The structural system of the tower uses mainly reinforced concrete elements with a) structural occupancy/risk category II (Section 1613.5.6, NYCBC 2014). The lateral-load resisting system for the tower will consist of a reinforced concrete core wall system supplemented by buttress walls from the core out to the perimeter.

ii. Superimposed dead load

- 50 PSF

35 Hudson Yards
New York, NY
1 OVERALL GRID LAYOUT

2 LEVEL 31 AND ABOVE FACETED SLAB EDGE GEOMETRY DEFINITION

3 DESIGN REACTIONS ON PLATFORM STRUCTURE

A TERRACE CHAMFER GEOMETRY

B TYPICAL CHAMFER GEOMETRY

C NO CHAMFER GEOMETRY
CONCRETE MATERIALS SCHEDULE

<table>
<thead>
<tr>
<th>DRAWING</th>
<th>TITLE</th>
<th>ISSUE DATE</th>
<th>ISSUE FOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-004</td>
<td>Structural Concrete Notes</td>
<td>25 Nov 2014</td>
<td>Schematic Design</td>
</tr>
<tr>
<td>S-004</td>
<td>Structural Concrete Notes</td>
<td>15 Jan 2015</td>
<td>TO DOB</td>
</tr>
<tr>
<td>S-004</td>
<td>Structural Concrete Notes</td>
<td>22 Apr 2015</td>
<td>Design Development</td>
</tr>
<tr>
<td>S-004</td>
<td>Structural Concrete Notes</td>
<td>15 Jul 2015</td>
<td>Concrete/Steel Bid Add. 9</td>
</tr>
<tr>
<td>S-004</td>
<td>Structural Concrete Notes</td>
<td>07 Dec 2015</td>
<td>Steel Addendum No. 3</td>
</tr>
<tr>
<td>S-004</td>
<td>Structural Concrete Notes</td>
<td>04 Mar 2016</td>
<td>Concrete/Steel Add. 9</td>
</tr>
<tr>
<td>S-004</td>
<td>Structural Concrete Notes</td>
<td>13 May 2016</td>
<td>Construction Documents</td>
</tr>
<tr>
<td>S-004</td>
<td>Structural Concrete Notes</td>
<td>20 Jan 2017</td>
<td>TO DOB</td>
</tr>
<tr>
<td>S-004</td>
<td>Structural Concrete Notes</td>
<td>16 Dec 2016</td>
<td>Bulletin No. 5</td>
</tr>
</tbody>
</table>

REINFORCED CONCRETE NOTES

- For a more detailed description of the reinforced concrete, see the material specifications and supplementary requirements.
- The concrete must be specified in the contract documents.
- Special considerations include the use of precast concrete elements.
- Special requirements are noted in the contract documents.

CONCRETE MATERIALS SCHEDULE

<table>
<thead>
<tr>
<th>DRAWING</th>
<th>TITLE</th>
<th>ISSUE DATE</th>
<th>ISSUE FOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-004</td>
<td>Structural Concrete Notes</td>
<td>25 Nov 2014</td>
<td>Schematic Design</td>
</tr>
<tr>
<td>S-004</td>
<td>Structural Concrete Notes</td>
<td>15 Jan 2015</td>
<td>TO DOB</td>
</tr>
<tr>
<td>S-004</td>
<td>Structural Concrete Notes</td>
<td>22 Apr 2015</td>
<td>Design Development</td>
</tr>
<tr>
<td>S-004</td>
<td>Structural Concrete Notes</td>
<td>15 Jul 2015</td>
<td>Concrete/Steel Bid Add. 9</td>
</tr>
<tr>
<td>S-004</td>
<td>Structural Concrete Notes</td>
<td>07 Dec 2015</td>
<td>Steel Addendum No. 3</td>
</tr>
<tr>
<td>S-004</td>
<td>Structural Concrete Notes</td>
<td>04 Mar 2016</td>
<td>Concrete/Steel Add. 9</td>
</tr>
<tr>
<td>S-004</td>
<td>Structural Concrete Notes</td>
<td>13 May 2016</td>
<td>Construction Documents</td>
</tr>
<tr>
<td>S-004</td>
<td>Structural Concrete Notes</td>
<td>20 Jan 2017</td>
<td>TO DOB</td>
</tr>
<tr>
<td>S-004</td>
<td>Structural Concrete Notes</td>
<td>16 Dec 2016</td>
<td>Bulletin No. 5</td>
</tr>
</tbody>
</table>

REINFORCED CONCRETE SPECIAL REQUIREMENTS

- For a more detailed description of the reinforced concrete, see the material specifications and supplementary requirements.
- The concrete must be specified in the contract documents.
- Special considerations include the use of precast concrete elements.
- Special requirements are noted in the contract documents.
<table>
<thead>
<tr>
<th>Page</th>
<th>Structural Steel Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>- Sampling shows light to average accross all sheets of steel. Additional details are available in the SSS, 02/17/17.</td>
</tr>
</tbody>
</table>
SPECIAL WALL VERTICAL CONSTRUCTION JOINT, SEE 1/S-491

LEVEL 1 - 5 SUGGESTED WALL POUR SEQUENCE

LEVEL 7 MEZZ SUGGESTED WALL POUR SEQUENCE

LEVEL 16 - 29 SUGGESTED WALL POUR SEQUENCE

LEVEL 30 MECH SUGGESTED WALL POUR SEQUENCE

LEVEL 41 - 50 SUGGESTED WALL POUR SEQUENCE

LEVEL 51 - 60 SUGGESTED WALL POUR SEQUENCE

LEVEL 1 - 6 SLAB CONSTRUCTION JOINT LOCATIONS

LEVEL 7 MECH SLAB CONSTRUCTION JOINT LOCATIONS

LEVEL 16 - 29, 31 - 40 SLAB CONSTRUCTION JOINT LOCATIONS

NOTE:
EACH OF THE HATCHED AREA MUST BE CAST IN A SINGLE CONTINUOUS POUR. THE LENGTH OF A SINGLE POUR NOT TO EXCEED 60'-0"
1. REFER TO FLOOR PLANS FOR T/SLAB ELEVATIONS.
2. REFER TO SHEET S-004 & S-004A FOR STRUCTURAL CONCRETE NOTES.
3. REFER TO SHEET S-005 FOR STRUCTURAL STEEL NOTES.
4. REFER TO SHEETS S-010 TO S-013 FOR LOADING DIAGRAMS.
5. REFER TO SHEETS S-301 TO S-322 FOR SHEAR WALL REINFORCEMENT.
6. REFER TO SHEETS S-351 TO S-391 FOR WALL ELEVATIONS.
7. REFER TO SHEET S-401 TO S-405 FOR RC WALL DETAILS.
8. REFER TO SHEET S-411 TO S-413 FOR RC SHEAR WALL LINK BEAM SCHEDULE AND DETAILS.
9. REFER TO SHEET S-421 TO S-434 FOR COLUMN SCHEDULES AND DETAILS.
10. REFER TO SHEET S-441 TO S-455 FOR RC BEAM AND SLAB DETAILS.
11. LEVEL DESIGNATIONS OF CORE WALL REINFORCEMENT FROM T/SLAB TO T/SLAB.

WALL CONCRETE STRENGTH

f'c = 14 ksi
1. REFER TO FLOOR PLANS FOR T/SLAB ELEVATIONS.
2. REFER TO SHEET S-004 & S-004A FOR STRUCTURAL CONCRETE NOTES.
3. REFER TO SHEET S-005 FOR STRUCTURAL STEEL NOTES.
4. REFER TO SHEETS S-010 TO S-013 FOR LOADING DIAGRAMS.
5. REFER TO SHEETS S-301 TO S-322 FOR SHEAR WALL REINFORCEMENT.
6. REFER TO SHEETS S-351 TO S-391 FOR WALL ELEVATIONS.
7. REFER TO SHEET S-401 TO S-405 FOR RC WALL DETAILS.
8. REFER TO SHEET S-411 TO S-413 FOR RC SHEAR WALL LINK BEAM SCHEDULE AND DETAILS.
9. REFER TO SHEET S-421 TO S-434 FOR COLUMN SCHEDULES AND DETAILS.
10. REFER TO SHEET S-441 TO S-455 FOR RC BEAM AND SLAB DETAILS.
11. LEVEL DESIGNATIONS OF CORE WALL REINFORCEMENT FROM T/SLAB TO T/SLAB.

CONCRETE
f'c = 14 ksi

LEVEL 3 & 3M CORE WALL REINF. PLAN
SEE S-421 FOR HAMMERHEAD REINF., TYP.

V: #9 @ 12" H: #6 @ 6"

V: 14 #11T: #4 @ 6"

V: 56 #18T: #5 @ 4"

V: 96 #11T: #5 @ 6"

V: #6 @ 6" H: #6 @ 6"

V: #6 @ 12" H: #6 @ 12"

V: #6 @ 6" H: #9 @ 6"

V: #9 @ 6" H: #11 @ 6"

V: 54 #18T: #5 @ 6"

1'-6" 2'-0" 2'-6" 3'-8" 5'-3" 5'-6" 6'-0"
CORE WALL REINF. PLAN LEVEL 6

NOT TO SCALE

1. REFER TO FLOOR PLANS FOR T/SLAB ELEVATIONS.
2. REFER TO SHEET S-004 & S-004A FOR STRUCTURAL CONCRETE NOTES.
3. REFER TO SHEET S-005 FOR STRUCTURAL STEEL NOTES.
4. REFER TO SHEETS S-010 TO S-013 FOR LOADING DIAGRAMS.
5. REFER TO SHEETS S-301 TO S-322 FOR SHEAR WALL REINFORCEMENT.
6. REFER TO SHEETS S-351 TO S-391 FOR WALL ELEVATIONS.
7. REFER TO SHEET S-401 TO S-405 FOR RC WALL DETAILS.
8. REFER TO SHEET S-411 TO S-413 FOR RC SHEAR WALL LINK BEAM SCHEDULE AND DETAILS.
9. REFER TO SHEET S-421 TO S-434 FOR COLUMN SCHEDULES AND DETAILS.
10. REFER TO SHEET S-441 TO S-455 FOR RC BEAM AND SLAB DETAILS.
11. LEVEL DESIGNATIONS OF CORE WALL REINFORCEMENT FROM T/SLAB TO T/SLAB.

WALL

CONCRETE

STRENGTH

f'c = 14 ksi

V: #9 @ 12" H: #6 @ 6"
V: 56 #18 T: #5 @ 6"
V: 6'-0"
V: 5'-6" 5'-6"
2 GROUPS OF 8 #20

H: #6 @ 6" V: #6 @ 12" H: #6 @ 12"
V: #6 @ 6" H: #6 @ 12"
V: 54 #18 T: #5 @ 6"
V: 52 #11 T: #4 @ 6"
V: 14 #11 T: #5 @ 4"
V: 28 #11 T: #5 @ 6"
V: 14 #11 T: #4 @ 6"
V: 8 #11 T: #4 @ 6"
V: 6 #11 T: #4 @ 6"
V: 6 #11 T: #4 @ 6"
V: 32 #11 T: #5 @ 6"
V: 52 #11 T: #5 @ 6"
V: 56 #18 T: #5 @ 6"
V: #9 @ 12" H: #6 @ 6"
V: 66 #11 T: #5 @ 6"
6'-0"
5'-3"
5'-6"
2'-0"
2'-6"
1'-6"
1'-0"
11TH AVENUE
33RD STREET

© Copyright Skidmore, Owings & Merrill LLP
CORE WALL REINF. PLAN LEVEL 14

S-309.01

Related Companies
60 Columbus Circle
New York, NY 10023

SOM
Skidmore, Owings & Merrill LLP
14 Wall Street, New York, NY 10005

Jencks & Huntington, Inc.
1251 Avenue of the Americas, Suite 920
New York, NY 10020

Longman Lindsey
1401 Broadway, Suite 508
New York, NY 10018

Ezenia, Baum & Bolles
80 Pine Street
New York, NY 10005

Philip Habib & Associates
102 Madison Avenue, 11th Floor
New York, NY 10016

Stonehill & Taylor Architects, PC
31 W 27th Street, 5th Floor
New York, NY 10001

Ismael Leyva Architects
48 West 37th Street
New York, NY 10018

ACOUSTICAL ENGINEERING
Longman Lindsey
1401 Broadway, Suite 508
New York, NY 10018

HOTEL DESIGN ARCHITECT
Stonehill & Taylor Architects, PC
31 W 27th Street, 5th Floor
New York, NY 10001

RESIDENTIAL DESIGN ARCHITECT
Ismael Leyva Architects
48 West 37th Street
New York, NY 10018

Related Companies
60 Columbus Circle
New York, NY 10023

MEP ENGINEER
Jencks & Huntington, Inc.
1251 Avenue of the Americas, Suite 920
New York, NY 10020

CIVIL ENGINEER
Philip Habib & Associates
102 Madison Avenue, 11th Floor
New York, NY 10016

FACADE MAINTENANCE
Entek Engineering, LLC
166 Ames Street
Hackensack, NJ 07601

VERTICAL TRANSPORTATION
Jencks & Huntington, Inc.
1251 Avenue of the Americas, Suite 920
New York, NY 10020

ACOUSTICAL ENGINEERING
Longman Lindsey
1401 Broadway, Suite 508
New York, NY 10018

HOTEL DESIGN ARCHITECT
Stonehill & Taylor Architects, PC
31 W 27th Street, 5th Floor
New York, NY 10001

RESIDENTIAL DESIGN ARCHITECT
Ismael Leyva Architects
48 West 37th Street
New York, NY 10018

Related Companies
60 Columbus Circle
New York, NY 10023

SOM
Skidmore, Owings & Merrill LLP
14 Wall Street, New York, NY 10005

Jencks & Huntington, Inc.
1251 Avenue of the Americas, Suite 920
New York, NY 10020

Longman Lindsey
1401 Broadway, Suite 508
New York, NY 10018

Ezenia, Baum & Bolles
80 Pine Street
New York, NY 10005

Philip Habib & Associates
102 Madison Avenue, 11th Floor
New York, NY 10016

Stonehill & Taylor Architects, PC
31 W 27th Street, 5th Floor
New York, NY 10001

Ismael Leyva Architects
48 West 37th Street
New York, NY 10018
APPROVED
Under Directive 2 of 1975
Date:
Damian Titus
AMENDED APPLICATION
02/17/2017
BELT WALL KEY PLAN - LEVEL 7 MEZZ

1. **BELT WALL LEVEL 7 - NORTH**

2. **BELT WALL LEVEL 7 - WEST**

3. **BELT WALL LEVEL 7 - SOUTH**

4. **BELT WALL LEVEL 7 - EAST**

NOTES:

1. PROVIDE TEMPORARY TRUSS AS REQUIRED TO INSTALL BELT WALL ABOVE. TEMPORARY TRUSS MAY BE REMOVED AFTER ACHIEVING MINIMUM 80% OF CONCRETE STRENGTH, BUT NOT LESS THAN 28 DAYS AGE OF CONCRETE. VERTICAL SHORING CLOSE TO COLUMN CAN BE UTILIZED TO TRANSFER CONSTRUCTION LOADS TO COLUMNS. VERTICAL SHORING SHOULD BE PLACED AT LEAST (4) FOUR FLOORS BELOW UNTIL TEMPORARY TRUSS IS REMOVED.

PRELIMINARY CONSTRUCTION DRAWING

© Copyright Skidmore, Owings & Merrill LLP

Related Companies

60 Columbus Circle
New York, NY 10023

SOM

Skidmore, Owings & Merrill LLP

41 Wall Street, New York, NY 10005

BELT WALL LEVEL 7 - EAST

BELT WALL LEVEL 7 - SOUTH

BELT WALL LEVEL 7 - NORTH

BELT WALL LEVEL 7 - WEST

LEVEL 6

133' - 2"

LEVEL 7

151' - 4"

LEVEL 7M

167' - 4"

LEVEL 8

179' - 4"

LEVEL 8

179' - 4"
1. SMALLER BAR/SPACING TO LARGER BAR/SPACING TRANSITION

2. LARGER BAR/SPACING TO SMALLER BAR/SPACING TRANSITION

3. SMALLER BAR IN TWO LAYERS TO LARGER BAR IN ONE LAYER TRANSITION

4. SMALLER BAR TO LARGER BAR TRANSITION

OPTION 1

OPTION 2
<table>
<thead>
<tr>
<th>Dimension</th>
<th>Legend</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3'-6"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6'-5"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL 30" x 2"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL 48" x 2"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL 10"x 1 1/4"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8" x 8" x 1 1/2" x 1 1/2"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(EA. FACE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STIRRUPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAYER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: See Schedules for details of Link Beam with Embedded Steel Shapes.
COLUMN FACE OFFSET GREATER THAN 3"

1. ALTERNATE TIE HOOKS BETWEEN COLUMN CORNERS TYPICALLY.

NOTES:
- TIE BAR SPACING AS NOTED IN SCHEDULE
- VERTICAL BARS
 - LOWEST BEND IN OFFSET
 - 3 TIES AT 2" O.C. BELOW

S/2 MAXIMUM FROM VERTICAL BAR OFFSET THRU JOINT ZONE

LOWEST BARS IN SLAB
- VERTICAL BARS
 - LOWEST BEND IN OFFSET
- 1 1/2" CLEAR

S/2 fracking from the column
- Provide 90 degree standard hook for ties (typical)
- As noted in column schedule
- Development length (or tension development length)
- Compression lap as noted
- Compression lap shown in schedule
- Lap as noted
- Max. bar 1:6 slope offset vertical or drop panel

S/2
- Column tie
- Column development length
- Tension length
- See walking column elevation
- Added horizontal bars in slab
- See walking column elevation on sheet S-395 & S-396

S/2
- Maximum from vertical bar offset thru joint zone

OTHER
- 11TH AVENUE
- 33RD STREET
- OWNER
- ARCHITECT / STRUCTURAL ENGINEER
- Skidmore, Owings & Merrill LLP
- 14 Wall Street, New York, NY 10005

MEP ENGINEER
- Jaros, Baum & Bolles
- 80 Pine Street
- New York, NY 10005

CIVIL ENGINEER
- Philip Habib & Associates
- 102 Madison Avenue, 11th Floor
- New York, NY 10016

FACADE MAINTENANCE
- Entek Engineering, LLC
- 166 Ames Street
- Hackensack, NJ 07601

VERTICAL TRANSPORTATION
- Jenkins & Huntington, Inc.
- 1251 Avenue of the Americas, Suite 920
- New York, NY 10020

ACOUSTICAL ENGINEERING
- Longman Lindsey
- 1401 Broadway, Suite 508
- New York, NY 10018

HOTEL DESIGN ARCHITECT
- Stonehill & Taylor Architects, PC
- 31 W 27th Street, 5th Floor
- New York, NY 10001

RESIDENTIAL DESIGN ARCHITECT
- Ismael Leyva Architects
- 48 West 37th Street
- New York, NY 10018

Related Companies
- Related Companies
- 60 Columbus Circle
- New York, NY 10023

SOM
- Skidmore, Owings & Merrill LLP
- 14 Wall Street, New York, NY 10005

Jens, Bau & Boeles
- Jens, Bau & Boeles
- 80 Pine Street
- New York, NY 10005

Philip Habib & Associates
- Philip Habib & Associates
- 102 Madison Avenue, 11th Floor
- New York, NY 10016

Emist Engineering, LLC
- Emist Engineering, LLC
- 760 Avenue of the Americas, Suite 508
- New York, NY 10018

Jenkins & Huntington, Inc.
- Jenkins & Huntington, Inc.
- 1251 Avenue of the Americas, Suite 920
- New York, NY 10020

Longman Lindsey
- Longman Lindsey
- 1401 Broadway, Suite 508
- New York, NY 10018

Stonehill & Taylor Architects, PC
- Stonehill & Taylor Architects, PC
- 1251 Avenue of the Americas, Suite 920
- New York, NY 10020

Jared Layne Architects
- Jared Layne Architects
- 48 West 37th Street
- New York, NY 10018

RC GRAVITY COLUMN DETAILS
- RC GRAVITY COLUMN DETAILS

PRELIMINAR
- CONSTRUCTION
- ISSUE
- 35 HUDSON
- YARDS
- New York, NY
LEVEL 1 DETAIL 1: $f_y = 50$ ksi

LOCATION DETAIL 2

DETAIL 2A

DETAIL 3

DETAIL 3A

DETAIL 4A

DETAIL 4A

DETAIL 6A

DETAIL 4A

DETAIL 4A

DETAIL 4A

DETAIL 4A

DETAIL 6A

DETAIL 6A

DETAIL 4A

DETAIL 4A

DETAIL 4A

DETAIL 6A

DETAIL 6A

DETAIL 4A

DET
C BEAM SPLICE - SEE PLAN

DIFFERENT BEAM SIZES ARE USED IN DIFFERENT AREAS WITHIN THE STRUCTURE. SEE PLAN FOR DETAILS.

NOTE: ESSENTIAL FOR BEAM TO COLUMN CONNECTION, THE BEAM MUST BE PREFFORMED AND COLUMN MUST BE PREPARED FOR WELDING TO ENSURE A STRONG CONNECTION.

NOTE: COLUMN Ans BEAM MUST BE PREPARED FOR WELDING TO ENSURE A STRONG CONNECTION.

NOTE: ESSENTIAL FOR COLUMN TO BEAM CONNECTION.

NOTE: ESSENTIAL FOR BEAM TO COLUMN CONNECTION.

NOTE: ESSENTIAL FOR COLUMN TO BEAM CONNECTION.
GENERAL NOTE:
THESE DETAILS APPLY TO STRUCTURAL MASONRY ONLY.
STRUCTURAL MASONRY IS THE ONLY MASONRY SHOWN ON
STRUCTURAL DRAWINGS. REFER TO ARCHITECTURAL DRAWINGS
FOR LOCATIONS AND DETAILS OF NON-STRUCTURAL MASONRY.