1'-9"
PIN ROCK AS REQUIRED (SEE SOE DRAWINGS)
#6 @ 12" OUTER FACE VERTICAL
CONCRETE LINER WALL (SEE SOE DRAWINGS)
ROCK
#8 @ 12" VERTICAL INNER FACE
#5 @ 12" HORIZONTAL EACH FACE
SUB CELLAR SLAB SEE PLAN FOR REINFORCEMENT
#7 @ 12" CONTINUOUS #7 @ 12" TOP #5 @ 12"
LEVELING CONCRETE AS REQUIRED.
#9 @ 12" ROCK
EXIST FOUNDATION WALL TO REMAIN (SHORE AS REQUIRED) ADJACENT BUILDING
SUB CELLAR 1
20'-7 7/8" (20.65')
CELLAR 34'-7 7/8" (34.65')
EXISTING CELLAR (WEST)-DEMO 33'-7 7/8" (33.65')
EXISTING CELLAR (EAST)-DEMO 35' - 10 7/8" (35.90')
GROUND FLOOR T.O.S. 48' - 7 7/8" (48.65')
WELDED WIRE MESH
EXISTING REBAR TO REMAIN AND TO BE CAST IN NEW CONCRETE
#4 CONT. #4 @ 12"
ON GRADE EXISTING SLAB CONC. FILL WITH WELDED WIRE MESH OVER EXISTING SLAB ON GRADE
EXIST. SLAB
SECTION F1
FO-201
1'-4"
1/2" = 1'-0"
1/2" = 1'-0"
#9 @ 12" VERTICAL INNER FACE
#7 @ 12" VERTICAL OUTER FACE
#6 @ 12" CONTINUOUS
PINNED ROCK OR UNDERPINNING VERIFY IN FIELD- SEE SLAB OF EDGE DRAWINGS
SECTION F2
FO-201
1'-4"
EXISTING VAULT

#9 @ 12"

VERTICAL INNER FACE

#7 @ 12"

VERTICAL OUTER FACE

PINNED ROCK OR UNDERPINNING
VERIFY IN FIELD
SEE SLAB OF EDGE DRAWINGS

SUB CELLAR SLAB
SEE PLAN FOR REINFORCEMENT

EXISTING CELLAR (EAST) - DEMO
35' - 10 7/8" (35.90')

EXISTING CELLAR (WEST) - DEMO
33' - 7 7/8" (33.65')

SUB CELLAR 1
20' - 7 7/8" (20.65')

GROUND FLOOR T.O.S.
48' - 7 7/8" (48.65')

#5 @ 12" HORIZONTAL EACH FACE

#9 @ 12"

#4 @ 12" WIRE MESH

NEW CONCRETE FILL WITH WELDED WIRE MESH OVER EXISTING SLAB ON GRADE

PROJECT NUMBER:

DRAWN BY:

CHECKED BY:

SCALE:

SHEET NUMBER:

SIGNATURE & SEAL:

PROJECT:

SHEET TITLE:

COPYRIGHT © 2018

Platt Byard Dovell White Architects LLP

All Rights Reserved
NOTE:
THE FINAL DESIGN MEANS AND METHODS ARE THE CONTRACTOR’S RESPONSIBILITY.
THE DESIGN SHALL BE COMPLETED BY A P.E. REGISTERED IN THE STATE OF NEW YORK.
THE DESIGN SHALL BE SUBMITTED TO SEVERUD FOR REVIEW AND APPROVAL.
Conceptual Demolition Scope: Existing 2nd Floor (EL 70'-8 3/8"")

1. Existing column to be removed.
2. Existing wall to be removed.
3. Existing column to be removed.
4. Existing beam to be removed.
5. Part of existing beam to be removed.
6. Existing beam to be removed that had other beam connections.

Note: The final design, means and methods are the contractor's responsibility. The design shall be completed by a P.E. registered in the state of New York. The design shall be submitted to DECS for review and approval.

Platt Byard Dovell White Architects LLP
49 West 37th Street, New York, NY 10018
212.691.2440 | pbdw.com

275 Seventh Avenue
469 Seventh Avenue, 9th Floor
Cosentini Associates | Mechanical Engineer
Two Pennsylvania Plaza, 3rd Floor
14 Wall Street, 2nd Floor
Adamson Associates | Architect
New York City, New York 10005
212.964.4040 | adamson-associates.com

52 Diamond Street, Brooklyn, NY 11222
Iros Elevator, LLC | Elevator Consultant

Theatre Projects Consultants | Theater Consultant

55 Booth Avenue
TORONTO, ON M4M 2M3
212 226 0808 | yabupushelberg.com

70'-8 3/8"

Copyright © Platt Byard Dovell White Architects LLP All Rights Reserved
NOTE: THE FINAL DESIGN, MEANS AND METHODS ARE THE CONTRACTOR'S RESPONSIBILITY.
THE DESIGN SHALL BE SUBMITTED TO SEVERUD FOR REVIEW AND APPROVAL.
NOTE: THE FINAL DESIGN, MEANS AND METHODS ARE THE CONTRACTOR'S RESPONSIBILITY.
THE DESIGN SHALL BE COMPLETED BY A P.E. REGISTERED IN THE STATE OF NEW YORK.
THE DESIGN SHALL BE SUBMITTED TO SEVERAL FOR REVIEW AND APPROVAL.
NOTE:
THE FINAL DESIGN, MEANS AND METHODS ARE THE CONTRACTOR'S RESPONSIBILITY.
THE DESIGN SHALL BE COMPLETED BY A P.E. REGISTERED IN THE STATE OF NEW YORK.
THE DESIGN SHALL BE SUBMITTED TO SEVERUD FOR REVIEW AND APPROVAL.

EXISTING WALL TO BE REMOVED
EXISTING SLAB TO BE REMOVED
PART OF EXISTING BEAM TO BE REMOVED
EXISTING BEAM TO BE REMOVED
EXISTING BEAM TO BE REMOVED THAT HAS OTHER BEAM FRAMING INTO IT.
EXISTING BEAM TO BE DEMOLISHED
EXISTING BEAM TO REMAIN
EXISTING WALL TO REMAIN
EXISTING WALL TO BE DEMOLISHED
EXISTING WALL TO BE DEMOLISHED THAT HAS OTHER WALL FRAMING INTO IT.
EXISTING WALL TO REMAIN
EXISTING BEAM TO REMAIN
EXISTING BEAM TO BE DEMOLISHED
EXISTING BEAM TO BE DEMOLISHED THAT HAS OTHER BEAM FRAMING INTO IT.
EXISTING BEAM TO REMAIN
EXISTING WALL TO REMAIN
EXISTING WALL TO BE DEMOLISHED
EXISTING WALL TO BE DEMOLISHED THAT HAS OTHER WALL FRAMING INTO IT.
EXISTING WALL TO REMAIN
EXISTING BEAM TO REMAIN
EXISTING BEAM TO BE DEMOLISHED
EXISTING BEAM TO BE DEMOLISHED THAT HAS OTHER BEAM FRAMING INTO IT.
EXISTING BEAM TO REMAIN
EXISTING WALL TO REMAIN
EXISTING WALL TO BE DEMOLISHED
EXISTING WALL TO BE DEMOLISHED THAT HAS OTHER WALL FRAMING INTO IT.
EXISTING WALL TO REMAIN
EXISTING BEAM TO REMAIN
EXISTING BEAM TO BE REMOVED
EXISTING BEAM TO BE REMOVED THAT HAS OTHER BEAM FRAMING INTO IT.
EXISTING BEAM TO REMAIN
EXISTING WALL TO REMAIN
EXISTING WALL TO BE REMOVED
EXISTING WALL TO BE REMOVED THAT HAS OTHER WALL FRAMING INTO IT.
EXISTING WALL TO REMAIN
EXISTING BEAM TO REMAIN
EXISTING BEAM TO BE REMOVED
EXISTING BEAM TO BE REMOVED THAT HAS OTHER BEAM FRAMING INTO IT.
EXISTING BEAM TO REMAIN
EXISTING WALL TO REMAIN
EXISTING WALL TO BE DEMOLISHED
EXISTING WALL TO BE DEMOLISHED THAT HAS OTHER WALL FRAMING INTO IT.
EXISTING WALL TO REMAIN
EXISTING BEAM TO REMAIN
EXISTING BEAM TO BE REMOVED
EXISTING BEAM TO BE REMOVED THAT HAS OTHER BEAM FRAMING INTO IT.
EXISTING BEAM TO REMAIN
EXISTING WALL TO REMAIN
EXISTING WALL TO BE REMOVED
EXISTING WALL TO BE REMOVED THAT HAS OTHER WALL FRAMING INTO IT.
EXISTING WALL TO REMAIN
EXISTING BEAM TO REMAIN
EXISTING BEAM TO BE REMOVED
EXISTING BEAM TO BE REMOVED THAT HAS OTHER BEAM FRAMING INTO IT.
EXISTING BEAM TO REMAIN
EXISTING WALL TO REMAIN
EXISTING WALL TO BE DEMOLISHED
EXISTING WALL TO BE DEMOLISHED THAT HAS OTHER WALL FRAMING INTO IT.
EXISTING WALL TO REMAIN
EXISTING BEAM TO REMAIN
EXISTING BEAM TO BE REMOVED
EXISTING BEAM TO BE REMOVED THAT HAS OTHER BEAM FRAMING INTO IT.
EXISTING BEAM TO REMAIN
EXISTING WALL TO REMAIN
EXISTING WALL TO BE REMOVED
EXISTING WALL TO BE REMOVED THAT HAS OTHER WALL FRAMING INTO IT.
EXISTING WALL TO REMAIN
EXISTING BEAM TO REMAIN
EXISTING BEAM TO BE REMOVED
EXISTING BEAM TO BE REMOVED THAT HAS OTHER BEAM FRAMING INTO IT.
EXISTING BEAM TO REMAIN
EXISTING WALL TO REMAIN
EXISTING WALL TO BE DEMOLISHED
EXISTING WALL TO BE DEMOLISHED THAT HAS OTHER WALL FRAMING INTO IT.
EXISTING WALL TO REMAIN
EXISTING BEAM TO REMAIN
EXISTING BEAM TO BE REMOVED
EXISTING BEAM TO BE REMOVED THAT HAS OTHER BEAM FRAMING INTO IT.
EXISTING BEAM TO REMAIN
EXISTING WALL TO REMAIN
EXISTING WALL TO BE REMOVED
EXISTING WALL TO BE REMOVED THAT HAS OTHER WALL FRAMING INTO IT.
EXISTING WALL TO REMAIN
EXISTING BEAM TO REMAIN
EXISTING BEAM TO BE REMOVED
EXISTING BEAM TO BE REMOVED THAT HAS OTHER BEAM FRAMING INTO IT.
EXISTING BEAM TO REMAIN
EXISTING WALL TO REMAIN
EXISTING WALL TO BE REMOVED
EXISTING WALL TO BE REMOVED THAT HAS OTHER WALL FRAMING INTO IT.
EXISTING WALL TO REMAIN
EXISTING BEAM TO REMAIN
EXISTING BEAM TO BE REMOVED
EXISTING BEAM TO BE REMOVED THAT HAS OTHER BEAM FRAMING INTO IT.
EXISTING BEAM TO REMAIN
EXISTING WALL TO REMAIN
EXISTING WALL TO BE REMOVED
EXISTING WALL TO BE REMOVED THAT HAS OTHER WALL FRAMING INTO IT.
EXISTING WALL TO REMAIN
EXISTING BEAM TO REMAIN
EXISTING BEAM TO BE REMOVED
EXISTING BEAM TO BE REMOVED THAT HAS OTHER BEAM FRAMING INTO IT.
EXISTING BEAM TO REMAIN
EXISTING WALL TO REMAIN
EXISTING WALL TO BE REMOVED
EXISTING WALL TO BE REMOVED THAT HAS OTHER WALL FRAMING INTO IT.
EXISTING WALL TO REMAIN
EXISTING BEAM TO REMAIN
EXISTING BEAM TO BE REMOVED
EXISTING BEAM TO BE REMOVED THAT HAS OTHER BEAM FRAMING INTO IT.
EXISTING BEAM TO REMAIN
EXISTING WALL TO REMAIN
EXISTING WALL TO BE REMOVED
EXISTING WALL TO BE REMOVED THAT HAS OTHER WALL FRAMING INTO IT.
EXISTING WALL TO REMAIN
EXISTING BEAM TO REMAIN
EXISTING BEAM TO BE REMOVED
EXISTING BEAM TO BE REMOVED THAT HAS OTHER BEAM FRAMING INTO IT.
EXISTING BEAM TO REMAIN
EXISTING WALL TO REMAIN
EXISTING WALL TO BE REMOVED
EXISTING WALL TO BE REMOVED THAT HAS OTHER WALL FRAMING INTO IT.
EXISTING WALL TO REMAIN
EXISTING BEAM TO REMAIN
EXISTING BEAM TO BE REMOVED
EXISTING BEAM TO BE REMOVED THAT HAS OTHER BEAM FRAMING INTO IT.
EXISTING BEAM TO REMAIN
EXISTING WALL TO REMAIN
EXISTING WALL TO BE REMOVED
EXISTING WALL TO BE REMOVED THAT HAS OTHER WALL FRAMING INTO IT.
EXISTING WALL TO REMAIN
EXISTING BEAM TO REMAIN
EXISTING BEAM TO BE REMOVED
EXISTING BEAM TO BE REMOVED THAT HAS OTHER BEAM FRAMING INTO IT.
EXISTING BEAM TO REMAIN
EXISTING WALL TO REMAIN
EXISTING WALL TO BE REMOVED
EXISTING WALL TO BE REMOVED THAT HAS OTHER WALL FRAMING INTO IT.
EXISTING WALL TO REMAIN
EXISTING BEAM TO REMAIN
EXISTING BEAM TO BE REMOVED
EXISTING BEAM TO BE REMOVED THAT HAS OTHER BEAM FRAMING INTO IT.
EXISTING BEAM TO REMAIN
EXISTING WALL TO REMAIN
EXISTING WALL TO BE REMOVED
EXISTING WALL TO BE REMOVED THAT HAS OTHER WALL FRAMING INTO IT.
EXISTING WALL TO REMAIN
EXISTING BEAM TO REMAIN
EXISTING BEAM TO BE REMOVED
EXISTING BEAM TO BE REMOVED THAT HAS OTHER BEAM FRAMING INTO IT.
EXISTING BEAM TO REMAIN
EXISTING WALL TO REMAIN
EXISTING WALL TO BE REMOVED
EXISTING WALL TO BE REMOVED THAT HAS OTHER WALL FRAMING INTO IT.
EXISTING WALL TO REMAIN
EXISTING BEAM TO REMAIN
EXISTING BEAM TO BE REMOVED
EXISTING BEAM TO BE REMOVED THAT HAS OTHER BEAM FRAMING INTO IT.
EXISTING BEAM TO REMAIN
EXISTING WALL TO REMAIN
EXISTING WALL TO BE REMOVED
EXISTING WALL TO BE REMOVED THAT HAS OTHER WALL FRAMING INTO IT.
EXISTING WALL TO REMAIN
EXISTING BEAM TO REMAIN
EXISTING BEAM TO BE REMOVED
EXISTING BEAM TO BE REMOVED THAT HAS OTHER BEAM FRAMING INTO IT.
EXISTING BEAM TO REMAIN
EXISTING WALL TO REMAIN
EXISTING WALL TO BE REMOVED
EXISTING WALL TO BE REMOVED THAT HAS OTHER WALL FRAMING INTO IT.
EXISTING WALL TO REMAIN
EXISTING BEAM TO REMAIN
EXISTING BEAM TO BE REMOVED
EXISTING BEAM TO BE REMOVED THAT HAS OTHER BEAM FRAMING INTO IT.
EXISTING BEAM TO REMAIN
EXISTING WALL TO REMAIN
EXISTING WALL TO BE REMOVED
EXISTING WALL TO BE REMOVED THAT HAS OTHER WALL FRAMING INTO IT.
CONCEPTUAL DEMOLITION SCOPE-EXISTING 15TH FLOOR (EL 242'-7 3/8")

NOTE: THE FINAL DESIGN, MEANS AND METHODS ARE THE CONTRACTOR'S RESPONSIBILITY. THE DESIGN SHALL BE COMPLETED BY A P.E. REGISTERED IN THE STATE OF NEW YORK. THE DESIGN SHALL BE SUBMITTED TO SEVERUD FOR REVIEW AND APPROVAL.
FOR EXTENT OF COLUMN REMOVALS SEE S-5XX SERIES. FOR BEAMS TO BE SHORE, CUT AND RECONNECTED SEE STRUCTURAL FLOOR PLANS.

Diagram:

- **EXISTING COLUMN TO BE REMOVED**: Denotes new openings for stairs, elevators, and shafts.
- **EXISTING COLUMN TO BE REMOVED**: Denotes existing wall to remain.
- **EXISTING COLUMN TO BE REMOVED**: Denotes beam to remain.
- **EXISTING COLUMN TO BE REMOVED**: Denotes beam to be demolished.
- **EXISTING COLUMN TO BE REMOVED**: Denotes existing slab to remain.
- **EXISTING COLUMN TO BE REMOVED**: Denotes existing slab to be demolished.

LEGEND:

- **APPROVED** Under Directive 2 of 1975
- **Date:** 04/25/2018
- **Roxane Tsirigotis, RA**

NOTE:

- The final design, means and methods are the contractor's responsibility.
- The design shall be completed by a P.E. registered in the state of New York.
- The design shall be submitted to sewer for review and approval.
Existence removed.

- 1. Existing column to be removed.
- 2. Existing wall to be removed.
- 3. Existing slab to be removed.
- 4. Existing beam to be removed.
- 5. Part of existing beam to be removed.
- 6. Existing beam to be removed that has other beam remaining.

LEGEND:
- APPROVED
- Under Directive 2 of 1975
- Date:
- Roxane Tsirigotis, RA
 04/25/2018

NOTE:
- The initial design, means and methods are the contractor's responsibility.
- The design shall be completed by a P.E. registered in the State of New York.
- The design shall be submitted for review and approval.

CONCEPTUAL DEMOLITION SCOPE:
- EXISTING 18TH FLOOR (EL 269'-3 3/8")
NOTE:

THE FINAL DESIGN MEANS AND METHODS ARE THE CONTRACTOR'S RESPONSIBILITY.

THE DESIGN SHALL BE COMPLETED BY A P.E. REGISTERED IN THE STATE OF NEW YORK.

THE DESIGN SHALL BE SUBMITTED TO SEVERAL FOR REVIEW AND APPROVAL.
SCHEDULE

Date: No.: Description:

04.08.2016 4 100% SCHEMATIC DESIGN

07.15.2016 7 50% DESIGN DEVELOPMENT

06.24.2016 6 TA FILING

09.02.2016 8 100% DESIGN DEVELOPMENT

10.07.2016 9 100% DESIGN DEVELOPMENT FOR PRICING

11.04.2016 12 ISSUED FOR DOB FILING

11.15.2016 14 SOFT & STRUCTURAL DEMOLITION ISSUED FOR BID

NOTE:
11). INSTALL SLAB TO BRACE COLUMN.

12). REMOVE TEMPORARY SUPPORT BEAMS AND BRACKETS WITHOUT DAMAGING COLUMN.

13). FILL SLAB ON GROUND BETWEEN CONSTRUCTION JOINTS.

THE FINAL DESIGN, MEANS AND METHODS ARE THE CONTRACTOR'S RESPONSIBILITY. THE DESIGN SHALL BE COMPLETED BY A P.E. REGISTERED IN THE STATE OF NEW YORK. THE DESIGN SHALL BE SUBMITTED TO SEVERUD FOR REVIEW AND APPROVAL.

EXISTING CONCRETE

RE-INSTATE CONCRETE

ENCASED STEEL COLUMN

ENCASEMENT ONCE 12) IS VERIFY IN FIELD)

RE-INSTATE CONCRETE COMPLETE

13 1/2" X 10" (144" TOTAL MIN.)

1" ANCHOR BOLTS

BEAMS OR PLATE GIRDERS COLUMN

2'-0" MIN.

COLUMN JOINT, TYP.

6" SLAB ON GRADE

3" MUD SLAB

10" GRAVEL MINIMUM (COMPACT)

ROCK (FIELD VERIFY ELEVATION)

STABILIZE ROCK WATERPROOFING

TYPICAL SEE SOE DWGS.

LEDGE AS REQ'D.

TYP.

EXISTING CELLAR

MATCH EXISTING COLUMN SIZE

MATCH SIZE BASE PLATE

EXISTING COLUMN FOOTING

SEE SCHEDULE

SEE SCHEDULE

SEE COLUMN SCHEDULE FOR LOADS

NOTE:

CONCEPTUAL JACKING

1). INSTALL DRILLED CAISSONS.

2). INSTALL DOUBLE BEAMS, BRACKETS, PLATES, AND WELDS.

3). INSTALL JACKS FLUSH WITH TOP OF BEAMS & BOTTOM OF BRACKETS. PRE-JACK ALL OF THE EXISTING COLUMN LOAD INTO THE TEMPORARY DOUBLE BEAMS, BRACKETS, AND CAISSONS - USE STRAIN GAUGES TO DETERMINE WHEN EXISTING FOOTING AND COLUMN ARE DE-LOADED.

7). EXCAVATE DOWN TO ROCK FOR NEW FOOTING & INSTALL NEW FOOTING.

8). INSTALL NEW STEEL COLUMN EXTENSION WITH CONCRETE ENCASEMENT.

9). INSTALL NEW SLAB ON GROUND ASSEMBLY.

10). SLOWLY RELEASE THE JACKS.

11). INSTALL SLAB TO BRACE COLUMN.

12). REMOVE TEMPORARY SUPPORT BEAMS AND BRACKETS WITHOUT DAMAGING COLUMN.

13). FILL SLAB ON GROUND BETWEEN CONSTRUCTION JOINTS.

THE DESIGN SHALL BE SUBMITTED TO SEVERUD FOR REVIEW AND APPROVAL.

TYP.

EXISTING CELLAR

MATCH EXISTING COLUMN SIZE

MATCH SIZE BASE PLATE

EXISTING COLUMN FOOTING

SEE SCHEDULE

SEE SCHEDULE

SEE COLUMN SCHEDULE FOR LOADS

NOTE:

CONCEPTUAL JACKING

1). INSTALL DRILLED CAISSONS.

2). INSTALL DOUBLE BEAMS, BRACKETS, PLATES, AND WELDS.

3). INSTALL JACKS FLUSH WITH TOP OF BEAMS & BOTTOM OF BRACKETS. PRE-JACK ALL OF THE EXISTING COLUMN LOAD INTO THE TEMPORARY DOUBLE BEAMS, BRACKETS, AND CAISSONS - USE STRAIN GAUGES TO DETERMINE WHEN EXISTING FOOTING AND COLUMN ARE DE-LOADED.

7). EXCAVATE DOWN TO ROCK FOR NEW FOOTING & INSTALL NEW FOOTING.

8). INSTALL NEW STEEL COLUMN EXTENSION WITH CONCRETE ENCASEMENT.

9). INSTALL NEW SLAB ON GROUND ASSEMBLY.

10). SLOWLY RELEASE THE JACKS.

11). INSTALL SLAB TO BRACE COLUMN.

12). REMOVE TEMPORARY SUPPORT BEAMS AND BRACKETS WITHOUT DAMAGING COLUMN.

13). FILL SLAB ON GROUND BETWEEN CONSTRUCTION JOINTS.

THE DESIGN SHALL BE SUBMITTED TO SEVERUD FOR REVIEW AND APPROVAL.

TYP.

EXISTING CELLAR

MATCH EXISTING COLUMN SIZE

MATCH SIZE BASE PLATE

EXISTING COLUMN FOOTING

SEE SCHEDULE

SEE SCHEDULE

SEE COLUMN SCHEDULE FOR LOADS

NOTE:

CONCEPTUAL JACKING

1). INSTALL DRILLED CAISSONS.

2). INSTALL DOUBLE BEAMS, BRACKETS, PLATES, AND WELDS.

3). INSTALL JACKS FLUSH WITH TOP OF BEAMS & BOTTOM OF BRACKETS. PRE-JACK ALL OF THE EXISTING COLUMN LOAD INTO THE TEMPORARY DOUBLE BEAMS, BRACKETS, AND CAISSONS - USE STRAIN GAUGES TO DETERMINE WHEN EXISTING FOOTING AND COLUMN ARE DE-LOADED.

7). EXCAVATE DOWN TO ROCK FOR NEW FOOTING & INSTALL NEW FOOTING.

8). INSTALL NEW STEEL COLUMN EXTENSION WITH CONCRETE ENCASEMENT.

9). INSTALL NEW SLAB ON GROUND ASSEMBLY.

10). SLOWLY RELEASE THE JACKS.

11). INSTALL SLAB TO BRACE COLUMN.

12). REMOVE TEMPORARY SUPPORT BEAMS AND BRACKETS WITHOUT DAMAGING COLUMN.

13). FILL SLAB ON GROUND BETWEEN CONSTRUCTION JOINTS.

THE DESIGN SHALL BE SUBMITTED TO SEVERUD FOR REVIEW AND APPROVAL.
1. THIS DRAWING SHALL BE USED WITH THE ARCHITECTURAL AND MECHANICAL DRAWINGS.

2. FLOOR FINISHES - SEE ARCHITECTURAL DRAWINGS.

3. FLOOR DATUM EL. 185'-3" = SEE TABLE ON THIS DRAWING.

4. TOP OF CONCRETE SLAB IS AT DATUM ELEVATION UNLESS SHOWN THUS EL. ±..... ON PLAN.

5. TOP OF STEEL IS 7 1/2" BELOW TOP OF CONCRETE UNLESS NOTED THUS (EL. ±......) ON PLAN.

6. FOR COLUMN SCHEDULE SEE S-511.

7. FOR COLUMN SCHEDULE SEE DRAWINGS S-501 THRU S-503.

8. FOR TYPICAL DETAILS SEE DRAWINGS S-701 THRU S-714.

10. FOR GENERAL NOTES SEE DRAWINGS.

11. FOR FLOOR FINISHES SEE ARCHITECTURAL DRAWINGS.

14. FOR COLUMN SCHEDULE SEE S-511.

15. VERIFY IN FIELD ALL EXISTING CONDITIONS. INFORM THE EOR OF ANY DEVIATIONS.

16. C8 DENOTES C8 x 11.5

17. C8 DENOTES C8 x 11.5

18. C8 DENOTES C8 x 11.5

19. W8 DENOTES W8 x 15

20. DENOTES STEEL BEAM

21. DENOTES EXISTING STEEL BEAM

22. DENOTES COLUMN BELOW ONLY.

23. DENOTES MOMENT CONNECTION. PROVIDE FULL CAPACITY MOMENT CONNECTION WHERE NO MOMENT IS SHOWN.

24. C8 DENOTES C8 x 11.5

25. C8 DENOTES C8 x 11.5

26. C8 DENOTES C8 x 11.5

27. DENOTES CONCRETE SLAB CONSTRUCTION

28. DENOTES CONCRETE WALL CONSTRUCTION

29. DENOTES CONCRETE WALL CONSTRUCTION
1. **EXISTING 8” CONCRETE SLAB**
 - Top of concrete slab is set at datum elevation unless noted.
 - Beam and column schedules are indicated on the plans.
 - For column and beam dimensions, see S-706 for size and quantity.

2. **100% DESIGN DEVELOPMENT**
 - 09.02.2016
 - 100% schematic design issued for filing.

3. **50% DESIGN DEVELOPMENT**
 - 06.24.2016
 - 09.02.2016
 - TA filing.

4. **100% SCHEMATIC DESIGN**
 - 04.08.2016
 - 100% schematic design issued for filing.

5. **CIRCUIT BOARD STABILIZATION**
 - 01.15.2016
 - 12.09.2016
 - 09.02.2016

6. **24 x 24 CONCRETE SLAB**
 - Top of concrete slab is set at datum elevation unless noted.
 - Beam and column schedules are indicated on the plans.

7. **EXISTING SLAB TO REMAIN**
 - 07.15.2016
 - 18th EL. 269'-3 3/8"
 - 18th floor plan.

8. **EXISTING WALL TO REMAIN**
 - 07.15.2016
 - 18th EL. 269'-3 3/8"
 - 18th floor plan.

9. **GENERAL NOTES**
 - See drawings S-721 and S-722.

10. **FOR PUNCHING SHEAR REINFORCEMENT, SEE S-521.**
 - For punching shear reinforcement, see S-521.

11. **FOR COLUMN SCHEDULES SEE DRAWINGS S-501 THRU S-503. FOR BEAM SCHEDULES SEE DRAWINGS S-511.**
 - For column schedules, see drawings S-501 through S-503. For beam schedules, see drawings S-511.

12. **FOR GENERAL NOTES SEE DRAWINGS S-721 AND S-722.**
 - For general notes, see drawings S-721 and S-722.

13. **FOR TYPICAL DETAILS SEE DRAWINGS S-701 THRU S-714.**
 - For typical details, see drawings S-701 through S-714.

14. **FOR GENERAL NOTES SEE DRAWINGS S-721 AND S-722.**
 - For general notes, see drawings S-721 and S-722.

15. **FOR PUNCHING SHEAR REINFORCEMENT, SEE S-521.**
 - For punching shear reinforcement, see S-521.

16. **MINOR IS A CLASSICALLY DESIGNED CONCRETE SLAB**
 - Minor is a classically designed concrete slab.

17. **MINOR IS A CLASSICALLY DESIGNED CONCRETE WALL**
 - Minor is a classically designed concrete wall.

18. **EXISTING CONCRETE SLAB TO REMAIN**
 - Existing concrete slab to remain.

19. **EXISTING CONCRETE WALL TO REMAIN**
 - Existing concrete wall to remain.

20. **EXISTING CONCRETE WALL CONSTRUCTION**
 - Existing concrete wall construction.

21. **EXISTING CONCRETE SLAB CONSTRUCTION**
 - Existing concrete slab construction.

22. **EXISTING CONCRETE WALL CONSTRUCTION**
 - Existing concrete wall construction.

23. **EXISTING CONCRETE WALL CONSTRUCTION**
 - Existing concrete wall construction.

24. **EXISTING CONCRETE SLAB CONSTRUCTION**
 - Existing concrete slab construction.

25. **EXISTING CONCRETE WALL CONSTRUCTION**
 - Existing concrete wall construction.

26. **EXISTING CONCRETE WALL CONSTRUCTION**
 - Existing concrete wall construction.

27. **EXISTING CONCRETE SLAB CONSTRUCTION**
 - Existing concrete slab construction.

28. **EXISTING CONCRETE WALL CONSTRUCTION**
 - Existing concrete wall construction.

29. **EXISTING CONCRETE SLAB CONSTRUCTION**
 - Existing concrete slab construction.

30. **EXISTING CONCRETE WALL CONSTRUCTION**
 - Existing concrete wall construction.

31. **EXISTING CONCRETE SLAB CONSTRUCTION**
 - Existing concrete slab construction.

32. **EXISTING CONCRETE WALL CONSTRUCTION**
 - Existing concrete wall construction.

33. **EXISTING CONCRETE SLAB CONSTRUCTION**
 - Existing concrete slab construction.

34. **EXISTING CONCRETE WALL CONSTRUCTION**
 - Existing concrete wall construction.

35. **EXISTING CONCRETE SLAB CONSTRUCTION**
 - Existing concrete slab construction.

36. **EXISTING CONCRETE WALL CONSTRUCTION**
 - Existing concrete wall construction.

37. **EXISTING CONCRETE SLAB CONSTRUCTION**
 - Existing concrete slab construction.

38. **EXISTING CONCRETE WALL CONSTRUCTION**
 - Existing concrete wall construction.

39. **EXISTING CONCRETE SLAB CONSTRUCTION**
 - Existing concrete slab construction.

40. **EXISTING CONCRETE WALL CONSTRUCTION**
 - Existing concrete wall construction.

41. **EXISTING CONCRETE SLAB CONSTRUCTION**
 - Existing concrete slab construction.

42. **EXISTING CONCRETE WALL CONSTRUCTION**
 - Existing concrete wall construction.

43. **EXISTING CONCRETE SLAB CONSTRUCTION**
 - Existing concrete slab construction.

44. **EXISTING CONCRETE WALL CONSTRUCTION**
 - Existing concrete wall construction.

45. **EXISTING CONCRETE SLAB CONSTRUCTION**
 - Existing concrete slab construction.

46. **EXISTING CONCRETE WALL CONSTRUCTION**
 - Existing concrete wall construction.

47. **EXISTING CONCRETE SLAB CONSTRUCTION**
 - Existing concrete slab construction.

48. **EXISTING CONCRETE WALL CONSTRUCTION**
 - Existing concrete wall construction.

49. **EXISTING CONCRETE SLAB CONSTRUCTION**
 - Existing concrete slab construction.

50. **EXISTING CONCRETE WALL CONSTRUCTION**
 - Existing concrete wall construction.
SECTION 3-311

STRUCTURAL Topping - 4" Structural Topping above Existing 8" Slab

BAR LENGTH = 2Ld + Slab Thickness

BAR SPLICE ZAP T-LOCK TERMINATORS

CONCRETE WALL

EXISTING REINFORCING BARS

EXISTING 8" SLAB

ROUGHEN TOP OF EXISTING SLAB AND APPLY BONDING AGENT

#3 PINS DRILL AND EPOXY

TOP REINFORCING SEE PLAN #7 @ 12" U.O.N.
9TH FLOOR T.O.S. (EX. 7)
165' - 7 7/8"

W24x306 NEEDLE BEAMS AT EACH END OF EXISTING WALL (TO BE PARTIALLY REMOVED) ABOVE AND 5'-0" O/C MAX IN BETWEEN BRACING TO SPLICE (CONT.) THROUGH NEEDLE BEAM

EXISTING SHEAR WALL ABOVE

SEE PLAN FOR BEAMS
TRUSST T-6 - EXISTING & DEMO

TRUSST T-6 - EXISTING & NEW

SECTION A

SECTION B

LEGEND:
- Existing Structure to Be Demolished
- Existing Structure to Remain
- New Construction

S-403.00

1568 Broadway
New York, NY 10036

Date: No.: Description:

Project: 1568 Broadway

Sheet Title:

Signature & Seal:

Roxane Tsirigotis, RA 04/25/2018

Copyright 2017 Platt Byard Dovell White Architects LLP All Rights Reserved

As indicated 1/8" = 1'-0"
TRUSS 7.11 - EXISTING & DEMO

TRUSS 7.11 - EXISTING & NEW
CONCEPTUAL DETAILS FOR JACKING OF CONCRETE COLUMNS
EXISTING TO BE DEMOLISHED

C.L. S3/S4

C.L. T-18, T-19

EXISTING WIDE FLANGE BEAM

EXISTING W10 x 68

EXISTING W10 x 100

GUSSET PLATE

NODE PLATE

CAP PLATE

CENTERLINE T-1

7" 6"

2'-4"

NOTES:

1. EXISTING STEEL TO BE VERIFIED PRIOR TO SHOP DRAWING DEVELOPMENT AND DISTRIBUTION.

2. PROVIDE TEMPORARY WELDED CONNECTIONS FOR FORCES AS SHOWN ON ORIGINAL BUILDING STRUCTURAL DRAWINGS TO ALLOW FOR REMOVAL OF BOLTS AS REQUIRED FOR INSTALLATION OF NEW STEEL.

3. THE ABOVE SECTIONS ARE GENERATED BASE ON ASSUMED COLUMN AND PLATE SIZES AS THE ORIGINAL SIZES WERE NOT AVAILABLE. ALL EXISTING SIZES TO BE VERIFIED IN FIELD.

4. ALL PLATES TO BE 50KSI STEEL.

SECTION 9

S-423

SECTION 10

S-423

S-424

1.5 = 1'-0"
EXISTING DETAILS

NOTES:

1. DRAWING DEVELOPMENT AND DISTRIBUTION.

2. PROVIDE TEMPORARY WELDED CONNECTIONS FOR FORCES AS SHOWN ON ORIGINAL BUILDING STRUCTURAL DRAWINGS TO ALLOW FOR REMOVAL OF BOLTS AS REQUIRED FOR INSTALLATION OF NEW STEEL.

3. THE ABOVE SECTIONS ARE GENERATED BASED ON ASSUMED COLUMN AND PLATE SIZES AS THE ORIGINAL SIZES WERE NOT AVAILABLE. ALL EXISTING SIZES TO BE VERIFIED IN FIELD.

4. ALL PLATES TO BE 50KSI STEEL.

5. DENOTES STEEL BEYOND DRAWING DEVELOPMENT.

6. SOME STRUCTURAL COMPONENTS MAY BE RESPONSIBLE FOR SERVICE REASONS.

7. DRAWING STATEMENTS TO BE UPDATED PRIOR TO AWAY ENGINEER DEVELOPMENT AND CONSTRUCTION.

8.プロジェクト は、既存の構造物の設計変更に基づいて行われます。新しい鋼材の取り付けに必要な脱着のため、既存のナットを提供してください。

9. 全てのプレートは50KSIの鋼を使用します。

10. ブロックの一部はサービスのための構造要素を示す場合があります。

11. ダ oranのステートメントは、工事進行前に更新される必要があります。
NOTES:
1. EXISTING STEEL TO BE VERIFIED PRIOR TO SHOP DRAWING DEVELOPMENT AND DISTRIBUTION.
2. PROVIDE TEMPORARY WELDED CONNECTIONS FOR FORCES AS SHOWN ON ORIGINAL BUILDING STRUCTURAL DRAWINGS TO ALLOW FOR REMOVAL OF BOLTS AS REQUIRED FOR INSTALLATION OF NEW STEEL.
3. THE ABOVE SECTIONS ARE GENERATED BASE ON ASSUMED COLUMN AND PLATE SIZES AS THE ORIGINAL SIZES WERE NOT AVAILABLE. ALL EXISTING SIZES TO BE VERIFIED IN FIELD.
4. ALL PLATES TO BE 50KSI STEEL.
TYPICAL COLUMN BASE DETAILS

NOTES:
1. ADJUST COLUMNS TO BE REINFORCED WITH PLATES. SEE DETAIL ON EIA.
2. ADJUST PLATE DETAIL TO MATCH THE COLUMN SECTION SIZE.
3. FOR PLYWOOD PLATED REINFORCED COLUMNS, SEE DETAIL ON EIA.
4. FOR STEEL PLATED COLUMNS, SEE DETAIL ON EIA.
5. ADJUST PLATE DETAIL TO MATCH THE COLUMN SECTION SIZE.
6. LOADS TO SUPPORT COLUMNS.
7. CONNECT PLATE AT CONNECTION LOCATIONS.
8. TYPICAL DETAIL OF REINFORCING FOR CONCRETE COLUMNS WITH PLATES.

TYPICAL DETAIL OF REINFORCING FOR STEEL COLUMNS WITH PLATES.

TYPICAL DETAIL OF REINFORCING FOR CONCRETE COLUMNS BY JACKETING WITH PLATES.

NOTES:

1. FOR TYPICAL STEEL COLUMN SPLICE AND BASE PLATE DETAILS SEE DRAWINGS S-712.
2. REFER TO S-451 AND S-452 FOR BRACED FRAME ELEVATIONS.
3. FOR STEEL COLUMNS WITH PLATES.
4. LOADS IN THE COLUMN SCHEDULE, EXCEPT LOADS TO SUPPORT, ARE ULTIMATE LOADS.
5. CONNECT PLATE AT CONNECTION LOCATIONS.
6. TYPICAL DETAIL OF REINFORCING FOR CONCRETE COLUMNS WITH PLATES.
7. FOR STEEL COLUMNS WITH PLATES.
8. TYPICAL DETAIL OF REINFORCING FOR CONCRETE COLUMNS WITH PLATES.

TYPICAL DETAIL OF REINFORCING FOR CONCRETE COLUMNS BY JACKETING WITH PLATES.
Conrete Beam Schedule

<table>
<thead>
<tr>
<th>Beam Suit</th>
<th>Beam Depth</th>
<th>Bottom Bar</th>
<th>Top Bar</th>
<th>Type</th>
<th>Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>1/2</td>
<td>(4)</td>
</tr>
<tr>
<td>1B</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>1/2</td>
<td>(4)</td>
</tr>
<tr>
<td>2A</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>1/2</td>
<td>(4)</td>
</tr>
<tr>
<td>2B</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>1/2</td>
<td>(4)</td>
</tr>
<tr>
<td>3A</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>1/2</td>
<td>(4)</td>
</tr>
<tr>
<td>3B</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>1/2</td>
<td>(4)</td>
</tr>
<tr>
<td>4A</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>1/2</td>
<td>(4)</td>
</tr>
<tr>
<td>4B</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>1/2</td>
<td>(4)</td>
</tr>
<tr>
<td>5A</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>1/2</td>
<td>(4)</td>
</tr>
<tr>
<td>5B</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>1/2</td>
<td>(4)</td>
</tr>
<tr>
<td>6A</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>1/2</td>
<td>(4)</td>
</tr>
<tr>
<td>6B</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>1/2</td>
<td>(4)</td>
</tr>
</tbody>
</table>

Notes:
- REFER TO LINK BEAM SCHEDULE, CONCRETE SHEAR WALL DETAILS, AND CONCRETE BEAM TYPICAL DETAILS FOR OTHER REINFORCEMENT REQUIRED.
S-603.00

1. PROVIDE #5 @ 12" VERTICAL BAR TYPICAL.

2. 16TH - 17TH FLOOR #6 @ 6" HORIZONTAL BAR
17TH - 22TH FLOOR #6 @ 10" HORIZONTAL BAR
22TH - 25TH FLOOR #5 @ 12" HORIZONTAL BAR
26TH FLOOR - ROOF #4 @ 12" HORIZONTAL BAR

APPROVED
Under Directive 2 of 1975
Date:
Roxane Tsirigotis, RA
04/25/2018
SW2 - SIXTEENTH FLOOR TO SEVENTEENTH FLOOR

SW2 - SEVENTEENTH FLOOR TO FORTY THIRD FLOOR

SW2 - FORTY THIRD FLOOR TO FORTY SEVENTH FLOOR

NOTE: PROVIDE #5 @ 12" VERTICAL, #4 @ 12" HORIZONTAL U.N.O. ON PLAN.
NOTE:
PROVIDE #5 @ 12" VERTICAL, #4 @ 12" HORIZONTAL U.N.O ON PLAN.
1. Where column pours extend into bottom of floor framing, pour to top of member plus 1" to 1-1/2", for provision of vertical lateral support.
2. Top of column pour may be extended to top of floor framing, with structural reinforcement included for self-supporting construction.

NOTE: This detail is intended for use in conjunction with the requirements of AISC Chapter 12.

TYPICAL CONCRETE WALL AND GRADE BEAMS CORNER, END AND INTERSECTION DETAILS

1. Development of all concrete grids at column and wall intersections to be cast monolithically with the adjacent wall, beam or slab.
2. Vertical reinforcement at column top and beam ends to be placed in accordance with the requirements of AISC Chapter 12.

TYPICAL MECHANICAL PAD DETAIL

1. Mechanical pads shall be poured monolithically with the surrounding concrete.
2. All mechanical components to be securely anchored to the concrete pad.

NOTE: This detail is intended for use in conjunction with the requirements of AISC Chapter 12.

TYPICAL CONCRETE WALL AND GRADE BEAMS DETAIL

1. Top of concrete wall shall be flush with top of slab.
2. Concrete grade beams shall be built to meet the requirements of AISC Chapter 12.

TYPICAL RAISED SLAB DETAIL

1. Raised slabs shall be supported on top of columns and grade beams.
2. All reinforcement to be placed in accordance with the requirements of AISC Chapter 12.

TYPICAL STEEL COLUMN SUPPORTED ON BUTTRESS/PIER DETAIL

1. Steel columns shall be supported on buttress or pier structure.
2. All reinforcement to be placed in accordance with the requirements of AISC Chapter 12.

COLUMN AND WALL INTERFACE WITH FLOOR FRAMING

1. Where column pours extend into bottom of floor framing, pour to top of member plus 1" to 1-1/2", for provision of vertical lateral support.
2. Top of column pour may be extended to top of floor framing, with structural reinforcement included for self-supporting construction.

NOTE: This detail is intended for use in conjunction with the requirements of AISC Chapter 12.
1. CONFIGURATION 1, 2 AND 3 MAY BE USED WHERE SLAB OCCURS ON EACH SIDE AT TOP OF BEAM.

2. CONFIGURATION 1, 2 AND 3 MAY BE USED WHERE SLAB OCCURS ON ONE SIDE AT TOP OF BEAM. THE 90° HOOK SHALL BE PLACED ON AN ALTERNATING PATTERN, HORIZONTALLY AND VERTICALLY.

3. SINGLE COLUMN TIES ARE PERMITTED TO BE 90° DEGREE/135° DEGREE, PROVIDED THE 90° HOOK AND 135° HOOK ARE PLACED IN AN ALTERNATING PATTERN, HORIZONTALLY AND VERTICALLY.

4. FOR SIZE AND NUMBER OF ALL BARS, SEE PLANS AND BEAM SCHEDULE.

5. ALL REINFORCING IN CURBS SHALL BE EPOXY COATED.
STANDARD HOOK DEVELOPMENT LENGTH (Ldh) TABLE (LENGTH IN INCHES)

<table>
<thead>
<tr>
<th>BAR SIZE</th>
<th>3/8"</th>
<th>1/2"</th>
<th>5/8"</th>
<th>3/4"</th>
<th>1"</th>
<th>1 1/4"</th>
<th>1 1/2"</th>
<th>1 3/4"</th>
<th>2"</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/8"</td>
<td>21</td>
<td>32</td>
<td>42</td>
<td>52</td>
<td>62</td>
<td>72</td>
<td>82</td>
<td>92</td>
<td>102</td>
</tr>
<tr>
<td>1"</td>
<td>21</td>
<td>32</td>
<td>42</td>
<td>52</td>
<td>62</td>
<td>72</td>
<td>82</td>
<td>92</td>
<td>102</td>
</tr>
<tr>
<td>1 1/8"</td>
<td>21</td>
<td>32</td>
<td>42</td>
<td>52</td>
<td>62</td>
<td>72</td>
<td>82</td>
<td>92</td>
<td>102</td>
</tr>
<tr>
<td>1 1/4"</td>
<td>21</td>
<td>32</td>
<td>42</td>
<td>52</td>
<td>62</td>
<td>72</td>
<td>82</td>
<td>92</td>
<td>102</td>
</tr>
<tr>
<td>1 1/2"</td>
<td>21</td>
<td>32</td>
<td>42</td>
<td>52</td>
<td>62</td>
<td>72</td>
<td>82</td>
<td>92</td>
<td>102</td>
</tr>
<tr>
<td>1 3/4"</td>
<td>21</td>
<td>32</td>
<td>42</td>
<td>52</td>
<td>62</td>
<td>72</td>
<td>82</td>
<td>92</td>
<td>102</td>
</tr>
<tr>
<td>2"</td>
<td>21</td>
<td>32</td>
<td>42</td>
<td>52</td>
<td>62</td>
<td>72</td>
<td>82</td>
<td>92</td>
<td>102</td>
</tr>
</tbody>
</table>

- Ldh is the minimum length of development for a hooked bar in concrete, and is specified in the table above.
- Bars with a diameter greater than 1" require additional development, which is not shown in the table above.

Notes:
1. The hook development length is determined based on the specified bar size and concrete strength.
2. The table above provides the minimum development lengths for bars of various sizes in concrete.
3. For bars with a diameter greater than 1", additional development may be required as per project-specific requirements.

Figure:
- Typical detail of a hooked bar in concrete, showing the development length and the hook development length.

Details:
- Standard hook details for bars occurring under the following conditions:
 - Development length is determined in accordance with the requirements of ACI 318, Chapter 12.
 - If dimension "a" is less than Ldh, additional reinforcing is required.
 - Development length is determined in accordance with the requirements of ACI 318, Chapter 12.

Contractor's Option:
- Continuous reinforcing is permitted in accordance with the project-specific requirements.

Specifications:
- ACI Type II for forces.

Notes:
1. Where top reinforcing occurs, provide similar detail.
2. Development lengths shown in the table above are applicable for standard hooked bars occurring under the following conditions:
 - Bar size is greater than 3/8".
 - Concrete strength is greater than or equal to 3 ksi.

Typical Stagger at Bar Terminator Detail

- Stagger at bar terminator detail for bars occurring under the following conditions:
 - Development length is determined in accordance with the requirements of ACI 318, Chapter 12.
 - Development length is determined in accordance with the requirements of ACI 318, Chapter 12.
 - If dimension "a" is less than Ldh, additional reinforcing is required.

Specifications:
- ACI Type II for forces.

Notes:
1. Development length is determined in accordance with the requirements of ACI 318, Chapter 12.
2. Development length is determined in accordance with the requirements of ACI 318, Chapter 12.

Typical Lap Splice Detail

- Lap splice detail for bars occurring under the following conditions:
 - Development length is determined in accordance with the requirements of ACI 318, Chapter 12.
 - Development length is determined in accordance with the requirements of ACI 318, Chapter 12.
 - If dimension "a" is less than Ldh, additional reinforcing is required.

Specifications:
- ACI Type II for forces.
GUIDELINES FOR LENGTH AND PLACEMENT OF FLAT SLAB REINFORCING STEEL

1. REFER TO THE "TYPICAL FLAT SLAB DETAIL" TYPICAL DETAIL FOR THE BALANCE OF INFORMATION.
2. THIS GUIDELINE MAY BE USED BY THE CONTRACTOR TO DETERMINE THE LENGTH OF A BAR SHOWN ON FITTING PLANS WITH NO SPECIFIED LENGTH.
3. THIS GUIDELINE MAY BE USED BY THE CONTRACTOR TO DETERMINE THE PLACEMENT OF A BAR SHOWN ON THE FITTING PLANS.

TOP (T) BAR EXAMPLE
1. QUANTITY = 3, TOP, 2 ADD'LS OVER THE CRITICAL ZONE.
2. BAR SIZE = #6
3. LOCATION = COLUMN - MIDDLE STRIP
4. COLUMN LENGTH = 24'-0" BETWEEN COLUMNS 5 AND 9 (EQUAL BARS ON BOTH SIDES OF THIS POINT, OR PLACE ONE AT THIS POINT AND EQUAL BARS ON BOTH SIDES FOR ODD QUANTITIES)
5. SPAN LENGTHS ARE AS FOLLOWS:
 5.1. L1A (N/S) = 21'-0"
 5.2. L1B (N/S) = 21'-0"
6. SPAN LENGTHS ARE AS FOLLOWS:
 6.1. L1 (N/S) = 20'-0" (MAX OF L1 SET)
 6.2. L1 B (N/S) = 21'-0" (MAX OF L1 SET)
 6.3. L1B (N/S) = 20'-0" (MAX OF L1 SET)
 6.4. L1 C (N/S) = 20'-0"
 6.5. L1D (N/S) = 20'-0"
6.6. L2 (N/S) = 22'-0"
6.7. L2C (N/S) = 24'-0"
 6.8. L2B (N/S) = 22'-0"
 6.9. L2C (N/S) = 24'-0"
6.10. L2D (N/S) = 24'-0"
7. PER TYPICAL FLAT SLAB DETAIL, THE BAR LENGTH IS AS FOLLOWS:
 7.1. MAX OF L1, L2 = 24'-0"
 7.2. BAR LENGTH = 11'-0" X 2 + 24" = 16.4'
 7.3. BAR LENGTH = 7'-0" X 2 + 24" = 16.4'
 7.4. ROUND THE BAR LENGTH TO THE NEAREST 2", PER TYPICAL FLAT SLAB DETAIL.
8. EVENLY SPACE THE 2BM6 STARTING AT THE CENTER OF THE COLUMN SHALL BE THE SAME LENGTH AS THE TYPICAL TOP BAR.
9. ADDITIONAL TOP BARS (+2T7) OVER THE CRITICAL ZONE OF THE COLUMN SHALL BE THE SAME LENGTH AS THE TYPICAL TOP BAR.

BOTTOM (B) BAR EXAMPLE
1. QUANTITY = 2
2. BAR SIZE = #4
3. LOCATION = COLUMN - COLUMN STRIP
4. COLUMN LENGTH = 12'-6" BETWEEN COLUMNS 5 AND 9 (EQUAL BARS ON BOTH SIDES OF THIS POINT, OR PLACE ONE AT THIS POINT AND EQUAL BARS ON BOTH SIDES FOR ODD QUANTITIES)
5. SPAN LENGTHS ARE AS FOLLOWS:
 5.1. L1A / 2 (N/S), L1B / 2 (N/S), L2A / 2 (N/S), L2B / 2 (N/S)
 5.2. THIS EXTENT IS EQUAL TO 10'-0", PER TYPICAL MODES BAR EXAMPLE.
6. SPAN LENGTHS ARE AS FOLLOWS:
 6.1. L1 (N/S) = 21'-0" (MAX OF L1 SET)
 6.2. L1 B (N/S) = 21'-0" (MAX OF L1 SET)
 6.3. L1C (N/S) = 20'-0" (MAX OF L1 SET)
 6.4. L1D (N/S) = 20'-0"
 6.5. L2 (N/S) = 22'-0"
 6.6. L2B (N/S) = 22'-0"
 6.7. L2C (N/S) = 24'-0"
 6.8. L2D (N/S) = 24'-0"
7. PER TYPICAL FLAT SLAB DETAIL, THE BAR LENGTH IS AS FOLLOWS:
 7.1. L1 / 2 = 12'-6"
 7.2. L1 / 2 = 12'-6"
 7.3. L2 / 2 = 11'-11.5" - SEE PLAN
 7.4. BAR LENGTH = 11'-11.5" - SEE PLAN
 7.5. BAR LENGTH = 7'-0" X 2 + 24" = 16.4'
 7.6. ROUND THE BAR LENGTH TO THE NEAREST 2", PER TYPICAL FLAT SLAB DETAIL.
8. EVENLY SPACE THE 6TM5 STARTING AT THE CENTER OF THE COLUMN SHALL BE THE SAME LENGTH AS THE TYPICAL BOTTOM BAR.
9. ADDITIONAL BOTTOM BARS (+2T7) OVER THE CRITICAL ZONE OF THE COLUMN SHALL BE THE SAME LENGTH AS THE TYPICAL BOTTOM BAR.

PER TYPICAL FLAT SLAB DETAIL, THE BAR LENGTH IS AS FOLLOWS:
1. QUANTITY = 2
2. BAR SIZE = #4
3. LOCATION = COLUMN - MIDDLE STRIP
4. COLUMN LENGTH = 12'-6" BETWEEN COLUMNS 5 AND 9 (EQUAL BARS ON BOTH SIDES OF THIS POINT, OR PLACE ONE AT THIS POINT AND EQUAL BARS ON BOTH SIDES FOR ODD QUANTITIES)
5. SPAN LENGTHS ARE AS FOLLOWS:
 5.1. L1A / 2 (N/S), L1B / 2 (N/S), L2A / 2 (N/S), L2B / 2 (N/S)
 5.2. THIS EXTENT IS EQUAL TO 10'-0", PER TYPICAL MODES BAR EXAMPLE.
6. SPAN LENGTHS ARE AS FOLLOWS:
 6.1. L1 (N/S) = 21'-0" (MAX OF L1 SET)
 6.2. L1 B (N/S) = 21'-0" (MAX OF L1 SET)
 6.3. L1C (N/S) = 20'-0" (MAX OF L1 SET)
 6.4. L1D (N/S) = 20'-0"
 6.5. L2 (N/S) = 22'-0"
 6.6. L2B (N/S) = 22'-0"
 6.7. L2C (N/S) = 24'-0"
 6.8. L2D (N/S) = 24'-0"
7. PER TYPICAL FLAT SLAB DETAIL, THE BAR LENGTH IS AS FOLLOWS:
 7.1. L1 / 2 = 12'-6"
 7.2. L1 / 2 = 12'-6"
 7.3. L2 / 2 = 11'-11.5" - SEE PLAN
 7.4. BAR LENGTH = 11'-11.5" - SEE PLAN
 7.5. BAR LENGTH = 7'-0" X 2 + 24" = 16.4'
 7.6. ROUND THE BAR LENGTH TO THE NEAREST 2", PER TYPICAL FLAT SLAB DETAIL.
8. EVENLY SPACE THE 6TM5 STARTING AT THE CENTER OF THE COLUMN SHALL BE THE SAME LENGTH AS THE TYPICAL BOTTOM BAR.
9. ADDITIONAL BOTTOM BARS (+2T7) OVER THE CRITICAL ZONE OF THE COLUMN SHALL BE THE SAME LENGTH AS THE TYPICAL BOTTOM BAR.

THEORETICAL CENTER OF MIDDLE MIDDLE STRIP - SEE TOP MIDDLE (BM) BAR EXAMPLE

THEORETICAL CENTER OF MIDDLE TOP STRIP - SEE TOP (T) BAR EXAMPLE

THEORETICAL CENTER OF COLUMN - COLUMN STRIP - PLAN
1. PROVIDE ALL SHEET METAL CLOSURES AND ACCESSORIES, SEE STRUCTURAL, ARCHITECTURAL AND MEP DRAWINGS AND SPECIFICATIONS.

2. DESIGN CLOSURES TO SAFELY SUPPORT THE WET WEIGHT OF SUPERIMPOSED CONCRETE + 20 PSF CONSTRUCTION LIVE LOADS WITH MINIMAL DEFLECTION. SHORE IF NECESSARY.

3. THE GENERAL CONTRACTOR OR THE CONSTRUCTION MANAGER AND THE METAL DECK CONTRACTOR SHALL COORDINATE THE DECK SUPPORT ANGLES SHALL BE FURNISHED AND INSTALLED BY THE METAL DECK CONTRACTOR AND SHOWN ON METAL DECK PLANS.

4. DEVELOPMENT LENGTH Ld TO BE DETERMINED IN ACCORDANCE WITH THE REQUIREMENTS OF ACI 318, CHAPTER 12.

5. PROVIDE TYPICAL DETAIL AT WEAK SLAB EDGES. TYPICAL DETAIL AT WEAK SLAB EDGES

6. FOLLOW LIFTS AND FIND STAIRS WHERE REQUIRED.

7. 7 1/2" SLAB ON METAL DECK SHALL HAVE 6" LONG SHEAR STUDS. 12" SLAB ON METAL DECK SHALL HAVE 8" LONG SHEAR STUDS.

8. THE SIZE AND CONNECTIONS OF ALL CLOSURES AND ENCLOSURES SHALL BE FURNISHED, DESIGNED AND SHOWN ON SHOP DRAWINGS.

9. SHEAR CONNECTORS SHALL BE EQUALLY SPACED ALONG THE SPAN OF THE BEAM UNLESS OTHERWISE NOTED. THE TOTAL NUMBER OF SHEAR CONNECTORS IS SHOWN ON PLAN (TYP.)

10. PROVIDE SHEET METAL WELDED TO COLUMN COLUMNS SEE COLUMNSCHEDULE

11. PROVIDE SHEET METAL WELDED TO COLUMN COLUMNS SEE COLUMNSCHEDULE

12. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

13. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

14. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

15. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

16. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

17. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

18. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

19. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

20. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

21. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

22. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

23. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

24. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

25. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

26. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

27. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

28. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

29. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

30. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

31. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

32. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

33. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

34. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

35. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

36. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

37. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

38. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

39. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

40. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

41. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

42. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

43. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

44. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

45. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

46. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

47. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

48. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

49. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

50. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

51. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

52. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

53. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

54. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

55. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

56. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

57. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

58. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

59. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I

60. PROVIDEaffles (TYP) THROUGH METAL DECK. TYPICAL STEEL DETAILS I
Typical Steel Details III

1. **Location Detail**: Where locations are designated for structural steel, each location will be shown on plan.
2. **Number of Rows**: The number of rows is shown in Figure 1 of this drawing.
3. **Concrete on Metal Deck**: See plan, or see Appendix for details.
4. **Steel Connection**: The steel connection details are shown on the respective drawings.
5. **Concrete Connection**: Details for concrete connections are shown on the respective drawings.
6. **Notations**: For full details, see Appendix A of this drawing.
7. **Interference Details**: See Appendix B for interference details.
8. **Details for Openings in Beam Webs**: See Appendix C for details.
9. **Typical Deck Support Details**: See Appendix D for details.
10. **Typical Deck Support Joint Detail**: See Appendix E for details.
11. **Typical Deck Support Interface Detail**: See Appendix F for details.
12. **Typical Deck Buster Detail**: See Appendix G for details.
13. **Typical Deck Support Joint Interface Detail**: See Appendix H for details.
14. **Typical Deck Support Joint Interface Detail**: See Appendix I for details.
15. **Typical Deck Support Joint Interface Detail**: See Appendix J for details.
16. **Typical Deck Support Joint Interface Detail**: See Appendix K for details.
17. **Typical Deck Support Joint Interface Detail**: See Appendix L for details.
18. **Typical Deck Support Joint Interface Detail**: See Appendix M for details.
19. **Typical Deck Support Joint Interface Detail**: See Appendix N for details.
20. **Typical Deck Support Joint Interface Detail**: See Appendix O for details.
22. **Typical Deck Support Joint Interface Detail**: See Appendix Q for details.
23. **Typical Deck Support Joint Interface Detail**: See Appendix R for details.
24. **Typical Deck Support Joint Interface Detail**: See Appendix S for details.
25. **Typical Deck Support Joint Interface Detail**: See Appendix T for details.
26. **Typical Deck Support Joint Interface Detail**: See Appendix U for details.
27. **Typical Deck Support Joint Interface Detail**: See Appendix V for details.
28. **Typical Deck Support Joint Interface Detail**: See Appendix W for details.
29. **Typical Deck Support Joint Interface Detail**: See Appendix X for details.
30. **Typical Deck Support Joint Interface Detail**: See Appendix Y for details.
31. **Typical Deck Support Joint Interface Detail**: See Appendix Z for details.
32. **Typical Deck Support Joint Interface Detail**: See Appendix AA for details.
33. **Typical Deck Support Joint Interface Detail**: See Appendix BB for details.
34. **Typical Deck Support Joint Interface Detail**: See Appendix CC for details.
35. **Typical Deck Support Joint Interface Detail**: See Appendix DD for details.
36. **Typical Deck Support Joint Interface Detail**: See Appendix EE for details.
37. **Typical Deck Support Joint Interface Detail**: See Appendix FF for details.
38. **Typical Deck Support Joint Interface Detail**: See Appendix GG for details.
39. **Typical Deck Support Joint Interface Detail**: See Appendix HH for details.
40. **Typical Deck Support Joint Interface Detail**: See Appendix II for details.
41. **Typical Deck Support Joint Interface Detail**: See Appendix JJ for details.
42. **Typical Deck Support Joint Interface Detail**: See Appendix KK for details.
43. **Typical Deck Support Joint Interface Detail**: See Appendix LL for details.
44. **Typical Deck Support Joint Interface Detail**: See Appendix MM for details.
45. **Typical Deck Support Joint Interface Detail**: See Appendix NN for details.
46. **Typical Deck Support Joint Interface Detail**: See Appendix OO for details.
47. **Typical Deck Support Joint Interface Detail**: See Appendix PP for details.
48. **Typical Deck Support Joint Interface Detail**: See Appendix QQ for details.
49. **Typical Deck Support Joint Interface Detail**: See Appendix RR for details.
50. **Typical Deck Support Joint Interface Detail**: See Appendix SS for details.
51. **Typical Deck Support Joint Interface Detail**: See Appendix TT for details.
52. **Typical Deck Support Joint Interface Detail**: See AppendixUU for details.
53. **Typical Deck Support Joint Interface Detail**: See AppendixVV for details.
54. **Typical Deck Support Joint Interface Detail**: See AppendixWW for details.
55. **Typical Deck Support Joint Interface Detail**: See AppendixXX for details.
56. **Typical Deck Support Joint Interface Detail**: See AppendixYY for details.
57. **Typical Deck Support Joint Interface Detail**: See AppendixZZ for details.
58. **Typical Deck Support Joint Interface Detail**: See AppendixAA for details.
59. **Typical Deck Support Joint Interface Detail**: See AppendixBB for details.
60. **Typical Deck Support Joint Interface Detail**: See AppendixCC for details.
61. **Typical Deck Support Joint Interface Detail**: See AppendixDD for details.
62. **Typical Deck Support Joint Interface Detail**: See AppendixEE for details.
63. **Typical Deck Support Joint Interface Detail**: See AppendixFF for details.
64. **Typical Deck Support Joint Interface Detail**: See AppendixGG for details.
65. **Typical Deck Support Joint Interface Detail**: See AppendixHH for details.
66. **Typical Deck Support Joint Interface Detail**: See AppendixII for details.
67. **Typical Deck Support Joint Interface Detail**: See AppendixJJ for details.
68. **Typical Deck Support Joint Interface Detail**: See AppendixKK for details.
69. **Typical Deck Support Joint Interface Detail**: See AppendixLL for details.
70. **Typical Deck Support Joint Interface Detail**: See AppendixMM for details.
71. **Typical Deck Support Joint Interface Detail**: See AppendixNN for details.
72. **Typical Deck Support Joint Interface Detail**: See AppendixOO for details.
73. **Typical Deck Support Joint Interface Detail**: See AppendixPP for details.
74. **Typical Deck Support Joint Interface Detail**: See AppendixQQ for details.
75. **Typical Deck Support Joint Interface Detail**: See AppendixRR for details.
76. **Typical Deck Support Joint Interface Detail**: See AppendixSS for details.
77. **Typical Deck Support Joint Interface Detail**: See AppendixTT for details.
78. **Typical Deck Support Joint Interface Detail**: See AppendixUU for details.
79. **Typical Deck Support Joint Interface Detail**: See AppendixVV for details.
80. **Typical Deck Support Joint Interface Detail**: See AppendixWW for details.
81. **Typical Deck Support Joint Interface Detail**: See AppendixXX for details.
82. **Typical Deck Support Joint Interface Detail**: See AppendixYY for details.
83. **Typical Deck Support Joint Interface Detail**: See AppendixZZ for details.
84. **Typical Deck Support Joint Interface Detail**: See AppendixAA for details.
85. **Typical Deck Support Joint Interface Detail**: See AppendixBB for details.
86. **Typical Deck Support Joint Interface Detail**: See AppendixCC for details.
87. **Typical Deck Support Joint Interface Detail**: See AppendixDD for details.
88. **Typical Deck Support Joint Interface Detail**: See AppendixEE for details.
89. **Typical Deck Support Joint Interface Detail**: See AppendixFF for details.
90. **Typical Deck Support Joint Interface Detail**: See AppendixGG for details.
91. **Typical Deck Support Joint Interface Detail**: See AppendixHH for details.
92. **Typical Deck Support Joint Interface Detail**: See AppendixII for details.
93. **Typical Deck Support Joint Interface Detail**: See AppendixJJ for details.
94. **Typical Deck Support Joint Interface Detail**: See AppendixKK for details.
95. **Typical Deck Support Joint Interface Detail**: See AppendixLL for details.
96. **Typical Deck Support Joint Interface Detail**: See AppendixMM for details.
97. **Typical Deck Support Joint Interface Detail**: See AppendixNN for details.
98. **Typical Deck Support Joint Interface Detail**: See AppendixOO for details.
99. **Typical Deck Support Joint Interface Detail**: See AppendixPP for details.
100. **Typical Deck Support Joint Interface Detail**: See AppendixQQ for details.
101. **Typical Deck Support Joint Interface Detail**: See AppendixRR for details.
102. **Typical Deck Support Joint Interface Detail**: See AppendixSS for details.
103. **Typical Deck Support Joint Interface Detail**: See AppendixTT for details.
104. **Typical Deck Support Joint Interface Detail**: See AppendixUU for details.
105. **Typical Deck Support Joint Interface Detail**: See AppendixVV for details.
106. **Typical Deck Support Joint Interface Detail**: See AppendixWW for details.
107. **Typical Deck Support Joint Interface Detail**: See AppendixXX for details.
108. **Typical Deck Support Joint Interface Detail**: See AppendixYY for details.
109. **Typical Deck Support Joint Interface Detail**: See AppendixZZ for details.
110. **Typical Deck Support Joint Interface Detail**: See AppendixAA for details.
111. **Typical Deck Support Joint Interface Detail**: See AppendixBB for details.
112. **Typical Deck Support Joint Interface Detail**: See AppendixCC for details.
113. **Typical Deck Support Joint Interface Detail**: See AppendixDD for details.
114. **Typical Deck Support Joint Interface Detail**: See AppendixEE for details.
115. **Typical Deck Support Joint Interface Detail**: See AppendixFF for details.
116. **Typical Deck Support Joint Interface Detail**: See AppendixGG for details.
117. **Typical Deck Support Joint Interface Detail**: See AppendixHH for details.
118. **Typical Deck Support Joint Interface Detail**: See AppendixII for details.
119. **Typical Deck Support Joint Interface Detail**: See AppendixJJ for details.
120. **Typical Deck Support Joint Interface Detail**: See AppendixKK for details.
121. **Typical Deck Support Joint Interface Detail**: See AppendixLL for details.
122. **Typical Deck Support Joint Interface Detail**: See AppendixMM for details.
123. **Typical Deck Support Joint Interface Detail**: See AppendixNN for details.
124. **Typical Deck Support Joint Interface Detail**: See AppendixOO for details.
125. **Typical Deck Support Joint Interface Detail**: See AppendixPP for details.
126. **Typical Deck Support Joint Interface Detail**: See AppendixQQ for details.
127. **Typical Deck Support Joint Interface Detail**: See AppendixRR for details.
128. **Typical Deck Support Joint Interface Detail**: See AppendixSS for details.
129. **Typical Deck Support Joint Interface Detail**: See AppendixTT for details.
130. **Typical Deck Support Joint Interface Detail**: See AppendixUU for details.
131. **Typical Deck Support Joint Interface Detail**: See AppendixVV for details.
TABLE C.21 MINIMUM CONCRETE STRENGTH SCHEDULE

<table>
<thead>
<tr>
<th>Location</th>
<th>Minimum Concrete Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Footings</td>
<td>8,000 psi</td>
</tr>
<tr>
<td>Slabs</td>
<td>3,000 psi</td>
</tr>
<tr>
<td>Beams</td>
<td>3,000 psi</td>
</tr>
<tr>
<td>Columns</td>
<td>4,000 psi</td>
</tr>
<tr>
<td>Slabs</td>
<td>3,000 psi</td>
</tr>
<tr>
<td>Beams</td>
<td>3,000 psi</td>
</tr>
<tr>
<td>Columns</td>
<td>4,000 psi</td>
</tr>
</tbody>
</table>

TABLE C.3.1 CLASS "F" TENSION LAP Splice Length (3 x Lc)

<table>
<thead>
<tr>
<th>Location</th>
<th>Splice Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slabs</td>
<td>3,000 psi</td>
</tr>
<tr>
<td>Beams</td>
<td>3,000 psi</td>
</tr>
<tr>
<td>Columns</td>
<td>4,000 psi</td>
</tr>
</tbody>
</table>

GENERAL NOTES:

1. SLAB AFTER PIPING IS INSTALLED.
2. STRUCTURAL CONCRETE (ACI 318-05).
3. THE STRUCTURAL DRAWINGS SHALL BE USED IN CONJUNCTION WITH THE SPECIFICATIONS, THE ARCHITECTURAL AND MECHANICAL, ELECTRICAL AND PLUMBING DRAWINGS.
4. UNLESS OTHERWISE NOTED, ALL CONCRETE SHALL BE AS SHOWN ON PLANS AND SCHEDULE (SEE C.2).
5. PROVIDE SHRINKAGE AND TEMPERATURE REINFORCEMENT FOR ALL STRUCTURAL SLABS WHERE NECESSARY.
6. ALL LENGTHS OF HOOKED BARS INDICATED ON DRAWINGS DO NOT INCLUDE THE PROVISION FOR ANCHOR BOLTS, HANGERS, MASONRY ANCHORS, ETC., REQUIRED BY OTHER TRADES AND SHALL BE ADJUSTED AS NEEDED.
7. PROVISION FOR HOOKED BARS IN TENSION TO PROVIDE RESTRAINT FOR THE VARIOUS TRADES.
8. PROVIDE SHADOWS AND TEMPERATURE REINFORCEMENT FOR ALL STRUCTURAL SLABS IN ACCORDANCE WITH THE REQUIREMENTS OF ACI 318 (CHAPTER 12), TABLE C.3.1, AND DRAWING SHEET TITLE: MANGINO CONSTRUCTION.
9. PROVIDE ANCHOR BOLTS, HANGERS, MASONRY ANCHORS, ETC., REQUIRED BY OTHER TRADES AND SHALL BE ADJUSTED AS NEEDED.
10. PROVIDE SHADOWS AND TEMPERATURE REINFORCEMENT FOR ALL STRUCTURAL SLABS IN ACCORDANCE WITH THE REQUIREMENTS OF ACI 318 (CHAPTER 12), TABLE C.3.1, AND DRAWING SHEET TITLE: MANGINO CONSTRUCTION.
11. PROVIDE SHADOWS AND TEMPERATURE REINFORCEMENT FOR ALL STRUCTURAL SLABS WHERE NECESSARY.
12. ALL LENGTHS OF HOOKED BARS INDICATED ON DRAWINGS DO NOT INCLUDE THE PROVISION FOR ANCHOR BOLTS, HANGERS, MASONRY ANCHORS, ETC., REQUIRED BY OTHER TRADES AND SHALL BE ADJUSTED AS NEEDED.
13. PROVIDE SHADOWS AND TEMPERATURE REINFORCEMENT FOR ALL STRUCTURAL SLABS IN ACCORDANCE WITH THE REQUIREMENTS OF ACI 318 (CHAPTER 12), TABLE C.3.1, AND DRAWING SHEET TITLE: MANGINO CONSTRUCTION.
14. PROVIDE SHADOWS AND TEMPERATURE REINFORCEMENT FOR ALL STRUCTURAL SLABS WHERE NECESSARY.
15. PROVIDE SHADOWS AND TEMPERATURE REINFORCEMENT FOR ALL STRUCTURAL SLABS IN ACCORDANCE WITH THE REQUIREMENTS OF ACI 318 (CHAPTER 12), TABLE C.3.1, AND DRAWING SHEET TITLE: MANGINO CONSTRUCTION.
16. PROVIDE SHADOWS AND TEMPERATURE REINFORCEMENT FOR ALL STRUCTURAL SLABS WHERE NECESSARY.
ABBREVIATIONS
SD SHOP DRAWINGS - STRUCTURAL
SEISMIC DESIGN DATA
DETAILED FOR SEISMIC RESISTANCE. THE NEW CONSTRUCTION HAS BEEN DESIGNED TO RESIST THE FULL SEISMIC FORCE IN ACCORDANCE WITH NEW YORK CITY BUILDING CODE 2014, CHAPTER 16 REQUIREMENTS. THE LOADS SPECIFIED ON S-722 OCCUPANCY CATEGORY MAPPED SPECTRAL RESPONSE ACCELERATION AT 1 SECOND PERIODS MANAGER SHALL SUBMIT A SHOP DRAWING SUBMITTAL SCHEDULE FOR THE APPROVAL OF THE EXISTING WALLS. THIS IS TO MAINTAIN THE SURFACE AREA AT THE LOT LINE AND NOT S.4 ALL CONNECTIONS NOT DETAILED ON THE DRAWINGS SHALL CONFORM TO THOSE SHOWN IN THE AISC 2 ACCORDANCE WITH THE SPECIFICATIONS FOR STRUCTURAL JOINTS USING ASTM F3125 GRADE A325 (OR F1852 FOR TC BOLT) OR A490 (OR F2280 FOR TC BOLT) APPROVED BY THE RESEARCH COUNCIL ON RIVETED AND BOLTED JOINTS. ALL BOLTS SHALL BE PRE-TENSIONED BOLTS, UNLESS OTHERWISE SPECIFICALLY S.7A UNLESS OTHERWISE SHOWN IN TYPICAL DETAILS, COLUMN SPLICES SHALL BE 4'-0" ABOVE FINISHED PLAN, SECTION, ELEVATION (#) INDICATES NUMBER OF SHEAR STUDS ON BEAM OR DETAIL IDENTIFICATION <#> INDICATES THE BEAM ELEVATION WITH RESPECT TO THE SURFACE LEVEL OF THE UNDERSIDE OF THE METAL DECK. FUNDAMENTAL PERIOD (FIRST MODE) T = 2.166 SEC. DESIGN BASE SHEAR W = 104,863 KIPS ANALYSIS PROCEDURE USED FORCE ANALYSIS FINAL "APPROVAL WITH NO EXCEPTIONS" HAS BEEN GRANTED BY THE ARCHITECT. JOB STANDARDS SHOWN ON SHOP DRAWINGS. THESE CALCULATIONS SHALL BE SIGNED AND SEALED BY THE PROFESSIONAL ENGINEER SUPERVISING THE PREPARATION OF SHOP DRAWINGS. THE USE OF LEVELING PLATES UNDER COLUMN BASE PLATES WILL NOT BE PERMITTED. PROVIDE LOOSE LINTELS OVER ALL OPENINGS IN EXTERIOR AND INTERIOR MASONRY WALLS AS PER TABLE S.19.1 (ON THIS DRAWING), EXCEPT WHERE OTHERWISE DETAILED ON THE DRAWINGS. ALL SHEAR CONNECTIONS WHERE NO ECCENTRICITIES/MOMENT ARE TAKEN BY CONNECTIONS WITH SHIMS/FILLERS IN EXCESS OF 1/4" THICK WHERE THE SHIM/FILLER IS NOT DESIGNED TO TRANSFER THE FORCE BACK INTO THE PRIMARY CONNECTION ELEMENTS FOR, FABRICATE AND ERECT BEAMS WITH NATURAL CAMBER UP. PROVIDE LOOSE LINTELS OVER ALL OPENINGS IN EXTERIOR AND INTERIOR MASONRY WALLS AS PER TABLE S.19.1 (ON THIS DRAWING), EXCEPT WHERE OTHERWISE DETAILED ON THE DRAWINGS.
29. DUCT LINES MUST BE MAINTAINED AND PROTECTED DURING CONSTRUCTION. ANY INTERFERENCE WITH DUCT LINES
PERIOD OF PERFORMANCE UNDER THIS AGREEMENT AS HEREIN SET FORTH BELOW:

3. IF TOP OF ROCK IS FOUND BELOW SUBWAY STRUCTURE, THE SUBWAY STRUCTURE MUST BE UNDERPINNED IN
THICKNESS.

4. EVIDENCE OF RAILROAD PROTECTIVE LIABILITY INSURANCE, MUST BE PROVIDED IN THE FORM OF A POLICY. A DETAILEDINSURANCE BINDER ... FORM) WILL BE ACCEPTED PENDING ISSUANCE OF THE POLICY, WHICH MUSTBE PROVIDED WITHIN 30 DAYS FROM THE EFFECTIVE DATE.

5. INDEPENDENT CONTRACTORS;

6. MR. ASHOK PATEL, DIRECTOR, OFFICE OF STATION PROGRA MS; TELEPHONE 718/694-1695 OF THE DIVISION OF STATIONS

7. THE LIMIT OF LIABILITY SHALL BE NOT LESS THAN $2,000,000 PER OCCURRENCE, SUBJECT TO A $6,000,000 ANNUAL

8. ALL PILES ARE TO BE PLACED WITHIN A PREAUGERED CASED HOLE TO THE INFLUENCE LINE. THE CASING SHALL BE
CLEANED WITHOUT DISTURBING THE SOIL OUTSIDE THE CASING AND THE PILE TO BE PLACED WITHIN THE CASING FORINSTALLATION. THE PILES MAY THEN BE DRIVEN BEYOND THE INFLUENCE LINE WITHIN THE CASING.

9. TEMPORARY SHORING MAY BE PLACED IN DIRECT CONTACT WITH NYCT STRUCTURES ONLY IF THE NYCT STRUCTURE IS
NORMAL WARPS OR SETTLEMENTS. SUCH WORK WILL BE PERMITTED ONLY TO REMOVE BOULDERS. IT WILL NOT BE PERMITTED AS A MATTER OF COURSE TO ADVANCE THE HOLE. THEIR USE TO CONSTRUCT ROCK SOCKETS WILL NOT BE ALLOWED WITHIN 5 FEET OF THE NYCT STRUCTURE. THE USE OF

10. DYNAMIC COMPACTING EQUIPMENT SUCH AS DROP HAMMERS OR DRILLING.THE THRESHOLD MAXIMUM PARTICLE VELOCITY ABOVE AMBIENT CAUSED BY THE DRIVING OR DRILLING WILL BE 0.5 INCH PER

11. VIBRATORY HAMMERS WILL NOT BE PERMITTED WITHIN 75 FEET OF SUBWAY STRUCTURES. HOERAMS WILL NOT BE

12. THERE SHALL BE NO MACHINE EXCAVATION WITHIN 3 FEET OF NYCT STRUCTURES, POWER DUCT LINES, OR ANY OTHER

13. IN CARRYING OUT THE WORK, CONTRACTOR MAY NOT DISRUPT OR DISTURB THE PERFORMANCE OF THE NYCT SUBWAY SYSTEM OR ITS FACILITIES.

14. A PRELIMINARY SURVEY OF EXISTING CONDITIONS INCLUDING BOUNDARIES OF ANY STRUCTURES, PAINT, MILITARY, AND GAS LINES, WATER AND SEWER LINES MUST BE COMPLETED IN ACCORDANCE WITH THE ORDINANCES, RULES AND REGULATIONS OF THE CITY OF NEW YORK.

15. ALL SITE CONDITIONS TO BE DETERMINED OR EXAMINED BY A LICENSED PROFESSIONAL LAND SURVEYOR PRIOR TO THE BEGINNING OF THE WORK.

16. INFLUENCE LINE OF THE EXISTING SUBWAY STRUCTURE MUST BE MAINTAINED DURING CONSTRUCTION.
2ND FLOOR COORDINATION PLAN

PLANS ARE FOR COORDINATES ONLY.
FOR EXTENT OF EXISTING AND NEW SEE FRAMING PLANS
3RD FLOOR COORDINATION PLAN

PLAN ARE FOR COORDINATES ONLY. FOR EXTENT OF EXISTING AND NEW SEE FRAMING PLANS
6TH FLOOR COORDINATION PLAN

PLANS ARE FOR COORDINATES ONLY.
FOR EXTENT OF EXISTING AND NEW SEE FRAMING PLANS.
PLAN ARE FOR COORDINATES ONLY, FOR EXTENT OF EXISTING AND NEW SEE FRAMING PLANS
APPROVED
Under Directive 2 of 1975
Date:
Roxane Tsirigotis, RA
04/25/2018
46TH FLOOR COORDINATION PLAN

PLANS ARE FOR COORDINATES ONLY, FOR EXTENT OF EXISTING AND NEW SEE FRAMING PLANS.
CONCEPTUAL DEMOLITION SCOPE - EXISTING THEATER SECOND FLOOR FRAMING PLAN

APPROVED
Under Directive 2 of 1975
Date: 04/25/2018
Roxane Tsirigotis, RA

04/25/2018
CONCEPTUAL DEMOLITION SCOPE - EXISTING THEATER THIRD FLOOR AND BALCONY FRAMING PLAN
CONCEPTUAL DEMOLITION SCOPE - EXISTING THEATER FOURTH FLOOR FRAMING PLAN

Roxane Tsirigotis, RA
04/25/2018

APPROVED
Under Directive 2 of 1975
Date:
Roxane Tsirigotis, RA
04/25/2018
CONCEPTUAL DEMOLITION SCOPE - EXISTING THEATER SIXTH FLOOR FRAMING PLAN
CONCEPTUAL DEMOLITION SCOPE - EXISTING THEATER SEVENTH FLOOR FRAMING PLAN

APPROVED
Under Directive 2 of 1975
Date:
Roxane Tsirigotis, RA
04/25/2018

04/25/2018
EXISTING THEATER SECOND FLOOR FRAMING PLAN

APPROVED
Under Directive 2 of 1975
Date:
Roxane Tsirigotis, RA
04/25/2018
EXISTING FIFTH FLOOR FRAMING PLAN

DATE: April 25, 2018

APPROVED
Under Directive 2 of 1975

Roxane Tsirigotis, RA
04/25/2018