file downloaded utilizing a Gnutella file-sharing program? When? 
4. Was a particular file uploaded utilizing the Gnutella file-sharing program? When? By 

Whom? 
This document will examine the Gnutella Network Protocol and the popular Gnutella file-

sharing program, Limewire, installed in a Windows™ XP environment and attempt to answer the 
questions posed above. Finally, suggestions for the analysis of digital evidence that was utilized to 
participate in sharing of contraband files over a Gnutella network will be proposed. 

 
 
 



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             4 of 32                                                      6/13/2006 
  

The Gnutella Protocol1 
Excerpts from the Gnutella Development Forum, Gnutella/0.6 

online at http://www.the-gdf.org 
   Copyright (C) 2002, Tor Klingberg & Raphael Manfredi, All Rights Reserved. 

CREATIVE COMMONS PUBLIC LICENSE 
 

The Gnutella Network (GNet) consists of interconnected host computers implementing the 
Gnutella protocol. According to the Gnutella Protocol Specification, Gnutella is a network protocol for 
distributed searches that utilizes a peer-to-peer decentralized model. In this model, each computer is 
commonly referred to as a Gnutella Servent (a contraction of SERver and cliENT) and serves as both 
a client and a server. The client-side interface provides the user with the ability to make queries, view 
search results and download files. The server-side interface accepts and responds to queries from 
other servents concerning locally stored files and permits the uploading of files when they are 
available.  
 

In Gnutella Protocol, version 0.6, the concept of Ultrapeers was introduced to add more 
structure and hence, efficiency to the network. The Ultrapeer system categorizes the servents, 
attached to the network, as “Leaves” or “Ultrapeers” based on a number of factors, including the 
servent’s capabilities and the network’s need for additional Ultrapeers. Leaves connect to three 
Ultrapeers on average. Ultrapeers can connect to as many as thirty-two other Ultrapeers and will 
maintain about thirty leaves.  All servents on the network, act as servers and share in maintaining the 
network, however, those servents designated as Ultrapeers bare responsibility for message handling 
and routing, thereby reducing traffic between the Leaves on the network. There are no central servers 
such as those used by Napster and therefore, no single point of failure or owner of all of the client 
data. Each servent, while it is attached to the network, cooperates with all other servents to maintain 
the network. For the network to be effective, each servent should contribute to the network by 
sharing its files. The Gnutella network topology makes it extremely redundant and very difficult to 
regulate. 
 

The Gnutella Protocol consists of a set of descriptors used for communicating data between 
servents and a set of rules governing the inter-servent exchange of descriptors. Gnutella compliant 
software or clients, such as Limewire, provide an interface through which the user can become part of 
the network. Data exchanges between nodes are negotiated using TCP/IP and the standard HTTP 
protocols. Currently, the following descriptors are defined in the Gnutella protocol:  

 
Gnutella Descriptors 

 Descriptor Description 
0x00 Ping  Used to actively discover hosts on the network. A servent receiving a Ping descriptor is expected to respond with one or more 

Pong descriptors. 

0x01 Pong The response to a Ping. Includes the address of a connected Gnutella servent and information regarding the amount of data 
it is making available to the network. 

0x02 Bye Used to terminate a connection 

0x80 Query The primary mechanism for searching the distributed network. A servent receiving a Query descriptor will respond with a 
QueryHit if a match is found against its local data set. 

0x81 Query Hit The response to a Query. This descriptor provides the recipient with enough information to acquire the data matching the 
corresponding Query. 

0x40 Push  A mechanism that allows a firewalled servent to contribute file-based data to the network. 

 
 



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             5 of 32                                                      6/13/2006 
  

   
1. The client establishes a TCP connection with the server. 
2. The client sends "GNUTELLA CONNECT/0.6<cr><lf>". 
3. The client sends all capability headers--except for vendor-specific headers--each terminated by "<cr><lf>", with 

an extra "<cr><lf>" at the end. 
4. The server responds with "GNUTELLA/0.6 200 <string><cr><lf>". <string> SHOULD be "OK 
5. The server sends all its headers, in the same format as (3). 
6. The client sends "GNUTELLA/0.6 200 OK<cr><lf>", as in (4) if after parsing the server's headers, it still wishes 

to connect. Otherwise, it needs to reply with an error code and close the connection. 
7. The client sends any vendor-specific headers as needed, in the same format as (3).  
8. Both client and server send binary messages at will, using the information gained in (3) and (5).  

 
Figure 1 

           
        Client                              Server 

 
       
      GNUTELLA CONNECT/0.6<cr><lf> 
      User-Agent: Limewire/4.10<cr><lf> 
      Pong-Caching: 0.1<cr><lf> 
      GGEP: 0.5<cr><lf> 
      <cr><lf> 

                                      GNUTELLA/0.6 200 OK<cr><lf>   
                                      User-Agent: Limewire/4.10<cr><lf> 
                                      Pong-Caching: 0.1<cr><lf> 
                                      GGEP: 0.5<cr><lf> 
                                      Private-Data: 5ef89a<cr><lf> 
                                      <cr><lf> 

       
      GNUTELLA/0.6 200 OK<cr><lf> 
      Private-Data: a04fce<cr><lf> 
      <cr><lf> 
     

 [Binary messages]                   [Binary messages] 
Figure 2 

Handshaking  

A Gnutella servent connects itself to the network by establishing a connection with another 
servent currently on the network. Once the first connection is established, the addresses of more 
hosts will be supplied over the network. The default Gnutella port is 6346, but servents MAY use 
any unused port. If the desired port is used (probably by another Gnutella servent) the servent 
attempts to listen on another port. This listening port is advertised by the servent through the Pong 
messages. Once the address of another servent on the network is obtained, a TCP/IP connection to 
the servent is created, and a handshaking sequence is initiated. The client is the host initiating the 
connection and the server is the host receiving it. "<cr>" refers to ASCII character 13 (carriage 
return), and "<lf>" to 10 (new line).  Figure 1 shows a typical handshake. 

Gnutella Handshake 

Figure 2 demonstrates a sample interaction between a client and a server. Data sent from client to 
server is shown on the left; data sent from server to client is shown on the right.      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A few notes about the responses: first, the client (server) should disconnect if receiving any response other than "200" at 
step 4 (6). Second, servents should ignore higher version numbers in steps (2), (4), and (6). For example, it is legal for a 
future client to connect to a server and send "GNUTELLA CONNECT/0.7". The server SHOULD respond with 
"GNUTELLA/0.7 200 OK" if it supports the 0.7 protocols or "GNUTELLA/0.6 200 OK" otherwise.  



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             6 of 32                                                      6/13/2006 
  

Leaf connects to Ultrapeer 
 
  Leaf                             Ultrapeer 

  ----------------------------------------------------------- 
  GNUTELLA CONNECT/0.6 
  User-Agent: Limewire/4.10.0 
  X-Ultrapeer: False 
  X-Query-Routing: 0.1 
   

                                   GNUTELLA/0.6 200 OK 
                                   User-Agent: Limewire/4.10.0 
                                   X-Ultrapeer: True 
                                   X-Ultrapeer-Needed: False 
                                   X-Query-Routing: 0.1 
                                   X-Try: 24.37.144:6346, 
                                    193.205.63.22:6346 
                                   X-Try-Ultrapeers: 23.35.1.7:6346, 
                                    18.207.63.25:6347 

                                    
  GNUTELLA/0.6 200 OK 
   
  [Binary messages]                [Binary messages] 

 
Figure 3 

Leaf tries to connect to another leaf 
 
 Leaf 1                            Leaf 2 
  ----------------------------------------------------------- 
  GNUTELLA CONNECT/0.6 
  X-Ultrapeer: False 
   
                                   GNUTELLA/0.6 503 I am a leaf 
                                   X-Ultrapeer: False 
                                   X-Try: 24.37.144:6346 
                                   X-Try-Ultrapeers: 23.35.1.7:6346 
                                    
                                   [Terminates connection] 
 

 
 
 
 
 
 
 
 

Figure 4 

Ultrapeer Handshaking  

Ultrapeer capabilities and information is exchanged during the handshaking sequence when trying 
to establish a new Gnutella connection. The following new headers are used:  

 X-Ultrapeer: "True" signals that node is an Ultrapeer; "False” signals that the node wants to be a shielded leaf node.  
 X-Ultrapeer-Needed: Used to balance the number of Ultrapeers   
 X-Try-Ultrapeers: Like X-Try (see 2.1), but contains only addresses of Ultrapeers.  
 X-Query-Routing: Signals support for the Query Routing Protocol  

Examples of interactions between Leaves and Ultrapeers may include the following: 
 A leaf connects to an Ultrapeer. The leaf is now a shielded node of the Ultrapeer. The leaf should drop any non-

Ultrapeer connections. If a shielded leaf node receives a connection request, it will refuse to accept the connection by 
returning a 503-error code together with X-Try and X-Try-Ultrapeer headers to redirect to remote host to other 
addresses. Figure 3 

 A leaf may try to connect to another leaf, in which case the connection will be refused. Figure 4 
 Sometimes nodes will be Ultrapeer-incapable but unable to find an Ultrapeer. In this case, they behave exactly like 

old, un-routed Gnutella 0.4 connections.  
 When two Ultrapeers meet, both set X-Ultrapeer: true. If both have leaf nodes, they will remain Ultrapeers after the 

interaction.    
 Sometimes there will be too many Ultrapeer-capable nodes on the network. Consider the case of an Ultrapeer “A” 

connecting to an Ultrapeer “B”. If B doesn’t have enough leaves, it may direct A to become a leaf node. If A has no 
leaf connections, it stops fetching new connections, drops any Gnutella 0.4 connections, and sends a QRP table to B. 
Then B will shield A from all traffic. If A has leaf connections, it ignores the guidance, as in the above case.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             7 of 32                                                      6/13/2006 
  
Standard Message Architecture 
 

Once a servent has connected successfully to the network, it communicates with other 
servents by sending and receiving Gnutella protocol descriptors. Each descriptor is preceded by a 
Descriptor Header with the byte structure given below. 

 
Message Header - The message header is 23 bytes divided into the following fields. 

Bytes Description 
0-15 Message ID/GUID (Globally Unique ID) 
16 Payload Type 
17 TTL (Time To Live) 
18 Hops 

19-22 Payload Length 
 

Message ID – A 16-byte string (GUID) uniquely identifying the message on the network. This is a 
security measure to ensure that responses are only sent to legitimate requestors and that responses 
are only accepted after a legitimate request has been made. This protects servents from receiving 
data and files that were not requested. 
 
Payload Type – Indicates the type of message. Gnutella servents MUST accept all the following 
types:  

Type Message  
0x00 Ping  
0x01 Pong  
0x02 Bye  
0x40 Push  
0x80 Query  
0x81 Query Hit  

 
TTL (Time-to-Live) – The number of times the message will be forwarded by Gnutella servents before 
it is removed from the network. Each servent will decrement the TTL before passing it on to another 
servent. When the TTL reaches zero, the message will no longer be forwarded.  
 
Hops – The number of times the message has been forwarded. As a message is passed from servent 
to servent, the TTL and Hops fields of the header must satisfy the following condition: TTL (0) = TTL 
(i) + Hops (i) where TTL (i) and Hops (i) are the value of the TTL and Hops fields of the message, and 
TTL (0) is maximum number of hops a message will travel (usually 7).  
 
Payload Length – The length of the message immediately following this header  
 
Payloads (Information Contained in the Different Types of Messages) 
 
Ping (0x00) – Ping messages MAY contain a GGEP extension block, but no other payload.  
 
 



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             8 of 32                                                      6/13/2006 
  
Pong (0x01) – Pong messages contains information about a Gnutella host. The message has the 
following payload:  
Bytes Field name  Description  
0-1  Port Number  The port number on which the responding host can accept incoming connections.  
2-5  IP Address  The IP address of the responding host. Note: This field is in big-endian format.  

6-9  Number of shared 
files  

The number of files that the servent with the given IP address and port is sharing on the 
network.  

10-13  Number of kilobytes 
shared  

The number of kilobytes of data that the servent with the given IP address and port is 
sharing on the network.  

14-  GGEP block  OPTIONAL extension (Gnutella Generic Extension Protocol (GGEP) allows arbitrary 
extensions in Gnutella messages).  

Pong messages are only sent in response to an incoming Ping message. It is common for a servent to send all recently 
received Pongs in response to every single Ping message. This enables host caches to send cached servent address 
information in response to a Ping request.  
The Message ID of a Pong message MUST be the Message ID of the Ping message it is sent in reply to.  
The fields specifying the number of shared files and the number of kilobytes shared were intended to allow one to 
measure the amount of data available on the network. With a very large Gnutella network, and minimized Ping and Pong 
message traffic, this can no longer be done. Still, these fields SHOULD be filled out correctly.  
 

Query (0x80) – A Query message has the following payload: 
Bytes Field name  Description  

0-1  Minimum 
Speed (Flags)  

The minimum speed (in kb/second) of servents that should respond to this message. A servent 
receiving a Query message with a Minimum Speed field of n kb/s SHOULD only respond with a 
Query Hit if it is able to communicate at a speed >= n kb/s.  

2-  Search 
Criteria  

This field is terminated by a NUL (0x00). The Search Criteria is a string of keywords.  A servent 
SHOULD only respond with files that have all the keywords. A space is the standard separator 
between words. See Gnutella Protocol Section 2.2.7.3 for rules and information on how to Interpret 
the Search Criteria  

Rest  Extensions 
Block  

The rest of the query message is used for extensions to the original query format. The allowed 
extension types are GGEP, HUGE and XML. The type of each block can be determined by looking 
for the prefixes "urn:" for a HUGE block, "<" or "{" for XML and 0xC3 for GGEP.  

 

Query Hit (0x81) – Query Hit messages has the following fields:  
Bytes  Field name  Description  

0  Number of 
Hits  The number of query hits in the result set (see below).  

1-2  Port  The port number on which the responding host can accept an incoming HTTP file request. This is 
usually the same port used for Gnutella network traffic, but any port MAY be used.  

3-6  IP Address  The IP address of the responding host. Note: This field is in big-endian format.  
7-10  Speed  The speed (in kb/second) of the responding host.  
11-  Result Set  A set of responses to the corresponding Query. This set contains Number_of_Hits elements.  

x  Extended 
QHD  

This block is not strictly required, but strongly recommended. It is sometimes called EQHD, or 
(incorrectly) just QHD.  

x  Private 
Data  

Undocumented vendor-specific data. This field continues until the servent Identifier, which uses the 
last 16 bytes of the message.  

Last 
16  

Servent 
Identifier  

A 16-byte string uniquely identifying the responding servent on the network. This SHOULD be 
constant for all Query Hit messages emitted by a servent and is typically some function of the 
servent's network address. The servent Identifier is mainly used for routing the Push Message. 

 



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             9 of 32                                                      6/13/2006 
  
Query Hit Result Item – Each item contained in the query-hit result is structured as follows:  
Bytes Field name  Description  

0-3  File Index  A number, assigned by the responding host, which is used to uniquely identify the file matching the 
corresponding query.  

4-7  File Size  The size (in bytes) of the file whose index is "File Index". For large files whose size cannot be 
expressed with a 32-bit integer, a GGEP LF block can be used in the extensions block.  

8-  File Name  The name of the file whose index is "File Index". Terminated by a null byte (i.e. 0x00).  

x  Extensions 
block.  

Allowed extension types are HUGE, GGEP and plain text metadata. This field is terminated by a null 
(0x00), even if there are no extensions (resulting in a double null). Also, the extensions block itself 
MUST NOT contain any null bytes.  
If two or more of these extension types exist together, they are separated by a 0x1C (file separator) 
byte. Since GGEP blocks can contain 0x1C bytes, the GGEP block, if present, MUST be located 
after any HUGE and plan text blocks.  
The type of each block can be determined by looking for the prefixes "urn:" for a HUGE block, 0xC3 
for GGEP and anything else is probably plain text metadata.  
Plain text metadata is intended to be displayed directly to the user. It was first invented by Gnotella 
(a now discontinued Gnutella servent) to tag MP3 files. 
 Examples:  
 "192 kbps 44 kHz 3:23" 
 "120 kbps(VBR) 44kHz 3:55" (variable bitrate) 
Other plain text formats MAY be used.  

 
Push (0x40) – A Push message has the following fields:  
Bytes Field name  Description  

0-15  Servent 
Identifier.  

The 16-byte string uniquely identifying the servent on the network who is being requested to 
push the file with index File Index. The servent initiating the push request MUST set this field to 
the Servent_Identifier returned in the corresponding QueryHit message. This is used to route the 
Push message to the sender of the Query Hit message.  

16-19  File Index  
The index uniquely identifying the file to be pushed from the target servent. The servent initiating 
the push request MUST set this field to the value of one of the File Index fields from the Result 
Set in the corresponding QueryHit message.  

20-23  IP Address  The IP address of the host to which the file with File Index should be pushed. This field is in big-
endian format.  

24-25  Port  The port number the receiver of this message should push to.  

26-  
OPTIONAL 
GGEP extension 
block  

   

 
 
 
 
 
 
 
 
 
 
 
 



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             10 of 32                                                      6/13/2006 
  

The servent initiating the download sends a request string on the following form to the target server:
 
   GET /get/<File Index>/<File Name> HTTP/1.1<cr><lf> 
   User-Agent: Limewire 4.10.1<cr><lf> 
   Host: 123.123.123.123:6346<cr><lf> 
   Connection: Keep-Alive<cr><lf> 
   Range: bytes=0-<cr><lf> 
   <cr><lf> 

Figure 5 

    
   GET /get/2468/ Oh I want to be a cowboy.mp3 HTTP/1.1<cr><lf> 
  User-Agent: Limewire 4.10.1<cr><lf> 
   Host: 123.123.123.123:6346<cr><lf> 
   Connection: Keep-Alive<cr><lf> 
   Range: bytes=0-<cr><lf> 
   <cr><lf> 

Figure 6 

The server receiving this download request responds with HTTP 1.1 compliant headers such as  
 
   HTTP/1.1 200 OK<cr><lf> 
   Server: Gnutella<cr><lf> 
   Content-type: application/binary<cr><lf> 
   Content-length: 4356789<cr><lf> 
   <cr><lf> 

Figure 7 

Normal File Transfer (HTTP 1.1 GET Command) 
 

Once a servent receives a QueryHit message, it may initiate the direct download of one of the 
files described by the message's Result Set. Files are downloaded out-of-network: i.e., a direct 
connection between the source and target servent is established in order to perform the data 
transfer. File data is never transferred over the Gnutella network. The file download protocol is 
HTTP. It is RECOMMENDED to use HTTP 1.1, but HTTP 1.0 can be used instead.  

 

    
Where <File Index> and <File Name> are one of the File Index/File Name pairs from a QueryHit 
message's Result Set. For example, if the Result set from a QueryHit message contained the entry:  

   File Index: 2468 
   File Size: 4356789 
   File Name: Oh I want to be a cowboy.mp3 

Then a download request for the file described by this entry would be initiated as follows:  

The Host header is required by HTTP 1.1 and specifies what address you have connected to. It is usually not used by the 
receiving servent, but its presence is required by the protocol.  
The allowable values of the User-Agent string are defined by the HTTP standard. Servent developers cannot make any 
assumptions about the value here. The use of 'Gnutella' is for illustration purposes only. 
  

 
 
 
 
 
 
 
 
 
 

 
The file data then follows and should be read up to and including, the number of bytes specified in the Content-length 
provided in the server's HTTP response.  
  



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             11 of 32                                                      6/13/2006 
  

Range requests are on the form 
 
   GET /get/2468/Foobar.mp3 HTTP/1.1<cr><lf> 
   User-Agent: Limewire 4.10.1<cr><lf> 
   Host: 123.123.123.123:6346<cr><lf> 
   Connection: Keep-Alive<cr><lf> 
   Range: bytes=4932766-5066083<cr><lf> 
   <cr><lf> 

Figure 8 

Partial File Transfer (Parallel Downloads) (Swarming) 
 

The server allows HTTP requests for partial files, at URIs chosen by the server. They can for 
example be assigned a file index and shared at "/get/index/filename", or simply at "/partials/filename". 
If requests by URN are supported, the best way is probably to share only at:  

"uri-res/N2R?urn:sha1:HASH_OF_COMPLETE_FILE". 
 

Only partial requests (with a Range header) are accepted. The X-Available-Ranges header is used by 
the server to inform the client about what ranges are available. Note that 2xx or 503 responses 
without an X-Available-Ranges header means the complete file is available. The format is as follows:  
 

X-Available-Ranges: bytes 0-10,20-30 
The client requests the range it wants using the Range header. Range: bytes=0- means the 

client wants any ranges the server can provide. The server then provides the range it wants to upload 
using a 206 Partial Content response. This allows the server to upload different ranges to different 
hosts, and save bandwidth by allowing them to get the other parts from each other. The server can 
decide to upload any range inside the requested range. This means that the client cannot be sure that 
the first byte in the response is first requested byte. The 206 response contains a Content-Range 
header on the form: 

Content-Range: bytes <start>-<end>/<total_size> 
 
Note that <total_size> is the size of the complete file.  

 
Tree hashes –TigerTree can be implemented if/when corrupt files become a problem. The 

reason that it is in this document is that Partial File Sharing might cause corrupt files to spread faster.  
TigerTree hashes are computed using a 1024 byte base size. The tree is provided as specified in the 
Tree Hash EXchange format. It basically says that the hash tree is provided as a long stream of 
binary data starting with the root hash, then the two hashes it is computed from, and so on.  
To inform the client about where the hash tree can be retrieved the server includes an X-Thex-URI 
header on this form:  

X-Thex-URI: <URI> ; <ROOT> 
 

<URI> is any valid URI. It can be to an uri-res translator, and can even point to another host. The 
client can then retrieve desired parts of the hash tree by doing range requests for the specified URI.  
Parallel Downloads – Some Gnutella clients support parallel downloads, downloading parts of a file 
from several servents at the same time.  In this case, the download request and response will include 
a range request in the form of “Range: bytes=range<cr><lf>” 
 

Download Request 

Note that the Range header does not have to specify both start and end positions.  
 



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             12 of 32                                                      6/13/2006 
  

The response is on the form 
    
HTTP/1.1 206 Partial Content<cr><lf> 
   Server: Limewire 4.10.1<cr><lf> 
   Content-Type: audio/mpeg<cr><lf> 
   Content-Length: 133318<cr><lf> 
   Content-Range: bytes 4932766-5066083/5332732<cr><lf> 
   <cr><lf> 

Figure 9 

  

Servent B 
Ultrapeer 

Servent A 

Servents C , D, E, F   

Search Query   

Query Hit   

File Download 

Query   Hit 

Search  Query   
Search  Query   

Search  Query   
Search  Query   

 
 

Figure 10 
 

Response 

 
Examples:  

A simple GNet search query and file download 

  
Actual download requests recovered from suspect’s computer 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

User 

GET /uri-res/N2R?urn:sha1:QQ4CQNK5HG2IAAYHW3MRWZ2GFI5J4JRF HTTP/1.1  
Host: 24.239.69.187:6348  
User-Agent: iMesh 0.0.0.1 (GnucDNA 1.1.0.8)  
Listen-IP: 168.234.252.14:3039  
Connection: Keep-Alive  
Range: bytes=8469264-8912895  
X-Queue: 0.1  
X-Features: g2/1.0  
X-Alt: 152.30.115.34:6346, 166.82.115.36:6346, 217.44.2.228:6346, 200.95.12.237:3089, 66.41.170.41:6346  
X-NAlt: 83.200.24.228:1602, 24.17.20.14:6346, 208.59.174.6:6346, 210.49.73.251:6346, 82.136.196.127:6346 
 
GET /uri-res/N2R?urn:sha1:QQ4CQNK5HG2IAAYHW3MRWZ2GFI5J4JRF HTTP/1.1  
Host: 24.239.69.187:6349  
X-Features: g2/1.0  
Range: bytes=17885184-17950719  
User-Agent: Shareaza 1.8.11.2  
Listen-IP: 68.68.79.164:6346  
X-Nick: TTTBone  
X-Queue: 0.1  
X-Content-URN: urn:sha1:QQ4CQNK5HG2IAAYHW3MRWZ2GFI5J4JRF  
Alt-Location: http://24.240.45.175:6346/uri-res/N2R?urn:sha1:QQ4CQNK5HG2IAAYHW3MRWZ2GFI5J4JRF 2005-01-
31T20:36Z,  
http://205.250.224.239:6346/uri-res/N2R?urn:sha1:QQ4CQNK5HG2IAAYHW3MRWZ2GFI5J4JRF 2005-01-31T20:36Z 

SHA1 Hash of requested file 
IP Address/Port for computer providing file 
Agent used by requestor 
IP Address of requestor 

SHA1 Hash of requested file 
IP Address/Port for computer providing file 
Agent used by requestor 
IP Address of requestor 
Chat Nickname of requestor 



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             13 of 32                                                      6/13/2006 
  
PUSH Messages 
 

Firewalled Servents – It is not always possible to establish a direct connection to a Gnutella 
servent in an attempt to initiate a file download. The servent may for example, be behind a firewall 
that does not permit incoming connections to its Gnutella port. If a direct connection cannot be 
established, the servent attempting the file download may request that the servent sharing the file 
"push" the file instead. A servent can request a file push by routing a Push request back to the 
servent that sent the QueryHit message describing the target file. The servent that is the target of the 
Push request (identified by the Servent Identifier field of the Push message) SHOULD, upon receipt 
of the Push message, attempt to establish a new TCP/IP connection to the requesting servent 
(identified by the IP Address and Port fields of the Push message). If this direct connection cannot be 
established, then it is likely that the servent that issued the Push request is itself behind a firewall. In 
this case, file transfer cannot take place by the means of what is described in this document.  
 

Usage of Push Messages – A servent may send a Push message if it receives a QueryHit 
message from a servent that doesn't support incoming connections. This might occur when the 
servent sending the QueryHit message is behind a firewall. When a servent receives a Push 
message, it SHOULD act upon the push request if and only if the servent_Identifier field contains the 
value of its servent identifier. The Message_ID field in the Message Header of the Push message 
should NOT contain the same value as that of the associated QueryHit message, but SHOULD 
contain a new value generated by the servent's Message_ID generation algorithm. (This is the 
GUID described in the Limewire.props file.) Push messages are forwarded back to the originator of 
the Query Hits message using the Servent Identifier value. This means multiple Push messages can 
have the same Servent Identifier. Push messages MUST only be considered as duplicates if the 
Message ID in the header is the same. Since Push messages are not broadcasted, duplicate 
messages should be very rare.  
 

Pushing the file to the Downloader – If a direct connection can be established from the 
firewalled servent to the servent that initiated the Push request, the firewalled servent should 
immediately send the following:  

GIV <File Index>:<Servent Identifier>/<File Name><lf><lf> 
 
Where <File Index> and <Servent Identifier> are the values of the File Index and Servent Identifier 
fields respectively from the Push request received, and <File Name> is the name of the file in the 
local file table whose file index number is <File Index>. The File Name MAY be url/uri encoded. The 
servent that receives the GIV (the servent that wants to receive a file) SHOULD ignore the File Index 
and File Name, and request the file it wants to download. The servent that sent the GIV MUST allow 
the client to request any file, and not just the one specified in the Push message. The GET request 
and the remainder of the file download process is identical to that described in the section 4.1 
(Normal File Transfer) above.  
 
The <Servent Identifier> is formatted as hexadecimal, and must be read case-insensitively. For 
instance:  

GIV 36:809BC12168A1852CFF5D7A785833F600/Foo.txt<lf><lf> 
GIV 124:d51dff817f895598ff0065537c09d503/Bar.html<lf><lf> 

 
 
 



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             14 of 32                                                      6/13/2006 
  

LimeWire Design2 
Version 4.10.9 

 
LimeWire is a free and open source peer-to-peer file sharing client for the Gnutella network. It 

is released under the GNU General Public License. The program allows users to share files using the 
Gnutella peer-to-peer protocol. It is written in SUN Java and therefore runs on any computer with the 
Java virtual machine installed. To facilitate installation for casual users, the developers release 
installation packages for Microsoft Windows, Mac OS X, and for Linux, in RPM format. 

LimeWire uses the SHA-1(base32) and Tiger tree hash cryptographically secure hash 
functions to ensure that downloaded data is uncompromised. Although researchers have identified 
possible vulnerabilities in the SHA1 algorithm, because LimeWire does not rely on SHA1 alone, these 
vulnerabilities do not have many adverse implications for LimeWire's verification of downloaded files. 
Limewire’s official website is located at http://www.limewire.com/.  

LimeWire Anti-Spam Technology 
  
There are three well-known techniques for eliminating Gnutella spam: 

 IP Filtering: ignore packets from certain hosts. (pongs and query replies) Also deny incoming 
connections from these hosts.  

 Keyword filtering: ignore packets containing certain undesirable words, e.g., “xxx” or “.vbs”. 
(queries and query replies)  

 Duplicate filtering: ignore duplicate packets, or very similar packets, that come within any given 
time frame. (All packets, though this currently is only implemented for queries and pings).  

  
These techniques can be applied on two different levels: 

1. Personal filtering: ignore what I see in the search monitor and results window, but pass them 
on to other users. Currently if any file in a query reply is considered spam, all the files are 
considered spam. This could change in the future.  

2. Route filtering: ignore spam completely. Do not pass on to other users. Do not display.  
  
LimeWire currently supports the following policies: 

 IP filtering on the route level  
 Keyword filtering on the personal level.  Rationale: don’t want to censor what others can see.  
 Duplicate filtering on the route level.  
 Adult filtering:  this is just a simple way of setting up keyword filtering on the personal level without 

having to type in dirty words.  
 VBS filtering: similar to adult filtering, but with “vbs” (Visual Basic script extension) entered 

instead.  
 HTML filtering: similar to adult filtering, but with “htm” entered instead. Rationale: most HTML files 

on GNet are spam right now. Hopefully this will change.  
 Greedy query filtering: a kind of keyword filtering technique looking for queries that are bound to 

have lots of results, e.g., a.mp3. Applied on the route level.  
  
 
 
 



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             15 of 32                                                      6/13/2006 
  
Limewire Installation3 
 
THE INSTALLATION WIZARD 
NOTE: Screenshots are taken from a Windows installation, English version. The installation process depends on whether or not you 
already have the Java Runtime Environment installed on your machine. For specific problems with installation, check the FAQ 
document.  

 

Step 1: The install window will open. Click "Next" to initiate installation. 

 

Step 2: You will be asked to choose a folder to install LimeWire. You may choose the 
default folder or install in a different folder. Afterwards, you will be asked to select where 
to place the shortcut/alias for LimeWire. We recommend placing the LimeWire shortcut 
on your desktop. 

 

Step 3: LimeWire will install on your computer. 



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             16 of 32                                                      6/13/2006 
  

 

Step 4: Select "Finish" or click on the shortcut on your desktop to launch LimeWire. 

 
THE SETUP WIZARD 

 

Step 1: Select your preferred language for LimeWire. 

 

Step 2: Follow and complete The Setup Wizard. 

 

Step 3: You will be asked to designate a folder that will contain the files you would like to 
share. With the "Browse Host" feature, a user can look at any file in this folder. You can 
change your folder location at any time by going to Tools/Options/Saving. Please be 
aware that private material can be viewed if it is in your shared folder.  
 
You can share more than one folder by adding additional folders to your Shared list in 
Library. WARNING: DO NOT SHARE YOUR ENTIRE HARD DRIVE. If you share your 
entire hard drive, the contents of your whole computer may be exposed. 
 
To limit sharing to specific file types, enter that file extension in the Shared Extensions 
input field (Tools> Options> Sharing). For example, to share only JPEG files enter only 
"jpg" or "jpeg" in the Shared Extensions input field. 
 
If the Share Finished Downloads option is checked, then all completed downloads will be 
shared. To share or unshare individual files-- independent of their folder-- go to the 
Library and select a specific folder from the folder list in the left window, and right-click for 
sharing options. 



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             17 of 32                                                      6/13/2006 
  

 

Step 4: Choose your connection speed. If you do not know your speed, select "Modem" if 
your connection is generally slow, or "Cable/DSL" if it is generally fast. You can change 
your connection speed at any time by going to Tools/Options/Speed. 

 

Step 5: Choose whether or not you would like LimeWire to start automatically when your 
computer starts. It is recommended that you do this for the best LimeWire experience. 
LimeWire will load into your system tray. 

 

Step 6 & 7: If you have any firewalls or security programs installed on your computer, you 
may receive a prompt asking if you would like to grant permission to LimeWire. 
IMPORTANT: You must grant permission or unblock access in order for LimeWire to 
function. 

 

Step 8: You will have the option to allow LimeWire to scan your hard drive for directories 
you might like to share. If you choose to do this, the media files currently on your 
computer will be available automatically in your Library. 



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             18 of 32                                                      6/13/2006 
  

 

Step 9: Your settings are complete. 
 
When you complete this setup, LimeWire will be ready to go. 

 
 
Other Gnutella Clients 
 

Name    Platform        License  
Acquisition   Mac OS X        proprietary  
Apollon (GUI)   Unix-like/KDE GNU      GPL  
BearShare    Microsoft Windows     proprietary  
Cabos    Java GNU        GPL  
CocoGnut    RISC OS       Freeware  
DM2     Microsoft Windows      Freeware  
FrostWire    Java GNU        GPL  
giFT     Microsoft Windows, Mac OS X, AmigaOS GNU  GPL  
Gnucleus    Microsoft Windows GNU      GPL, GNU LGPL  
Gtk-gnutella   Unix-like GNU       GPL  
Gluz     Java         proprietary  
iMesh    Microsoft Windows      proprietary  
KCeasy    Microsoft Windows GNU      GPL  
Kiwi Alpha    Microsoft Windows      proprietary  
LimeWire    Java GNU        GPL  
MLdonkey    Microsoft Windows, Mac OS X, MorphOS GNU  GPL  
Morpheus    Microsoft Windows      proprietary  
Mutella    Unix-like GNU       GPL  
Phex     Java GNU        GPL  
Poisoned    Mac OS X GNU       GPL  
Qtella    Unix-like GNU       GPL  
Shareaza    Microsoft Windows GNU      GPL  
Swapper.NET   Microsoft Windows      proprietary  
Symella    Symbian OS GNU       GPL  
XFactor    Mac OS X GNU       GPL  
XNap     Java GNU        GPL  
XoloX    Microsoft Windows      proprietary 
 
 
 
 



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             19 of 32                                                      6/13/2006 
  
Analysis Methodology 
 
 This methodology is based on the analysis of the computer that possesses and shares a target 
file or file of interest, such as Child Pornography. Gnutella client programs are designed for efficient 
file sharing; therefore, most only save information that is required for operation of the program. The 
rest of the information is simply transient on the computer sharing the files. Information saved and the 
location of information may be different from program to program.  What these programs do have in 
common is the Gnutella network and its dependence on Http1.1 and TCP/IP.  
  
1. Examine open ports before shutting the computer system down at the time of seizure. If the 

computer is powered on and connected to the internet at the time of seizure, use a program such 
as FPort v2.0 - TCP/IP Process to Port Mapper, Copyright 2000 by Foundstone, Inc. 
http://www.foundstone.com to determine ports that are being utilized by peer to peer programs 
before seizing the computer. F.R.E.D. v1.3 - 2 September 2004 [modified for HELIX 09/2004], 
may be ran to collect live system information. The FRED report can be output to one 3.5” floppy 
disc. This report documents a host of information including system information, network 
connections, network user information, running processes, hidden files, and open ports. If the 
computer is off, do not turn it on. 

2. Examine the logical file system to determine what peer-to-peer programs are installed. 
Keep in mind that the program folders from some programs are different from the name of the 
program itself (e.g. Etomi/Shareaza, Streamcast/Morpheus Ultra) and not all of the programs are 
installed in the Program Files folder by default. In addition, the install location can be altered 
during the installation of most of these programs. 

3. Identify files installed by each program that may contain useful data. Depending on the 
program these files may be easy to difficult or even impossible to interpret. Some programs such 
as Morpheus Ultra utilize several Peer-to-Peer protocols and as a result, files such as the 
Morpheus Ultra\GnuHashes.ini file contain a wealth of information and are easy to interpret. 

i. Properties File – stores current properties of program 
ii. Urn Hashes File – stores at minimum the Index, SHA1 of the file, and the File Name with 

full path. 
iii. Gwebcache – stores information concerning other servents 

4. Identify the Shared Folder(s). Users may select more than one folder to share on a network, or 
may even share their entire hard drive, though this is not recommended. 

5. Identify known files provided by the preceding investigation. Calculate the file’s MD5 and 
SHA1 Hash Values, and determine its file name. Are these files located in the Shared folder(s), or 
subfolders created within the shared folder(s)? Are the files categorized? Have files been 
relocated to non-shared folders. Are file names and hash values located within other files? 

6. Locate Contraband Files (Child Pornography, etc.). Are these files located in the Shared 
folder(s), or subfolders created within the shared folder(s)? Are the files categorized? Have files 
been relocated to non-shared folders. Have the file been uploaded by other servents? 

7. Search the computer, including unallocated space, slack space and the swap file (pagefile.sys) 
for remnants of file sharing.  

i. SHA1 and MD5 Hash Values 
ii. Known File Names 
iii. Http1.1 commands (GET)  
iv. Known Users Names/nicknames 
v. Known IP Addresses 
vi. Known GUID strings 



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             20 of 32                                                      6/13/2006 
  
Identify open ports at the time of seizure  
 
This computer was running Limewire and WinMX at the time of seizure and was in the process of 
downloading multiple files. As you can see, both Limewire and WinMX are using multiple ports. 
 
=================================================  
FPORT (fport /p) 
=================================================  
FPort v2.0 - TCP/IP Process to Port Mapper, Copyright 2000 by Foundstone, Inc. 
http://www.foundstone.com 
 
Pid    Process             Port   Proto  Path                           
1032                   ->  135    TCP                                  
4      System         ->  139    TCP                                  
4      System         ->  445    TCP                                  
1888  ccApp           ->  1030   TCP   C:\Program Files\Common Files\Symantec Shared\ccApp.exe 
3352                  ->  1042   TCP                                  
504    LimeWire        ->  1046   TCP   C:\Program Files\LimeWire\LimeWire.exe 
504    LimeWire        ->  1047   TCP   C:\Program Files\LimeWire\LimeWire.exe 
504   LimeWire        ->  1289   TCP   C:\Program Files\LimeWire\LimeWire.exe 
204    WinMX           ->  1523   TCP   C:\Program Files\WinMX\WinMX.exe 
504    LimeWire        ->  5214  TCP   C:\Program Files\LimeWire\LimeWire.exe 
504    LimeWire        ->  6350   TCP   C:\Program Files\LimeWire\LimeWire.exe 
0      System          ->  6350  TCP                                  
204    WinMX           ->  6699   TCP   C:\Program Files\WinMX\WinMX.exe 
504    LimeWire        ->  45100 TCP   C:\Program Files\LimeWire\LimeWire.exe 
504    LimeWire        ->  123    UDP   C:\Program Files\LimeWire\LimeWire.exe 
0      System          ->  137    UDP                                  
504    LimeWire        ->  138    UDP   C:\Program Files\LimeWire\LimeWire.exe 
1032                   ->  445    UDP                                  
4      System          ->  500    UDP                                  
0      System          ->  1025   UDP                                  
504    LimeWire        ->  1027   UDP   C:\Program Files\LimeWire\LimeWire.exe 
204    WinMX           ->  1029   UDP   C:\Program Files\WinMX\WinMX.exe 
504    LimeWire        ->  1039   UDP   C:\Program Files\LimeWire\LimeWire.exe 
4      System          ->  1093   UDP                                  
504    LimeWire        ->  1094   UDP   C:\Program Files\LimeWire\LimeWire.exe 
204    WinMX           ->  1095  UDP   C:\Program Files\WinMX\WinMX.exe 
204    WinMX           ->  1096   UDP   C:\Program Files\WinMX\WinMX.exe 
204    WinMX           ->  1097   UDP   C:\Program Files\WinMX\WinMX.exe 
204    WinMX           ->  1098   UDP   C:\Program Files\WinMX\WinMX.exe 
204    WinMX           ->  1099   UDP   C:\Program Files\WinMX\WinMX.exe 
504    LimeWire        ->  1900   UDP   C:\Program Files\LimeWire\LimeWire.exe 
504    LimeWire        ->  2625   UDP   C:\Program Files\LimeWire\LimeWire.exe 
204    WinMX          ->  4500   UDP   C:\Program Files\WinMX\WinMX.exe 
204    WinMX           ->  4502   UDP   C:\Program Files\WinMX\WinMX.exe 
204    WinMX           ->  5353  UDP   C:\Program Files\WinMX\WinMX.exe 
504    LimeWire        ->  6257   UDP   C:\Program Files\LimeWire\LimeWire.exe 
504    LimeWire        ->  6347   UDP   C:\Program Files\LimeWire\LimeWire.exe 
504    LimeWire        ->  6350   UDP   C:\Program Files\LimeWire\LimeWire.exe 
0          System                   ->  21780 UDP          
 

The analysis of open ports and running processes may also be useful in Virus and Hacker 
defense tactics. 
 



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             21 of 32                                                      6/13/2006 
  
How to determine if Limewire installed on the computer 
 

When Limewire is installed, in addition to creating the typical folder under Program Files, the 
installation program also creates a set of folders under the current user’s name in the Documents and 
Settings folder. Most of the investigative data is located in these two folders and their subfolders. By 
default the following folders are created: 

 C:\Program Files\Limewire\ 
 C:\Documents and Settings\<Username>\.limewire\ 
 C:\Documents and Settings\<Username>\Shared\ 

Folders and files listed below were located in the “.limewire” folder  

 
 The Limewire executable file is located in the C:\Program Files\Limewire\ by default. 
 

The shared folder is created in C:\Documents and Settings\ <Username>\Shared\, under the 
user account that ran the Limewire installation and setup program, by default. This could be the 
Administrator account or the account of another user on the computer. Sub-folders within the shared 
folder are also shared. 

 
  
 

 
 
 

Folders Files [.limewire\] Data 

limewire.props 
This is the Limewire properties file, which contains 
several items of investigative interest including the Client 
ID. 

createtimes.cache java.util.HashMap that includes SHA1 values 

fileurns.cache java.util.HashMap that includes the filename with 
complete path and associated SHA1 values. 

fileurns.bak Backup file for fileurns.cache 

installation.props LimeWire installs file 

tables.props LimeWire tables file [table properties] 

Display.props Display properties 

filters.props LimeWire Filters File 

questions.props LimeWire questions file 

bugs.data Bugs data 

simpp.xml Firewall data 

update.xml Update data. 

└─  .limewire 
├─  META-INF 
├─  themes 

│ ├─  black_theme 
│ ├─  classic_theme 
│ ├─
 default_osx_theme 
│ ├─  default_theme 
│ ├─  limewire_theme 
│ ├─
 limewirePro_theme 
│ └─  windows_theme 
└─  xml 
├─  data 
├─  display 
├─  misc 
└─  schemas 

 

public.key sun.security.provider.DSAPublicKey 



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             22 of 32                                                      6/13/2006 
  
Are the Limewire program’s properties set to allow file sharing? 
 
 The following procedure was followed to determine changes with the limewire.props file when 
file sharing is turned enabled or disabled.  

1. Windows 2000 Professional was installed on a VMWare virtual machine.  
2. Java runtime environment was downloaded and installed. 
3. Limewire 4.10.4 was downloaded and installed with the default options, except for the shared folder, which was set to C:\stuff. 
4. Options were examined to determine the status of file sharing. The default Limewire setup enables sharing. A copy of the Limewire.props file 

was saved. 
5. The sharing option was changed to Disable Sharing and applied. A copy of the Limewire.props file was saved under a different name.  
6. The saved files were then imported into the table below and a side-by-side comparison was conducted.  

 
Limewire 4.10.4 [Limewire.prop] 

File Sharing Enabled File Sharing Disabled 
#LimeWire properties file #LimeWire properties file 
#Wed Jan 25 15:16:36 EST 2006 #Wed Jan 25 15:26:13 EST 2006 
PORT=6349 PORT=6349 
RUN_ON_STARTUP=false RUN_ON_STARTUP=false 
UPDATE_DELAY=431999998 UPDATE_DELAY=431999998 
UPDATE_GIVEUP_FACTOR=24 UPDATE_GIVEUP_FACTOR=24 
DOWNLOAD_SNAPSHOT_BACKUP_FILE=C\:\\Incomplete\\downloads.bak DOWNLOAD_SNAPSHOT_BACKUP_FILE=C\:\\Incomplete\\downloads.bak 
FILTER_HASH_QUERIES=true FILTER_HASH_QUERIES=true 
INSTALLED=true INSTALLED=true 
INCOMPLETE_DIRECTORY=C\:\\Incomplete INCOMPLETE_DIRECTORY=C\:\\Incomplete 
UI_LIBRARY_TREE_DIVIDER_LOCATION=130 UI_LIBRARY_TREE_DIVIDER_LOCATION=130 
AVERAGE_UPTIME=1255 AVERAGE_UPTIME=1825 
TOTAL_UPTIME=1255 TOTAL_UPTIME=1825 
MIN_CONNECT_TIME=7 MIN_CONNECT_TIME=7 
COUNTRY= COUNTRY= 
TREE_NODE_PREFIXES=a TREE_NODE_PREFIXES=a 
  SHARE_DOWNLOADED_FILES_IN_NON_SHARED_DIRECTORIES=false 
LAST_ACCEPTABLE_BUG_VERSION=4.10.4 LAST_ACCEPTABLE_BUG_VERSION=4.10.4 
CONNECTION_SPEED=1000 CONNECTION_SPEED=1000 
LAST_EXPIRE_TIME=1138220003500 LAST_EXPIRE_TIME=1138220003500 
DIRECTORY_FOR_SAVING_FILES=C\:\\Stuff DIRECTORY_FOR_SAVING_FILES=C\:\\Stuff 
UPDATE_DOWNLOAD_DELAY=10000000 UPDATE_DOWNLOAD_DELAY=10000000 
MAX_DOWNLOAD_BYTES_PER_SEC=1 MAX_DOWNLOAD_BYTES_PER_SEC=1 
DOWNLOAD_SNAPSHOT_FILE=C\:\\Incomplete\\downloads.dat DOWNLOAD_SNAPSHOT_FILE=C\:\\Incomplete\\downloads.dat 
MAX_SIM_DOWNLOAD=12 MAX_SIM_DOWNLOAD=12 
DIRECTORIES_TO_SEARCH_FOR_FILES=C\:\\Stuff DIRECTORIES_TO_SEARCH_FOR_FILES=C\:\\Stuff 
LAST_GWEBCACHE_FETCH_TIME=1138220152703 LAST_GWEBCACHE_FETCH_TIME=1138220152703 
UNSET_FIREWALLED_FROM_CONNECTBACK=true UNSET_FIREWALLED_FROM_CONNECTBACK=true 
CLIENT_ID=E6924F9AB064E3625F9BE6929D022600 CLIENT_ID=E6924F9AB064E3625F9BE6929D022600 
FILTER_WHATS_NEW_ADULT=false FILTER_WHATS_NEW_ADULT=false 
FLUSH_DELAY_TIME=256 FLUSH_DELAY_TIME=256 
IDLE_CONNECTIONS=2 IDLE_CONNECTIONS=2 

 
 As you can see from the table, the file is updated and the date and time (line 2) change when 
the changes are applied. The only other change to the file was the addition of Line 17 when File 
Sharing was disabled. The Client ID= is a globally unique identifier for this <Usename> on this 
computer. Peer precision cases now collect and provide this information, allowing the investigation, 
the user, and the computer to be tied together with reasonable certainty.  
  
 



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             23 of 32                                                      6/13/2006 
  
Identify the File Name, MD5 hash value, and the SHA1 value for a known file.  
 
 LimeWire like many other Peer-to-Peer programs utilizes Sha1 hash values4 to identify files. 
These hash values are calculated and stored in the UrnCache file. However, they are expressed in 
base32.  

 
Hash values may be located or calculated, depending on the information that you received 

from the investigator. An initial investigation, such as a Peer Precision investigation should provide 
the following information at a minimum and should include a logical copy of the downloaded file. Note 
that the file name provided by the investigator may not match the file name on the suspect’s 
computer. Do not rely solely on the file name to determine whether the file is present.  

Reported File Name = -Best illegal coitus penetration by flashlight (underage xxx r@ygold pedo 
nude fuck tiny babyj lolita sister incest girl).mpg 
Reported SHA1 Value = QQ4CQNK5HG2IAAYHW3MRWZ2GFI5J4JRF 
Reported I.P. Address = 24.239.69.187 

 
Hash values for the target file can be calculated using a program such as SlavaSoft HashCalc 

Versioin 2.01. However, when you calculate the SHA1 value for the complete target file, you will 
notice that it may not match the SHA1 reported by the Peer-to-Peer program. This is because 
Limewire and other Peer to Peer programs that utilize the SHA1 hash value, express the value in 
Base32, while most hash calculations are reported in Hexadecimal (Base16). If you calculate the 
SHA1 in Hexadecimal, it will have to be converted to Base32 to match the information reported by 
Limewire.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

                                       http://darkfader.net/toolbox/   



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             24 of 32                                                      6/13/2006 
  

C:\Documents and Settings\Administrator\Shared\mushrooms\16yo gets raped, hymen visibly penetrated little girl young 
porn real child sex baby.mpgxsq~_sq~
 w_?@_sq~_w+)urn:sha1:QQ4CQNK5HG2IAAYHW3MRWZ2GFI5J4JRFq~_xxsq~_w_ü_¥Q¼tW 
C:\Documents and Settings\Administrator\Shared\accounting\Demi Moore nude in shower.jpgxsq~_sq~
 w_?@_sq~_w+)urn:sha1:CTPKHQUBPC5V5VGCWURT25KSBO4IV3IXq~_xxsq~_w___îêXStu 
C:\Documents and Settings\Administrator\Shared\zzxap+\Playboy Playmate - 1996_07 - Angel Boris (2185x4800) CF 
NT .jpgxsq~_sq~ w_?@_sq~_w+)urn:sha1:WYP5PGJOCY2IULGNNNWSBYW2G7EKTOLSq~_xxsq~_w_ýÈC� 
té C:\Documents and Settings\Administrator\Shared\yanks\blonde shollgirl doggy style - [ search for EroTrix ] - [teen 
young sex xxx erotrix cheerleader nude naked mpg asian ebony amateur erotix lolita porn pussy college girl 
teenage.jpgxsq~_sq~ w_?@_sq~_w+)urn:sha1:MILEBERY2NAPV3ACGWUEK4JSZSYOCI6Kq~_xxsq~_w_ü_=_»tW  
C:\Documents and Settings\Administrator\Shared\accounting\jennifer-lopez-nude-3_012.jpgxsq~_sq~
 w_?@_sq~_w+)urn:sha1:SI775ATCBQYJT6WH4KWGBEISI7IPIL3Tq~_xxsq~_w_ý›ŠQÑti  

Information about the file can also be gleaned from UrnCache files used by Limewire or 
another Peer-to-Peer file sharing program. This is a text fragment from the LimeWire UrnCache file, 
C\Documents and Settings\Administrator\.limewire\fileurns.cache.   

 
The computer in the case study also had Morpheus Ultra set up. The text fragment below was 

found in C:\Program Files\StreamCast\Morpheus Ultra\GnuHashes.ini. Both programs used the same 
“shared” folder. Because Morpheus Ultra is designed to work with multiple file sharing networks, it 
stores more data in its UrnCache file.                                                                                                

 This file will contain comparable data for each file located in the program’s shared folder. In 
addition, notice that the Morpheus Ultra file is easier to parse out and read than the Limewire file; this 
is a result of software programming choices. The data and the ability to interpret data in these files 
vary widely between file sharing client programs and the different file sharing networks.  

 
As you can see, the Morpheus Ultra\GnuHashes.ini file relates the file name with full path, 

Index, Size, and File Created Time with sha1, md5, ed2k (edonkey2000 network), Tiger, Bitprint, and 
TigerTree hash values. If this data is in text format, it can be easily located by doing a search on the 
last six characters of the SHA1 value. Once these values are associated, they can be compared 
against, the file path; hash values, and as described in the next section, uploads of the same file. In 
this case, the noted file was found in the same path and the md5 hash values matched.  

 

Name:c:\documents and settings\administrator\shared\mushrooms\16yo gets raped, hymen visibly penetrated 
little girl young porn real child sex baby.mpg 

Index:1582 
Size:18058700 
Time:2004 11 17 03 29 31 
urn:sha1:QQ4CQNK5HG2IAAYHW3MRWZ2GFI5J4JRF 
urn:md5:D7B8A4A830B9374F717507DB97638B13 
urn:ed2k:B7340BBEEC34933A4EDB41880CD39D60 
urn:tree:tiger/:TWSEUDTESKPHSV27QRWHZISTTSFFLB46J7CFCOQ 
urn:bitprint:QQ4CQNK5HG2IAAYHW3MRWZ2GFI5J4JRF.TWSEUDTESKPHSV27QRWHZISTTSFFLB46J7

CFCOQ 
TreeSize:6720 
TreeDepth:9 
TigerTree:TWSEUDTESKPHSV27QRWHZISTTSFFLB46J7CFCOQ.X2ZOZBEDYCSIQKWD5VDTJTKKS5VP

5JZN4XF5XZI.SCCYFMRI254IUWBQOFLWIKPZC6V62T3BKC7O2GA.RFXJJVAPPK7ZXV3FPC2MMN55AM46HJIZ
NEDVHXQ.5Q5YEKJY6SEBD2RTQRZ2IV6PHOEOW4FD5ARV6QY.SCCYFMRI254IUWBQOFLWIKPZC6V62T3BK
C7O2GA. End 



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             25 of 32                                                      6/13/2006 
  
Was the file uploaded by another servent? 

 
By running a keyword search on the SHA1 value or the text string, “GET /uri-res/N2R?” you 

should locate file fragments similar to the example below. Below are samples from the study case, 
which were all, located in the C:\pagefile.sys files (both logical and deleted) and unallocated space. 
Note that “GET” is frequently missing from the string so you may find it more productive to use the 
test string, “/uri-res/N2R?”  By searching the SHA1 value of a specific file (highlighted string), the 
investigator can articulate a separate attempt to upload that file and potentially a separate count of 
distribution. For example in the study case, 12 instances were located. In addition, Alt-Location may 
identify additional computers that have this file available for download and potentially additional 
targets for investigation. The content of the information provided is based on the User-Agent 
requesting the file and will vary with between occurrences.   

 
GET /uri-res/N2R?urn:sha1:QQ4CQNK5HG2IAAYHW3MRWZ2GFI5J4JRF HTTP/1.1 
Host: 24.239.69.187:6349 
Connection: Keep-Alive 
X-Features: g2/1.0 
Range: bytes=16651969-16717504 
User-Agent: Shareaza 2.1.0.0 
X-Queue: 0.1 
X-Content-URN: urn:sha1:QQ4CQNK5HG2IAAYHW3MRWZ2GFI5J4JRF 
Alt-Location: http://200.84.202.236:6346/uri-res/N2R?urn:sha1:QQ4CQNK5HG2IAAYHW3MRWZ2GFI5J4JRF 2005-02-
02T10:54Z, http://66.8.229.156:6348/uri-res/N2R?urn:sha1:QQ4CQNK5HG2IAAYHW3MRWZ2GFI5J4JRF 2005-02-
02T10:53Z, http://217.44.84.201:6346/uri-res/N2R?urn:sha1:QQ4CQNK5HG2IAAYHW3MRWZ2GFI5J4JRF 2005-02-
02T10:53Z, http://24.59.100.79:6346/uri-res/N2R?urn:sha1:QQ4CQNK5HG2IAAYHW3MRWZ2GFI5J4JRF 2005-02-
02T10:52Z, http://24.198.80.173:6346/uri-res/N2R?urn:sha1:QQ4CQNK5HG2IAAYHW3MRWZ2GFI5J4JRF 2005-02-
02T10:52Z, http://67.11.140.28:6346/uri-res/N2R?urn:sha1:QQ4CQNK5HG2IAAYHW3MRWZ2GFI5J4JRF 2005-02-
02T10:52Z, http://69.169.185.84:6346/uri-res/N2R?urn:sha1:QQ4CQNK5HG2IAAYHW3MRWZ2GFI5J4JRF 2005-02-
02T10:52Z, http://209.23.240.140:6346/uri-res/N2R?urn:sha1:QQ4CQNK5HG2IAAYHW3MRWZ2GFI5J4JRF 2005-02-
02T10:52Z 
 
GET /N2R?urn:sha1:QQ4CQNK5HG2IAAYHW3MRWZ2GFI5J4JRF HTTP/1.1  
Host: 24.239.69.187:6350  
User-Agent: BearShare 4.6.3.3  
Range: bytes=11534336-11796479  
X-Alt: 4.28.246.22  
X-Gnutella-Content-URN: urn:sha1:QQ4CQNK5HG2IAAYHW3MRWZ2GFI5J4JRF  
X-Connection-Type: Broadband  
FP-1a: 128,ØlQföUÎÓÜVëm©0¯ŸÉ *KŠ·°”øèì”³ŸíV!“  
FP-Auth-Challenge: VIYWFLKCAR7HNQOROIPXVFFZXGCO4AHC  
Content-Disposition: inline; filename="16yo gets raped, hymen visibly penetrated little girl you 
ng porn real child sex baby.mpg"  
X-Features: browse/1.0, queue/0.1  
X-Queue: 0.1  
 
 

GET = HTTP command for uploads. 
Host = this was the IP address of the suspect’s computer. 
User-Agent: Shareaza 2.1.0.0 = the peer-to-peer program used by the person downloading the file. 
Alt-Location: = Alternate location from which the file is available, potentially new targets.  

 
  

 
 

SHA1 Hash of requested file 
IP Address/Port for computer providing file 
Agent used by requestor 
IP Address of  Alternate locations where the file  
is available for download 

SHA1 Hash of requested file 
IP Address/Port for computer providing file 
Agent used by requestor 
IP Address of requestor 
File Name 



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             26 of 32                                                      6/13/2006 
  
Keyword Searches 
 
 Although Peer-to-Peer file sharing does not create, a lot of log files. Significant information 
can be located in swap files and unallocated spaced using keyword text string searches. We 
discussed the use of “/uri-res/N2R?urn” above to locate additional upload attempts. Other 
characteristics of these networks lend themselves to exploitation using keyword text string searches. 
For instance, Gnet Search Hits may be returned if a keyword matches any portion of a file name; 
GNet users exploit this by using descriptive file names, which in turn are easily located with text string 
searches. For example, in the study case, a keyword search on the string, “r@ygold” returned 5,151 
Hits. The majority of the hits were from file names. 
 

r@ygold Search Hits 

 
 

Other Keywords to Consider 
Text String Results 

/uri-res/N2R?urn:sha1: All upload requests 
/uri-res/N2R?urn:sha1:<sha1 
value> 

All upload requests for a specific file 

urn:sha1:........................................ All SHA1 values [GREP “.” = any character. A SHA1 value has 40 characters] NOTE: Many Hits 
<last 6 characters of a known 
sha1> All transactions involving that specific file 

HTTP/1.1 All HTTP1.1 transactions (Ping, Pong, Query, QueryHits, GET, GIV) 
Preteen 
Babyj 
Lolita 
Underage 
r@ygold 

Child pornography search terms 

<Known username or nick names> Chat  

<Known IP Addresses> Transactions including a specific IP [the police officer’s IP address may yield the proactive 
investigation) 

<Known GUID> Transactions including the suspect or police officers GUID (Servent Identifier) 
 

How to compare SHA1 values recovered from the target computer with known files. 
Peer Precision utilizes a number of known SHA1 values of suspected child pornography files. By 
comparing these values to Sha1 values recovered from the suspect computer, it may be possible to 
demonstrate transactions involving the sharing of child pornography, without actually having any child 
pornography files. This may be useful in a case where the suspect destroyed the child pornography 
files prior to the seizure.  

Step 1 - Search Keyword (Grep) urn:sha1:…………………………………. 
Step 2 - Export Search hits  
Step 3 - Open new Access Database. Import Exported search hits (Get External Data) into a table.  
Step 4 - Run a Find Duplicates Query on SHA1 values (14,290 unique SHA1 values) 
Step 5 - Import Peer Precision, "alshas" file or other known SHA1<base32> hash sets into a new table 
Step 6 - Create a relationship between the fields containing the SHA values in both tables. Under Join Type, select, "Only include rows where 

the joined fields from both tables are equal."  
Step 7 - Create a Query including the fields containing the SHA1 values from both the Find Duplicates table and the allshas.  



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             27 of 32                                                      6/13/2006 
  
Appendix 
 
Known HTTP Connection Headers 

Header Status Usage Example 
User-Agent Mandatory Name and version of the servent User-Agent: LimeWire/3.1.0 
Remote-IP Recommended IP of the remote host as seen by the servent Remote-IP: 1.2.3.4 

X-Try Recommended Addresses of known active servents 
(between 10 and 20) 

X-Try-Ultrapeers: 1.2.3.4, 
1.2.3.5 

Pong-Caching Recommended Support of Pong Caching Pong-Caching: 0.1 
GGEP Recommended Support of GGEP extensions GGEP: 0.5 
Bye-Packet Optional Support of bye messages Bye-Packet: 0.1 
Uptime Optional Uptime of the servent   
Vendor-Message Optional Support of vendor messages Vendor-Message: 0.1 
Accept-encoding Optional Support of message compression Accept-Encoding: deflate 
Content-Encoding Optional Acknowledgement of requested compression Content-Encoding: deflate 
X-Try-Ultrapeers Recommended 

for ultrapeers 
Addresses of known active Ultrapeers 
(between 10 and 20) 

X-Try-Ultrapeers: 1.2.3.6, 
1.2.3.7 

X-Ultrapeer Mandatory for 
ultrapeers 

Ultrapeer mode X-Ultrapeer: Yes 

X-Ultrapeer-Needed Mandatory for 
ultrapeers 

Regulation of Ultrapeers rate X-Ultrapeer-Needed: Yes 

X-Query-Routing Mandatory for 
ultrapeers 

Support of QRP X-Query-Routing: 0.1 

Hops-Flow Optional     
Machine Private BearShare only   
X-Leaf-Max       
X-Token   GTKG only    
X-Live-Since       

 
 Known HTTP Download Headers 

Client headers 

Header Status Usage Example 
User-Agent Mandatory The user agent (for the client only) User-Agent: LimeWire 2.9.1 
Host Recommended Address of the server, seen by the client Host: 123,123,123,123:6346 

Connection Optional 
(HTTP/1.1) Support of persistent connections Connection: Keep-Alive 

Range Mandatory Requested range Range: bytes=4932766-
5066083 

X-Gnutella-Alternate-
Location 

Recommended Known alternate locations for the file (HUGE) see below 



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             28 of 32                                                      6/13/2006 
  

 

Server headers 

Header Status Usage Examples 

Server Mandatory Same as User-Agent (for the 
server) Server: BearShare 2.9.0 

Content-
Type Recommended Content-type of requested file Content-type: application/binary 

Content-
Length Mandatory Length of requested file Content-length: 133318 

Content-
Range 

Recommended 
(partial GET) Range requested from file Content-Range: bytes 4932766-5066083/5332732 

Accept-
Ranges Optional 

Support of ranges (this header 
is not required to request a 
partial GET) 

Accept-Ranges: bytes 

Retry-After Recommended Time to wait before next 
attempt to get the file   

X-Gnutella-
Content-
URN 

Recommended HUGE URN of the requested 
file 

X-Gnutella-Content-URN: 
urn:sha1:PLST________YPFB 

X-Gnutella-
Alternate-
Location 

Recommended Known alternate locations of the 
file (see HUGE for more 
information)  

X-Gnutella-Alternate-Location: 
http://www.clip2.com/GnutellaProtocol04.pdf 
X-Gnutella-Alternate-Location: 
http://10.0.0.10:6346/get/2468/GnutellaProtocol04.pdf
X-Gnutella-Alternate-Location: 
http://10.0.0.25:6346/uri-
res/N2R?urn:sha1:PLSTUPAKUZWUGYQYPFB 
2002-04-30T08:30Z 

 

Ultrapeer Election Principles 
Source - http://rfc-gnutella.sourceforge.net  
 
Since Gnutella is a decentralized system, Ultrapeers are elected without the use of a central server. It is up to each node 
to determine if it is to become an Ultrapeer or a shielded leaf node. First, there are some basic requirements that must be 
satisfied to even consider becoming an Ultrapeer.  

 Not Firewalled – This can usually be approximated by looking at whether the host has received incoming connections.  
 Suitable operating system – Some operating systems handle large numbers of sockets better than others.  Linux, 

Windows 2000/NT/XP, and Mac OS/X will typically make better Ultrapeers than Windows 95/98/ME or Mac Classic.  
 Sufficient bandwidth – At least 15KB/s downstream and 10KB/s upstream bandwidth is recommended.  This can be 

approximated by looking at the maximum upload and download throughput.  
 Sufficient uptime – Ultrapeers should have long expected uptimes.  A reasonable heuristic is that the expected future 

uptime is proportional to the current uptime.  That is, nodes should not become Ultrapeers until they have been 
running at least a few hours. 

 Sufficient RAM and CPU speed – Ultrapeers need memory for storing routing tables and CPU speed for outing all 
incoming queries. Exactly how much is needed depends how efficiently it is implemented and must be experimented 
with.  

If the above criteria are met, a node is said to be Ultrapeer capable.  Note that this is not the same as actually being an 
Ultrapeer. When either an Ultrapeer capable node will actually become an Ultrapeer depends on if there is need for more 
Ultrapeers on the network, and on how well the above criteria are met.  The need for Ultrapeers can be estimated from 
the number of Ultrapeers found, and can be communicated when new connections are established. 
 
 



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             29 of 32                                                      6/13/2006 
  
Definitions 
http://en.wikipedia.org/wiki/  
 
File Sharing Networks 
 
A peer-to-peer (or P2P) computer network is a network that relies primarily on the computing power 
and bandwidth of the participants in the network rather than concentrating it in a relatively low number 
of servers. P2P networks are typically used for connecting nodes via largely ad hoc connections. 
Such networks are useful for many purposes. Sharing content files (see file sharing) containing audio, 
video, data or anything in digital format is very common, and real-time data, such as telephony traffic, 
is passed using P2P technology. A pure peer-to-peer network does not have the notion of clients or 
servers, but only equal peer nodes that simultaneously function as both "clients" and "servers" to the 
other nodes on the network. This model of network arrangement differs from the client-server model 
where communication is usually to and from a central server. A typical example for a non peer-to-
peer file transfer is an FTP server where the client and server programs are quite distinct, and the 
clients initiate the download/uploads and the servers react to and satisfy these requests. Some 
networks and channels, such as Napster, OpenNAP, or IRC @find, use a client-server structure for 
some tasks (e.g., searching) and a peer-to-peer structure for others. Networks, such as Gnutella or 
Freenet, use a peer-to-peer structure for all purposes, and are sometimes referred to as true peer-to-
peer networks, although Gnutella is greatly facilitated by directory servers that inform peers of the 
network addresses of other peers. 
 
Direct Client-to-Client (DCC) is an IRC-related sub-protocol enabling peers to interconnect using an 
IRC server for handshaking in order to exchange files or perform non-relayed chats. Once 
established, a typical DCC session runs independently from the IRC server. Originally designed to be 
used with IrcII it is now supported by many IRC clients. A DCC fserve, or file server, lets a user 
browse, read and download files located on a DCC server. There are many implementations of DCC 
file servers, among them is the FSERV command in the popular mIRC client. 
 
Internet Relay Chat (IRC) is a form of instant communication over the Internet. IRC is designed for 
group (Many-to-many) communication in discussion forums called channels, but also allows one-to-
one communication. IRC is an open protocol that uses TCP and optionally SSL. An IRC server can 
connect to other IRC servers to expand the IRC network. Users access IRC networks by connecting a 
client to a server. There are many client and server implementations, such as mIRC and the Bahamut 
IRCd, respectively. Most IRC servers do not require users to log in, but a user will have to set a 
nickname before being connected. Using scripts like Sysreset, UPP, Polaris and, most commonly, 
OmenServe, users can create file servers (FSERVs) that allow them to share files. 
 
Napster is an online music service which was originally a file sharing service created by Shawn 
Fanning. Napster was the first widely used peer-to-peer music sharing service, and it made a major 
impact on how people, especially university students, used the Internet. Its technology allowed music 
fans to easily share MP3 format song files with each other, thus leading to the music industry's 
accusations of massive copyright violations. Although the original service was shut down by court 
order, it paved the way for decentralized P2P file-sharing programs such as Kazaa, Limewire, and 
BearShare, which have been much harder to control. Napster continues to live on with pay services 
today. 
FastTrack is a peer-to-peer protocol, used by the Kazaa (and variants, Grokster and iMesh) file 
sharing programs. The file sharing application Morpheus originally utilized this network, but was later 
banished from it. The following programs are or have been FastTrack clients: 



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             30 of 32                                                      6/13/2006 
  

 Kazaa and variants 
 KCeasy 
 Grokster 
 iMesh 
 Morpheus, until 2002 
 Apollon - A KDE-Based P2P client 
 giFT-FastTrack [2] – a giFT plugin 
 A program that supports giFT is Torrent Searcher [3] 
 MLDonkey, a free multi-platform multi-network file sharing client 

 
eDonkey network (also called eDonkey2000 network or ed2k) is a file sharing network used 
primarily to exchange music, films and software. Like most file sharing networks, it is decentralized; 
files are not stored on a central server but are exchanged directly between users based on the peer-
to-peer principle.  There are numerous clients for the eDonkey network, some of which are open 
source or free software: 

 eMuleShareaza: an open source multi-network client for Windows. 
 MLDonkey: runs on many platforms and supports numerous other file-sharing protocols as well. 
 eDonkey2000 (a client of MetaMachine):  
 Hydranode: an open source multi-network crossplatform core-gui separated client. 
 MediaVAMP (later changed to Pruna): a Korean-only client based on eMule. 
 Lphant: a multi-network (eDonkey and BitTorrent) crossplatform client  
 Jubster: a multi-network client for Windows 

 
WinMX is a peer-to-peer file-sharing program authored by Frontcode Technologies that runs on 
Windows operating systems. The official WinMX website and WinMX servers have been offline since 
September 2005 due to a lawsuit (see the "Decline" section below), though the application remains 
operable through third-party modifications. WinMX began its life as an OpenNAP client capable of 
connecting to several servers simultaneously, although Frontcode later created a proprietary protocol, 
termed WinMX Peer Network Protocol (WPNP), which was used starting with WinMX 2 in May 2001. 
WPNP version 2 was phased out as WinMX 3.0 and its WPNP version.3 protocol came into 
existence. Frontcode had operated several cache servers to aid WPNP network operation. 
Downloads can be very fast for popular songs since the user can run a "multi-point download" that 
simultaneously downloads the same file in small pieces from several users.  
 
HASH Algorithms 

SHA (Secure Hash Algorithm) family is a set of related cryptographic hash functions. The most 
commonly used function in the family, SHA-1, is employed in a large variety of popular security 
applications and protocols, including TLS, SSL, PGP, SSH, S/MIME, and IPSec. SHA-1 is considered 
the successor to MD5, an earlier, widely used hash function. The SHA algorithms were designed by 
the National Security Agency (NSA) and published as a US government standard. SHA1 is normally 
expressed as a 40 character hexadecimal string, but can also be expressed in <Base32> 
 
MD5 (Message-Digest algorithm 5) is a widely used cryptographic hash function with a 128-bit hash 
value. As an Internet standard (RFC 1321), MD5 has been employed in a wide variety of security 
applications, and is commonly used to check the integrity of files. MD5 is normally expressed as a 32 
character hexadecimal string. 
 



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             31 of 32                                                      6/13/2006 
  
Tiger is a cryptographic hash function designed in 1995 for efficiency on 64-bit platforms. The size of 
a Tiger hash value is 192 bits. There also exists 128 and 160-bit versions of this algorithm, called 
Tiger/128 and Tiger/160. Both variants return truncated Tiger/192 hash values. Tiger is frequently 
used in Merkle hash tree form, where it is referred to as TTH (Tiger Tree Hash). TTH is used by 
many clients on the Direct Connect and Gnutella file sharing networks. 
 
Hash trees—also known as Merkle trees—are an extension of the simpler concept hash list, which 
in turn is an extension of the old concept of hashing, for instance; hashing a file. Hash trees where 
the underlying hash function is Tiger are often called Tiger trees or Tiger tree hashes. he Tiger tree 
hash is probably the most widely used form of hash tree. It uses a binary hash tree (two child nodes 
under each node), usually has a data block size of 1024-bytes and uses the cryptographically secure 
Tiger hash. Tiger tree hashes are used in the Gnutella and Gnutella2 p2p file sharing protocols and in 
file sharing applications like Direct Connect, BearShare, LimeWire, Shareaza and DC++. 
 
Internet Protocols 
Hypertext Transfer Protocol (HTTP) is the method used to transfer or convey information on the 
World Wide Web. It is a patented open Internet protocol whose original purpose was to provide a way 
to publish and receive HTML pages. Development of HTTP was coordinated by the World Wide Web 
Consortium and working groups of the Internet Engineering Task Force, culminating in the publication 
of a series of RFCs, most notably RFC 2616, which defines HTTP/1.1, the version of HTTP in 
common use today. 
 
Uniform Resource Identifier (URI), is an Internet protocol element consisting of a short string of 
characters that conform to a certain syntax. The string comprises a name or address that can be 
used to refer to a resource. It is a fundamental component of the World Wide Web. A URI can be 
classified as a locator or a name or both. 
 
Uniform Resource Locator (URL) is a string of characters conforming to a standardized format, 
which refers to a resource on the Internet (such as a document or an image) by its location. An HTTP 
URL is commonly called a web address and is usually shown in the address bar of a web browser. 
Example: http://www.limewire.com  
 
Uniform Resource Name (URN) is a Uniform Resource Identifier (URI) that is a string of characters, 
which refers to a resource on the Internet (such as a document or an image) by its name or a 
substitute such as a hash value. 
Example: urn:sha1:QQ4CQNK5HG2IAAYHW3MRWZ2GFI5J4JRF HTTP/1.1  
 
Child Pornography Search Terms (http://www.urbandictionary.com) 
BabyJ  - This is a popular, underage, girl who's victimized countless times by R@yGold using 
popular p2p file sharing programs and newsgroups to spread Child Porn. 
 
r@ygold - Actually NOT a real person; R@ygold is simply a codename used by pedophiles so that 
they can easily locate each other's media. R@ygold is a keyword added to image and video files with 
illegal pornographic content, so that those dealing in child porn can locate and share files over P2P 
networks. 
 
Lolita – Lolita is a nickname for Delores. It is also a term used to describe a prepubescent or 
adolescent girl who is attractive and sexually responsive. She lusts after older men, and is lusted by 



MDSP-CFL 2006                             Gnutella Peer-to-Peer Networks: Limewire 
D/Sgt. David Heslep                                             32 of 32                                                      6/13/2006 
  
them in return. The term originates from the Vladimir Nabakov novel ''Lolita'' which told the tale of the 
love affair between middle aged Humbert and his 12 year old stepdaughter Lolita.  Lolita is also 
defined as type of pornography depicting underage girls, or woman made to appear as underage girls 
 
PTHC – Short for "preteen hardcore" or child porn. Used mostly on p2p programs. 

 
                                            
References 
 
1 "The Gnutella Development Forum, Gnutella/0.6  online at http://www.the-gdf.org   
   Copyright (C) 2002, Tor Klingberg & Raphael Manfredi,    All Rights Reserved. 
 
2 LimeWire Design, Christopher Rohrs, 8/20/2001, online at http://www.limewire.org/techdocs/design.html  
 

3 Limewire Installation, http://www.limewire.com/english/content/ug49/ug_installation.shtml  

  
4 Hash/URN Gnutella Extensions (HUGE) v0.94, Gnutella Developer Forum, G. Mohr Bitzi, Inc, April 30, 2002,      
http://rfc-gnutella.sourceforge.net/src/draft-gdf-huge-0_94.txt                      
                                                              
                                                          
 
 


