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The world’s most extensive case of cyberespionage, 

including attacks on US government and UN computers, 

was reported at the 2011 Black Hat conference by security 

firm McAfee. Concluding five years of investigation, McAfee 

analysts were “surprised by the enormous diversity of the 

victim organizations and were taken aback by the audacity 

of the perpetrators.” Wired magazine recently broke a story 

revealing that “a computer virus has infected the cockpits of 

America’s Predator and Reaper drones, logging pilots’ every 

keystroke as they remotely fly missions over Afghanistan 

and other war zones.” These are but two examples of what 

have become almost routine reports of failures in system 

security. Increasingly, these problems directly affect us in 

important parts of our daily lives. And even more alarming 

is the rapid growth in the breadth and severity of these 

spectacular failures. 

How are such widespread problems possible after 

decades of investment in computer security research and 

development? This question has gained the attention of 

increasing numbers of security professionals over the past 

several years. An emerging view is that these problems 

demonstrate that we do not yet have a good understanding 

of the fundamental science of security. Instead of fundamental 

science, most system security work has focused on developing 

ad hoc defense mechanisms and applying variations of the 

“attack and patch” strategy that emerged in the earliest days 

of computer security. Our national reliance on networked 

information systems demands that we approach security 

engineering with the same rigor that we expect in other 

engineering disciplines. We should expect designers of our 

digital infrastructure to have a well understood scientific 

foundation and advanced analytic tools comparable to those 

used in the production of other critical assets such as bridges, 

aircraft, power plants, and water purification systems.

The National Security Agency, the National Science 

Foundation (NSF), and the Intelligence Advanced Research 

Projects Activity jointly responded to this problem by 

sponsoring a workshop in November 2008 to consider 

whether a robust science of security was possible and to 

describe what it might look like. Academic and industry 

experts from a broad set of disciplines including security, 

economics, human factors, biology, and experimentation met 

with government researchers to help lay the groundwork 

for potential future initiatives. Since that meeting, a 

number of programs focused on security science have 

been initiated, along with an effort to help build a robust 

collaboration community.

This issue of The Next Wave is focused upon the important 

topic of security science. Included are articles from six of 

the experts who attended the 2008 workshop and have 

continued to work in the area of security science. Carl 

Landwehr from NSF provides a few historical examples 

of the relationship between engineering and science and 

shows how these examples might help us understand the 

evolution of cybersecurity. Adam Shostack from Microsoft 

provides another perspective on how science evolves and 

describes some steps he considers necessary to advance 

the development of cybersecurity science. Roy Maxion from 

Carnegie Mellon University (CMU) calls for greater scientific 

rigor in the way experimental methods are applied to 

cybersecurity. Dusko Pavlovic from Oxford University provides 

a unique and unexpected model for security to reason about 

what a security science might be. Anupam Datta from CMU 

and John Mitchell from Stanford University describe some of 

their joint work in one of the core problem areas for security—

how to compose secure systems from smaller building 

blocks. Alessandro Chiesa from the Massachusetts Institute of 

Technology and Eran Tromer from Tel Aviv University describe 

a novel approach based upon probabilistically checkable 

proofs to achieve trusted computing on untrusted hardware. 

Their insights may lead to new strategies for dealing with 

a host of security problems that are currently considered 

intractable, including supply chain security.

The capstone article for this issue of The Next Wave, 

contributed by Fred Schneider of Cornell University, 

methodically constructs a “blueprint” for security science. 

Building on his keynote at the 2008 workshop, Schneider 

suggests that security science should describe features and 
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relationships with predictive value rather than create defenses 

reactively responding to attacks. Schneider’s blueprint outlines 

the foundation for a security science comprising a body of laws 

that allow meaningful predictions about system security. 

Developing a robust security science will undoubtedly 

require a long-term effort that is both broad based and 

collaborative. It will also demand resources well beyond those 

available to any single organization. But even with a generally 

acknowledged need for science, the temptation will be to 

continue fighting security fires with a patchwork of targeted, 

tactical activities. Good tactics can win a battle but good 

strategy wins the war. We need to create a better strategy for 

computer security research. As we continue to struggle with 

daily battles in cyberspace, we should not forget to pursue the 

fundamental science—the fundamental strategy—that will 

help to protect us in the future.
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E
ngineers design and build artifacts—bridges, sewers, cars, airplanes, circuits, software—

for human purposes. In their quest for function and elegance, they draw on the 

knowledge of materials, forces, and relationships developed through scientific study, 

but frequently their pursuit drives them to use materials and methods that go beyond the 

available scientific basis. Before the underlying science is developed, engineers often invent 

rules of thumb and best practices that have proven useful, but may not always work. Drawing 

on historical examples from architecture and navigation, this article considers the progress of 

engineering and science in the domain of cybersecurity. 

C ar l  E .  L an dwe h r

Cybersecurity: From 

engineering to science | 

Over the past several years, public interest has in-

creased in developing a science of cybersecurity, often 

shortened to science of security [1, 2]. In modern 

culture, and certainly in the world of research, science 

is seen as having positive value. Things scientific are 

preferred to things unscientific. A scientific founda-

tion for developing artifacts is seen as a strength. If 

one invests in research and technology, one would like 

those investments to be scientifically based or at least 

to produce scientifically sound (typically meaning 

reproducible) results. 

This yearning for a sound basis that one might 

use to secure computer and communication systems 

against a wide range of threats is hardly new. Lampson 

characterized access control mechanisms in operat-

ing systems in 1971, over 40 years ago [3]. Five years 

later Harrison, Ruzzo, and Ullman analyzed the power 

of those controls formally [4]. It was 1975 when Bell 

and LaPadula [5], and Walter, et al. [6], published 

their respective state-machine based models to specify 

precisely what was intended by “secure system.” These 

efforts, preceded by the earlier Ware and Anderson 

reports [7, 8] and succeeded by numerous attempts to 

build security kernel-based systems on these foun-

dations, aimed to put an end to a perpetual cycle of 

“penetrate and patch” exercises. 

Beginning in the late 1960’s, Djikstra and others de-

veloped the view of programs as mathematical objects 

that could and should be proven correct; that is, their 

outputs should be proven to bear specified relations 

to their inputs. Proving the correctness of algorithms 

was difficult enough; proving that programs written in 

languages with informally defined semantics imple-

mented the algorithms correctly was clearly infeasible 

without automated help. 

In the late 1970’s and early 1980’s several research 

groups developed systems aimed at verifying proper-

ties of programs. Proving security properties seemed 

less difficult and therefore more feasible than proving 

general correctness, and significant research funding 

flowed into these verification systems in hopes that 

they would enable sound systems to be built. 

This turned out not to be so easy, for several 
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reasons. One reason is that capturing the mean-

ing of security precisely is difficult in itself. In 1985, 

John McLean’s System Z showed how a system might 

conform to the Bell-LaPadula model yet still lack 

the security properties its designers intended [9]. In 

the fall of 1986, Don Good, a developer of verifica-

tion systems, wrote in an email circulated widely at 

the time: “I think the time has come for a full-scale 

redevelopment of the logical foundations of computer 

security . . .” Subsequent discussions led to a workshop 

devoted to Computer Security Foundations, inaugu-

rated in 1988, that has met annually since then and led 

to the founding of The Journal of Computer Security a 

few years later.

All of this is not to say that the foundations for a 

science of cybersecurity are in place. They are not. But 

the idea of searching for them is also not new, and it’s 

clear that establishing them is a long-term effort, not 

something that a sudden infusion of funding is likely 

to achieve in a short time.

But lack of scientific foundations does not neces-

sarily mean that practical improvements in the state of 

the art cannot be made. Consider two examples from 

centuries past: 

The Duomo, the Cathedral of Santa Maria Del 

Fiore, is one of the glories of Florence. At the time 

the first stone of its foundations was laid in 1294, the 

birth of Galileo was almost 300 years in the future, 

and of Newton, 350 years. The science of mechanics 

did not really exist. Scale models were built and used 

to guide the cathedral’s construction but, at the time 

the construction began, no one knew how to build 

a dome of the planned size. Ross King tells the fas-

cinating story of the competition to build the dome, 

which still stands atop the cathedral more than 500 

years after its completion, and of the many innova-

tions embodied both in its design and in the methods 

used to build it [10]. It is a story of human innovation 

and what might today be called engineering design, 

but not one of establishing scientific understanding of 

architectural principles.

About 200 years later, with the advent of global 

shipping routes, the problem of determining the East-

West position (longitude) of ships had become such an 

urgent problem that the British Parliament authorized 

a prize of £20,000 for its solution. It was expected 

that the solution would come from developments 

in mathematics and astronomy, and so the Board of 

Longitude, set up to administer the prize competition, 

drew heavily on mathematicians and astronomers. In 

fact, as Dava Sobel engagingly relates, the problem was 

solved by the development, principally by a single self-

taught clockmaker named John Harrison, of mechani-

cal clocks that could keep consistent time even in the 

challenging shipboard environments of the day [11].

I draw two observations from of these vignettes in 

relation to the establishment of a science of cybersecu-

rity. The first is that scientific foundations frequently 

follow, rather than precede, the development of practi-

cal, deployable solutions to particular problems. I 

FIGURE 1. The Duomo, the Cathedral of Santa Maria Del Fiore, 

is a story of human innovation and what might today be called 

engineering design, but not one of establishing scientific under-

standing of architectural principles.
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claim that most of the large scale software systems on 

which society today depends have been developed in a 

fashion that is closer to the construction of the Flor-

ence cathedral or Harrison’s clocks than to the model 

of specification and proof espoused by Dijkstra and 

others. The Internet Engineering Task Force (IETF) 

motto asserting a belief in “rough consensus and 

running code” [12] reflects this fundamentally utili-

tarian approach. This observation is not intended as 

a criticism either of Dijkstra’s approach or that of the 

IETF. One simply must realize that while the search 

for the right foundations proceeds, construction 

will continue.

Second, I would observe that the establishment of 

proper scientific foundations takes time. As noted ear-

lier, Newton’s law of gravitation followed Brunelleschi 

by centuries and could just as well be traced all the 

way back to the Greek philosophers. One should not 

expect that there will be sudden breakthroughs in 

developing a scientific foundation for cybersecurity, 

and one shouldn’t expect that the quest for scientific 

foundations will have major near-term effects on the 

security of systems currently under construction. 

What would a scientific foundation for cybersecu-

rity look like? Science can come in several forms, and 

these may lead to different approaches to a science 

of cybersecurity [13]. Aristotelian science was one 

of definition and classification. Perhaps it represents 

the earliest stage of an observational science, and it is 

seen here both in attempts to provide a precise charac-

terization of what security means [14] but also in the 

taxonomies of vulnerabilities and attacks that pres-

ently plague the cyberinfrastructure. 

A Newtonian science might speak in terms of mass 

and forces, statics and dynamics. Models of compu-

tational cybersecurity based in automata theory and 

modeling access control and information flow might 

fall in this category, as well as more general theories 

of security properties and their composability, as in 

Clarkson and Schneider’s recent work on hyperprop-

erties [15]. A Darwinian science might reflect the 

pressures of competition, diversity, and selection. Such 

an orientation might draw on game theory and could 

model behaviors of populations of machines infected 

by viruses or participating in botnets, for example. 

A science drawing on the ideas of prospect theory 

and behavioral economics developed by Kahneman, 

Tversky, and others might be used to model risk 

perception and decision-making by organizations 

and individuals [16]. 

In conclusion, I would like to recall Herbert Simon’s 

distinction of science from engineering in his land-

mark book, Sciences of the Artificial [17]:

Historically and traditionally, it has been the 

task of the science disciplines to teach about 

natural things: how they are and how they work. 

It has been the task of the engineering schools 

to teach about artificial things: how to make 

artifacts that have desired properties and how 

to design.

From this perspective, Simon develops the idea 

that engineering schools should develop and teach a 

science of design. Despite the complexity of the arti-

facts humans have created, it is important to keep in 

mind that they are indeed artifacts. The community 

has the ability, if it has the will, to reshape them to bet-

ter meet its needs. A science of cybersecurity should 

help people understand how to create artifacts that 

provide desired computational functions without be-

ing vulnerable to relatively trivial attacks and without 

imposing unacceptable constraints on users or on 

system performance. 

FIGURE 2. Scientific foundations frequently follow, rather than 

precede, the development of practical, deployable solutions 

to particular problems; for example, mechanical clocks were 

invented only after determining the longitude of ships had 

become such an urgent problem that the British Parliament 

authorized a £20,000 prize for its solution. 
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The evolution of  

information security  | 
A d a m  S h o s t a c k

B
efore Charles Darwin wrote his most famous works, The Origin of Species and The Descent of 

Man, he wrote a travelogue entitled The Voyage of the Beagle. In it he describes his voyages 

through South and Central America. On his journey, he took the opportunity to document 

the variety of life he saw and the environments in which it existed. Those observations gave 

Darwin the raw material from which he was able to formulate and refine his theory of evolution.

Evolution has been called the best idea anyone ever had. That’s in part because of the explanatory 

power it brings to biology and in part because of how well it can help us learn in other fields. 

Information security is one field that can make use of the theory of evolution. In this short essay, 

I’d like to share some thoughts on how we can document the raw material that software and 

information technology professionals can use to better formulate and refine their ideas around 

security. I’ll also share some thoughts on how information security might evolve under a variety of 

pressures. I’ll argue that those who adopt ideas from science and use the scientific method will be 

more successful, and more likely to pass on their ideas, than those who do not. 
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1. The information security environment

Information security is a relatively new field. Some of 

the first people to undertake systematic analysis are 

still working in the field.  Because the field and associ-

ated degree programs are fairly recent, many of those 

working in information security have backgrounds or 

degrees in other fields. What’s more, those involved 

in information security often have a deep curiosity 

about the world, leading them to learn about even 

more fields. Thus, we have a tremendous diversity 

of backgrounds, knowledge, skills, and approaches 

from which the information security community can 

draw. Between a virtual explosion of niches in which 

new ideas can be brought to bear, and many different 

organizations to test those ideas, we ought to have a 

natural world of mutation, experimentation, and op-

portunities to learn. We should be living in a golden 

age of information security. Yet many security experts 

are depressed and demoralized. Debora Plunkett, head 

of the NSA’s Information Assurance Directorate has 

stated, “There’s no such thing as ‘secure’ anymore.” 

To put a pessimistic face on it, risks are unmeasur-

able, we run on hamster wheels of pain, and budgets 

are slashed.

In the real world, evolution has presented us with 

unimaginably creative solutions to problems. In the 

natural world, different ways of addressing problems 

lead to different levels of success. Advantages accumu-

late and less effective ways of doing things disappear. 

Why is evolution not working for our security prac-

tices? What’s different between the natural world and 

information security that inhibits us from evolving 

our security policies, practices, and programs?

2. Inhibitors to evolution

Information security programs are obviously not or-
ganisms that pass on their genes to new programs, and 
so discussions of how they evolve are metaphorical. I 
don’t want to push the metaphor too far, but we ought 
to be able to do better than natural organisms because 
we can trade information without trading genes. Ad-
ditionally, we have tremendous diversity, strong pres-
sures to change, and even the advantage of being able 
to borrow ideas and lessons from each other. So why 

aren’t we doing better?

Many challenges of building and operating effec-
tive security programs are well known. They include 

demonstrating business value, scoping, and demon-

strating why something didn’t happen. Let’s focus on 

one reason that gets less attention: secrecy. To many 

who come to information security from a military 

background, the value of secrecy is obvious: the less an 

attacker knows, the greater the work and risk involved 

in an attack. It doesn’t take a military background to 

see that putting a red flag on top of every mine makes 

a minefield a lot less effective. A minefield is effective 

precisely because it slows down attackers who have to 

expose themselves to danger to find a way through it. 

In information security operations, however, attacks 

can be made from a comfy chair on the other side of 

the world, with the attacker having first torn apart an 

exact copy of your defensive system in their lab. (This 

contrast was first pointed out by Peter Swire.)

We know that systems are regularly penetrated. 

Some say that all of them are. Despite that knowledge, 

we persist in telling each other that we’re doing okay 

and are secure. Although the tremendously resilient 

infrastructures we’ve built work pretty well, we can 

and should do better. 

For example, take the problem of stack smashing 

buffer overflows. The problem was clearly described 

in the public literature as early as 1972. According to 

Lance Hoffman, it was well known and influenced 

the design of the data flags in the main processors of 

the Burroughs B5500. The problem was passed down 

repeatedly through the 1980s and 1990s, and was 

exploited by the Morris Internet worm and many oth-

ers. It was only after Aleph One published his paper 

“Smashing the stack for fun and profit” in 1996 that 

systematic defenses began to be created. Those defens-

es include StackGuard, safer string handling libraries, 

static analysis, and the useful secrecy in operating 

system randomization. Until the problem was publicly 

discussed, there were no resources for defenses, and 

therefore, while the attacks evolved, the defenses were 

starved. The key lesson to take from this problem that 

has plagued the industry from 1972 (and is still pres-

ent in too much legacy code) is: keeping the problem 

secret didn’t help solve it.

The wrong forms of secrecy inhibit us from learn-

ing from each other’s mistakes. When we know that 

system penetrations are frequent, why do we hide 

information about the incidents? Those of us in opera-

tional roles regularly observe operational problems. 

Those incidents are routinely investigated and the 
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results of the investigation are almost always closely 

held. When we hide information about system failures, 

we prevent ourselves from studying those failures. We 

restrain our scientists from emulating Darwin’s study 

of the variations and pressures that exist. We prevent 

the accumulation of data; we inhibit the development 

of observational methods; and we prevent scientific 

testing of ideas.

Let’s consider what scientific testing of ideas 

means, and then get to a discussion of what ideas we 

might test.

3. Defining the problem

a. What is science?

For the sake of clarity, let me compare and contrast 

three approaches to problem solving and learning: 

science, engineering, and mathematics. Mathematics 

obviously underpins both science and engineering, but 

it will be helpful to untangle them a little.

At the heart of science is the falsification of hy-

potheses. Let me take a moment to explain what that 

means. A hypothesis is an idea with some predictive 

power. Examples include “everything falls at the same 

speed” (modulo friction from the air) and “gravity 

bends the path of light.” Both of these hypotheses 

allow us to predict what will happen when we act. 

What’s more, they’re testable in a decisive way. If I 

can produce a material that falls faster than another 

in a vacuum, we would learn something fundamen-

tal about gravity. Contrast this with derivation by 

logic, where disproof requires a complex analysis of 

the proof. Science has many tools which center on fal-

sifying hypotheses: the experiment, peer review, peer 

replication, publication, and a shared body of results. 

But at the heart of all science is the falsifiable hypoth-

esis. Science consists of testable ideas that predict 

behavior under a range of circumstances, the welcom-

ing of such tests and, at its best, the welcoming of the 

results. For more on the idea of falsifiability, I recom-

mend Karl Popper’s Conjectures and Refutations.

Science also overlaps heavily with engineering. En-

gineering concerns making tradeoffs between a set of 

constraints in a way that satisfies customers and stake-

holders. Engineering can involve pushing boundaries 

of science, such as finding a way to produce lasers with 

shorter wavelengths, or pushing the limits of scientific 

knowledge. For example, when the original Tacoma 

Narrows Bridge finally buckled a little too hard, it 

drove new research into the aerodynamics of bridges.

The scientific approach of elimination of falsehood 

can be contrasted with mathematics, which constructs 

knowledge by logical proof. There are elements of 

computer security, most obviously cryptography, 

which rely heavily on mathematics. It does not devalue 

mathematics at all to note that interesting computer 

systems demonstrably have properties that are true 

but unprovable. 

b. What is information security?

Information security is the assurance and reality that 

information systems can operate as intended in a 

hostile environment. We can and should usefully bring 

to bear techniques, lessons, and approaches from all 

sorts of places, but this article is about the intersection 

of science and security. So we can start by figuring out 

what sorts of things we might falsify. One easy target 

is the idea that you can construct a perfectly secure 

system. (Even what that means might be subject to 

endless debate, and not falsification.) Even some of the 

most secure systems ever developed may include flaws 

from certain perspectives. Readers may be able to 

think of examples from their own experience. 

But there are other ideas that might be disproven. 

For example, the idea that computer systems with 

formal proofs of security will succeed in the market-

place can be falsified. It seems like a good idea, but 

in practice, such systems take an exceptionally long 

time to build, and the investment of resources in 

security proofs come at the expense of other features 

that buyers want more. In particular, it turns out that 

there are several probably false hypotheses about such 

computer systems:

 Proofs of security of design relate to the security 

of construction.

 Proofs of security of design or construction 

result in operational security.

 Proofs of security result in more secure systems 

than other security investments.

 Buyers value security above all else.

These are small examples but there are much larger 

opportunities to really study our activities and im-

prove their outcomes for problems both technical and 
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human. As any practitioner knows, security is replete 

with failures, which we might use to test our ideas. 

Unfortunately, we rarely do so, opting instead for the 

cold comfort of approaches we know are likely to fail. 

Why is it we choose approaches that often fail? 

Sometimes we don’t know a better way. Other times, 

we feel pressure to make a decision that follows 

“standard practice.” Yet other times, we are compelled 

by a policy or regulation that ignores the facts of a 

given case.

4. Putting it all together: A science of 

information security

So what ideas might we test?  At the scale which the 

US government operates networks, almost any pro-

cess can be framed as testable. Take “always keep your 

system up to date” or “never write down a password.” 

Such ideas can be inserted into a sentence like “Or-

ganizations that dedicate X percent of their budget 

to practice Y suffer fewer incidents than those that 

dedicate it to practice Z.”

Let me break down how we can frame this hypothesis: 

1.    The first choice I’ve made is to focus on organiza-

tions rather than individual systems. Individual 

systems are also interesting to study, but it may 

be easier to look to whole organizations. 

2.    The second choice is to focus on budget. Eco-

nomics is always about the allocation of scarce 

resources. Money not spent on information se-

curity will be spent on other things, even if that’s 

just returning it to shareholders or taxpayers. (As 

a taxpayer, I think that would be just fine.)

3.    The third choice is to focus on outcomes. As 

I’ve said before, security is about outcomes, not 

about process (see http://newschoolsecurity.

com/2009/04/security_is_about_outcome/). So 

rather than trying again to measure compliance, 

we look to incidents as a proxy for effectiveness. 

Of course, incidents are somewhat dependent 

on attacks being widely and evenly distributed. 

Fortunately, wide distribution of attacks is pretty 

much assured. Even distribution between various 

organizations is more challenging, but I’m confi-

dent that we’ll learn to control for that over time.

4.    The final choice is that of comparisons. We 
should compare our programs to those of other 

organizations, and to their choices of practices.

Of course, comparing one organization to another 

without consideration of how they differ might be a 

lot like comparing the outcomes of heart attacks in 

40-year-olds to 80-year-olds. Good experimental de-

sign will require either that we carefully match up the 

organizations being compared or that we have a large 

set and are randomly distributing them between con-

ditions. Which is preferable? I don’t know, and I don’t 

need to know today. Once we start evaluating out-

comes and the choices that lead to them, we can see 

what sorts of experiments give us the most actionable 

information and refine them from there. We’ll likely 

find several more testable hypotheses that are useful.

Each of the choices above can be reframed as a 

testable hypothesis of “does measuring this get us the 

results we want?” If you think the question of, “Do 

organizations that dedicate X percent of their budget 

to practice Y suffer fewer incidents than those that 

dedicate it to practice Z?” is interesting, then, before 

testing any ideas, bringing science to information 

security helps us ask more actionable questions. 

Similarly, we can think about building outcome-
oriented tests for technology. Proof of concept ex-
ploit code can be thought of as disproving the trivial 
hypothesis that, “This program has no exploitable 
vulnerability of class X.” Since we know that programs 
usually have a variety of flaws associated with the lan-
guages used to construct them, we would expect many 
of those hypotheses to be false. Nevertheless, demon-
stration code can focus attention on a particular issue 
and help get it resolved. But we can aspire to more 
surprising hypotheses. 

5. Next steps

Having laid out some of the challenges that face infor-

mation security and some of what we will gain as we 

apply the scientific method, here is what we need to do 

to see those benefits:

1.    Robust information sharing (practices and 

outcomes). We need to share information 
about what organizations are doing to protect 
their information and operations, and how 
those protections are working. Ideally, we will 
make this information widely available so that 
people of different backgrounds and skills can 
analyze it. Through robust and broad debate, 
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we’re more likely to overcome groupthink and 

inertia. Fortunately, the federal government 

already shares practice data in reports from 

the Office of the Inspector General and the 

Government Accountability Office. Outcome 

reporting is also available, in the form of data 

sent to the US Computer Emergency Readiness 

Team (US-CERT). The Department of Veterans 

Affairs publishes the information security 

reports it sends to Congress. Expanding on 

this information publication will accelerate our 

ability to do science.

2.    Robust hypothesis testing. With the availability 

of data, we need to start testing some hypotheses. 

I suggest that nothing the information security 

community could do would make millions 

of people happier faster and at less risk than 

reducing password requirements. Testing 

to see if password complexity requirements 

have any impact on outcomes could allow 

many organizations to cut their help desk 

and password reset requirements at little cost 

to security.

3.    Fast reaction and adaptation. Gunnar Peterson 

has pointed out that as technologies evolved 

from file transfer protocol (FTP) to hypertext 

transfer protocol (HTTP) to simple object access 

protocol (SOAP), security technologies have 

remained “firewalls and SSL.” It can seem like 

the only static things in security are our small 

toolbox and our depression. We need to ensure 

that innovations by attackers are understood 

and called out in incident responses and that 

these innovations are matched by defenders 

in ways that work for each organization and 

its employees.

There are objections to these ideas of data sharing 

and testing. Let me take on two in particular. 

The first objection is “This will help attackers.” But 

information about defensive systems is easily discov-

ered. For example, as the DEF CON 18 Social Engi-

neering contest made irrefutable, calling employees 

on the phone pretending to be the help desk reveals all 

sorts of information about the organization. “Train-

ing and education” were clearly not effective for those 

organizations. If you think your training works well, 

please share the details, and perhaps someone will 

falsify your belief. My hypothesis is that every organi-

zation of more than a few hundred people has a great 

deal of information on their defenses which is easily 

discovered. (As if attackers need help anyway.)

The second objection is that we already have 

information-sharing agreements. While that is true, 

they generally don’t share enough data or share the 

data widely enough to enable meaningful research.

Information security is held back by our lack of 

shared bodies of data or even observations. Without 

such collections available to a broad community of re-

search, we will continue along today’s path. That’s not 

acceptable. Time after time, the scientific approach has 

demonstrated effectiveness at helping us solve thorny 

problems. It’s time to bring it to information security. 

The first step is better and broader sharing of infor-

mation. The second step is testing our ideas with that 

data. The third step will be to apply those ideas that 

have passed the tests, and give up on the superstitions 

which have dogged us. When we follow Darwin and 

Robust information sharing Robust hypothesis testing Fast reaction and adaptation
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his naturalist colleagues in documenting the variety of 

things we see, we will be taking an important step out 

of the muck and helping information security evolve. 
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Making experiments 

dependable  |  
R o y  M a x i o n *

A
bstract. In computer science and computer 

security we often do experiments to establish or 

compare the performance of one approach vs. 

another to some problem, such as intrusion detec-

tion or biometric authentication. An experiment is 

a test or an assay for determining the characteristics 

of the item under study, and hence experimentation 

involves measurements. 

Measurements are susceptible to various kinds of 

error, any one of which could make an experimental 

outcome invalid and untrustworthy or undependable. 

This paper focuses on one kind of methodological er-

ror—confounding—that can render experimental out-

comes inconclusive, but often without the investigator 

knowing it. Hence, valuable time and other resources 

can be expended for naught. We show examples from 

the domain of keystroke biometrics, explaining several 

different examples of methodological error, their con-

sequences, and how to avoid them. 

1. Science and experimentation 

You wouldn’t be surprised if, in a chemistry experi-

ment, you were told that using dirty test tubes and 

beakers (perhaps contaminated with chemicals from a 

past procedure) could ruin your experiment, making 

your results invalid and untrustworthy. While we don’t 

use test tubes in cyber security, the same admonition 

applies: keep your experiments clean, or the contami-

nation will render them useless. 

Keeping your glassware clean is part of the chem-

lab methodology that helps make experimental mea-

surements dependable, which is to say that the mea-

surements have minimal error and no confounding 

variables. In cyber security we also need measure-
ments that are dependable and error-free; undepend-
able measurements make for undependable values 
and analyses, and for invalid conclusions. A rigorous 
experimental methodology will help ensure that mea-
surements are valid, leading to outcomes in which we 

can have confidence. 

A particularly insidious form of error is the con-
found—when the value of one variable or experi-
mental phenomenon is confounded or influenced by 
the value of another. An example, as above, would be 
measuring the pH of a liquid placed in contaminated 
glassware where the influence of the contaminant on 
pH varied with the temperature of the liquid being 
measured. This is a confound, and to make things 
worse, the experimenter would likely be unaware of its 
presence or influence. The resulting pH values might 
be attributed to the liquid, to the temperature, or to 
the contaminant; they cannot be distinguished (with-
out further experimentation). Similar measurement 
error can creep into cyber security experiments, mak-
ing their measures similarly invalid. 

This article describes some of the issues to be con-

sidered, and the rationales for decisions that need to 

be made, to ensure that an experiment is valid—that 

is, that outcomes can be attributed to only one cause 

(no alternative explanations for causal relations), and 

that experimental results will generalize beyond the 

experimental setting. 

In the sections to follow, we first consider the hall-

marks of a good experiment: repeatability, reproduc-

ibility and validity. Then we focus on what is arguably 

the most important of these—validity. We examine 

a range of threats to validity, using an experiment in 
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keystroke biometrics to provide examples. The experi-

ment is laid out first, and is then critiqued; remedies 

for the violations are suggested. We close by sug-

gesting simple ways to avoid the kinds of problems 

described here. 

2. Hallmarks of a good experiment 

There are clear differences between experiments that 

are well-designed and those that are not. While there 

may be many details that are different between the 

two, the main ones usually reduce to issues of repeat-

ability (sometimes called reliability), reproducibility 

and validity. While our main focus here will be on 

validity, we will first look briefly at what each of the 

other terms means, just to put them all in context. 

Repeatability refers to the variation in repeated 

measurements taken by a single person or instrument 

on the same item and under the same conditions; we 

seek high agreement, or consistency, from one mea-

sured instance to another [9]. That is, the experiment 

can be repeated in its entirety, and the results will be 

the same every time, within measurement error. For 

example, if you measure the length of a piece of string 

with a tape measure, you should get about the same 

result every time. If an experiment is not repeatable, 

even by the same person using the same measuring 

apparatus, then there is a risk that the measurement 

is wrong, and hence the outcome of the experiment 

may be wrong, too; but no one will realize it, and so 

erroneous values will be reported (and assumed to be 

correct by readers). 

Reproducibility relates to the agreement of experi-

mental results with independent researchers using 

similar but physically different test apparatus, and 

different laboratory locations, but trying to achieve 

the same outcome as was reported in a source ar-

ticle [9]. Measurements should yield the same results 

each time they are taken, irrespective of who does 

the measuring. Using the length-of-string example, if 

other people can measure that same piece of string in 

another setting using a similar measuring device, they 

should get about the same result as the first group did. 

If they don’t, then the procedure is not reproducible; 

it can’t be replicated. Reproduction (sometimes called 

replication) allows an assessment of the control on the 

operating conditions of the measurement procedure, 

i.e., the ability to reset the conditions to some desired 

state. Ultimately, replication reflects how well the pro-

cedure was operationalized. 

Note that reproducibility doesn’t mean hitting 

return and analyzing the same data set again with 

the same algorithm. It means conducting the entire 

experiment again, data collection and all. If an experi-

ment is not reproducible, then it cannot be replicated 

by others in a reliable way. This means that no one will 

be able to verify that the experiment was done cor-

rectly in the first place, hence placing an air of untrust-

worthiness on the original results. Reproducibility 

hinges on operational definitions for the measures and 

procedures employed in the course of the experi-

ment. An operational definition defines a variable or 

a concept in terms of the procedures or operations 

used to measure it. An operational definition is like a 

recipe or set of detailed instructions for describing or 

measuring something. 

Validity relates to the logical well-groundedness of 

how the experiment is conducted, as well as the extent 

to which the results will generalize to circumstances 

beyond those in the laboratory. The next section ex-

pands on the concept of validity. 

3. Validity 

What does the term valid mean? Drawing from a stan-

dard dictionary, when some thing or some argument 

or some process is valid, it is well-grounded or justifi-

able; it is logically correct; it is sound and flawlessly 

reasoned, supported by an objective truth. 

FIGURE 1. Hallmarks of a good experiment. 
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To conduct an experiment that was anything other 

than valid, in the above sense, would be foolish, and 

yet we see such experiments all the time in the litera-

ture. Sometimes we can see the flaws (which some 

would call threats to validity) directly in the experi-

ment, and sometimes we can’t tell, because authors do 

not report the details of how their experiments were 

conducted. Generally speaking, there are two kinds of 

validity—internal and external. Conceptually, these 

are pretty simple. 

Internal validity. In most experiments we are trying to 

find out if A has a given effect on B, or if A causes B. 

To claim that A indeed causes B, the experiment must 

not offer any alternative causes nor alternative expla-

nations for the outcome; if this is case, then the experi-

ment is internally valid [8]. An alternative explanation 

for an experimental outcome can be due, for example, 

to confounded variables that have not been controlled. 

For example, suppose we want to understand the 

cause of errors in programming. We recruit students 

in university programming classes (one class uses C, 

and the other uses Java). We ask all the students to 

write a program that calculates rocket trajectories. 

The results indicate that C programmers make more 

programming errors, and so we conclude that the C 

programming language is a factor in software errors. 

Drawing such a conclusion would be questionable, 

because there are other factors that could explain 

the results just as well. Suppose, for example, that 

the Java students were more advanced (juniors, not 

sophomores) than the C students. The outcome of 

the experiment could be due to the experience level 

of the students, just as much as it could be due to the 

language. Since we can’t distinguish distinctly be-

tween experience level and language, we say that the 

experiment confounds two factors—language and 

experience—and is therefore not valid. Note that it can 

sometimes be quite difficult to ensure internal valid-

ity. Even if all the students are at the same experience 

level, if they self-selected Java vs C it would still allow 

for a confound in that a certain kind of student might 

be predisposed to select Java, and a different kind of 

student might be predisposed to select C. The two 

different kinds of students might be differentially good 

at one language or the other. The remedy for such an 

occurrence would be to assign the language-student 

pairs randomly. 

External validity. In most experiments we hope that 

the findings will apply to all users, or all software, 

or all applications. We want the experimental find-

ings to generalize from a laboratory or experimental 

setting to a much broader setting. To the extent that 

a study’s findings generalize to a broader population 

(usually taken to be “the real world”), the experiment 

is externally valid [8]. If the findings are limited to the 

conditions surrounding the study (and not to broader 

settings), then the experiment lacks external validity. 

Another way to think about this is that external valid-

ity is the extent to which a causal relationship holds 

when there are variations in participants, settings 

and other variables that are different from the narrow 

ranges employed in the laboratory. 

Referring back to our earlier example, suppose we 

were to claim that the experiment’s outcome (that 

the C language promotes errors) generalizes to a set 

of programmers outside the experimental environ-

ment—say, in industry. The generalization might not 

hold, perhaps because the kind of problem presented 

to the student groups was not representative of the 

kinds of problems typically encountered in industry. 

This is an example of an experiment not generalizing 

beyond its experimental conditions to a set of condi-

tions more general; it’s not externally valid. 

Trade-off between internal and external validity. It 

should be noted that not all experiments can be valid 

both internally and externally at the same time; it 

depends on the purpose of the experiment whether 

we seek high internal or high external validity. Typi-

cally there is a trade-off in which one kind of validity 

is sacrificed for the other. For example, laboratory 

experiments designed to answer a very focused ques-

tion are often more internally valid than externally 

valid. Once a research question seems to have been 

settled (e.g., that poor exception handling is a major 

cause of software failure), then a move to a broader, 

more externally valid, experiment would be the right 

thing to do. 

4. Example domain—keystroke biometrics 

In this section we introduce the domain from 

which we draw concrete examples of experimental 

invalidities—keystroke biometrics. 

Keystroke biometrics, or keystroke dynamics, is 
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the term given to the procedure of measuring and 

assessing a user’s typing style, the characteristics of 

which are thought to be unique to a person’s physiol-

ogy, behavior, and habits. The idea has its origin in the 

observation that telegraph operators have distinctive 

patterns, called fists, of keying messages over telegraph 

lines. One notable aspect of fists is that they emerge 

naturally, as noted over a hundred years ago by Bryan 

& Harter, who showed that operators are distinc-

tive due to the automatic and unconscious way their 

personalities express themselves, such that they could 

be identified on the basis of having telegraphed only a 

few words [1]. 

These measures of key presses and key releases, 

based largely on the timing latencies between key-

strokes, are compared to a user profile as part of a 

classification procedure; a match or a non-match can 

be used to decide whether or not the user is authenti-

cated, or whether or not the user is the true author of 

a typed sequence. For a brief survey of the keystroke 

literature, see [7]. 

We use keystroke dynamics as an example here 

for two reasons. First, it’s easy to understand—much 

easier, for example, than domains like network proto-

cols. If we’re going to talk about flaws and invalidities 

in experiment design, then it’s better to talk about 

an experiment that’s easily understood; the lessons 

learned can be extended to almost any other domain 

and experiment. Second, keystroke dynamics shares 

many problems with other cyber-security disciplines, 

such as intrusion detection. Examples are classification 

and detection accuracy; selection of best classifier or 

detector; feature extraction; and concept drift, just to 

name a few. Again, problems solved in the keystroke 

domain are very likely to transfer to other domains 

where the same type of solution will be effective. 

4.1. What is keystroke dynamics good for? 

Keystroke dynamics is typically thought of as an 

example of the second factor in two-factor authentica-

tion. For example, for a user to authenticate, he’d have 

to know not only his own password (the first factor), 

but he would also have to type the password with a 

rhythm consistent with his own rhythm. An impos-

tor, then, might know your password, but would not 

be able to replicate your rhythm, and so would not be 

allowed into the system. Another application, along a 

similar line, would be continuous re-authentication, 

in which the system continually checks to see that 

the typing rhythm matches that of the logged-in user, 

thereby preventing, say, insiders from masquerading 

as you. A third application would be what forensics 

experts call questioned-document analysis, which asks 

whether a particular user typed a particular document 

or parts of it. Finally, keystroke rhythms could be used 

to track terrorists from one cyber café to another, 

or to track a predator from one chat-room session 

to another. 

4.2. How does keystroke dynamics work? 

The essence of keystroke dynamics is that timing data 

are collected as a typist enters a password or other 

string. Each keystroke is timestamped twice; once on 

its downstroke and once on its upstroke. From those 

timings we can compute the amount of time that a key 

was held down (hold time) and the amount of time 

it took to transition from one key to the next (transi-

tion latency). The hold times and the latencies are 

called features of the typed password, and for a given 

typing instance these features would be grouped into 

a feature vector. For a 10-character password there 

would be eleven hold times and ten latencies if we 

include the return key.a If a typist enters a password 

many times, then the several resulting feature vectors 

can be assembled into a template which represents the 

central tendency of the several vectors. Each typist will 

have his or her own such template. These templates are 

formed during an enrollment period, during which 

legitimate users provide typing samples; these samples 

form the templates. Later, when a user wishes to log 

in, he types the password with the implicit claim that 

the legitimate user has typed the password. The key-

stroke dynamics system examines the feature vector of 

the presently-typed password, and classifies it as either 

belonging to the legitimate user or not. The classifier 

operates as an anomaly detector; if the rhythm of the 

typed password is a close enough match to the stored 

template, then the user is admitted to the system. The 

key aspect of this mechanism is the detector. In ma-

chine learning there are many such detectors, distin-

guished by the distance metrics that they use, such as 

Euclidean, Manhattan and Mahalanobis, among others 

[4]. Any of these detectors can be used in a keystroke 

a. There are two kinds of latencies—keydown to keydown and keyup to keydown. Some researchers use one or the other of these, and 

some researchers use both. In our example we would have 31 features if we used both.
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dynamics system; under some circumstances, some 
detectors work better than others, but it is an open 
research question as to which classifier is overall best. 

5. A typical keystroke experiment 

In this section we discuss several aspects of conduct-

ing a study in keystroke dynamics, we show what can 

go wrong, and we share some examples of how (in)

validity can affect the outcome of a real experiment. 

We will discuss some examples and experimental flaws 

that are drawn from the current literature, although 

not all of the examples are drawn from a single paper. 

Walkthrough. Let’s walk through a typical experiment 

in keystroke dynamics, and we’ll point out some errors 

that we’ve observed in the literature, why they’re er-

rors, how to correct them, and what the consequences 

might be if they’re left uncorrected. Note that the 

objective of the experiment is to discriminate among 

users on the basis of their typing behavior, not on the 

basis of their typing behavior plus, possibly unspeci-

fied, other factors; the typing behavior needs to be iso-

lated from other factors to make the experiment valid. 

A typical keystroke dynamics experiment would 
test how well a particular algorithm can determine 
that a user, based on his typing rhythm, is or is not 
who he claims to be. In a keystroke biometric system, 
a user would present himself to the system with his 
login ID, thereby claiming to be the person associ-
ated with the ID. The system verifies this claim by two 
means: it checks that the password typed by the user 
is in fact the user’s password; and it checks that the 
password is typed with the same rhythm with which 
the legitimate user would type it. If these two factors 
match the system’s stored templates for the user, then 
the user is admitted to the system. 

Checking that the correct password is offered is old 
hat; checking that its typing rhythm is correct is an-
other matter. This is typically done by having the user 
“enroll” in the biometric component of the system. For 
different biometric systems the enrollment process is 
different, depending on the biometric being used; for 
example, if a fingerprint is used, then the user needs to 
present his fingerprint to the system so that the system 
can encrypt and store it for later matching against 
a user claiming to be that person who enrolled. For 

keystroke biometric systems, the process is similar; 

the user types his password several times so that 

the system can form a profile of the typing rhythm 

for later matching. The biometric system’s detection 

algorithm is tested in two ways. In the first test, sample 

data from the enrolled user is presented to the system; 

the system should recognize that the user is legitimate. 

The second test determines whether the detector can 

recognize that an impostor is not the claimed user. 

This would be done by presenting the impostor’s login 

keystroke sequence to the system, posing as a legiti-

mate user. Across a group of legitimate users and im-

postors, the percentage of mistakes, or errors, serves as 

a gauge of how good the keystroke biometric system 

is. Several details concerning exactly how these tests 

are done can have enormous effects on the outcome. 

We turn now to those details. 

What can go wrong? There are several parts of an 

experiment where things can go wrong. Most experi-

ments measure something; the measuring apparatus 

can be flawed, producing flawed measurements. If the 

measurements are flawed, then the data will be flawed, 

and any analytical results and conclusions will be 

cast into doubt. The way that something is measured 

can be unsound; if you measure code complexity by 

counting the number of lines, you’ll get a numeri-

cal outcome, but it may not be an accurate reflection 

of code complexity. The way or method of taking 

measurements is the biggest source of error in most 

experiments. Compounding that error is the lack of 

detail with which the measurement methodology 

is reported, often making it difficult to determine 

whether or not something went wrong. We turn now 

to specific examples of methodological problems. 

Clock resolution and timing. Keystroke timings are 

based on operating-system calls to various timers. In 

the keystroke literature we see different timers being 

used by different researchers, with timing accura-

cies often reported to several decimal places. But it’s 

not the accuracy (number of decimal places) of the 

timing that’s of overriding importance; it’s the resolu-

tion. When keystroke dynamics systems are written 

for Windows-based machines (e.g., Windows XP), 

it’s usually the tick timer, or Windows-event clock [6] 

that’s used; this has a resolution of 15.625 milliseconds 

(ms), corresponding to 64 updates per second. If done 

on a Unix system, the resolution is about 10 millisec-

onds. On some Windows systems the resolution can 

FEATURE
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be much finer if the QPC timer is used. The reason 

that timing resolution matters is not because people 

type as fast as one key every 15 milliseconds (66 keys 

per second); it’s because the time between keystrokes 

can differ by less than 15 milliseconds. If some typists 

make key-to-key transitions faster than other ones, 

but the clock resolution is unable to separate them, 

then detection accuracy could suffer. One paper has 

reported a 4.2% change in error rate due to exactly this 

sort of thing [3]. A related issue is how you know what 

your clock resolution is. It’s unwise to simply read this 

off the label; better to perform a calibration. A related 

paper explained how this is done in a keystroke dy-

namics environment [5]. A last word on timing issues 

concerns how the timestamping mechanism actually 

works; if it’s subject to influence from the scheduler, 

then things like system load can change the accuracy 

of the timestamps. 

The effect of clock resolution and timing is that they 

can interact with user rhythms as a confound. If dif-

ferent users type on different machines whose timing 

resolutions differ, then any distinctions made among 

users, based on timing, could be due to differences in 

user typing rhythms (timings) or they could be due to 

differences in clock resolutions. Moreover, since sys-

tem load can influence keystroke timing, it’s possible 

that rhythmic differences attributed to different users 

would be due to load differences, not to user differenc-

es. Hence we would not be able to claim distinctive-

ness based on user behavior, because this cannot be 

separated from timing errors induced by clock resolu-

tion and system load. If the purpose of the experiment 

is to differentiate amongst users on the basis of typing 

rhythm, then the confounds of clock resolution and 

system load must be removed. The simplest way to 

achieve this is to ensure that the experimental systems 

use the same clock, with the same resolution (as high 

as possible), and have the same operating load. This is 

possible in the laboratory by using a single system on 

which to collect data from all participants. 

Keyboards. Experiments in keystroke dynamics 

require people to type, of course, and keyboards on 

which to do that typing. Most such experiments re-

ported in the literature allow subjects to use whatever 

keyboard they want; after all, in the real world people 

do use whatever keyboard they prefer. Consequently, 

this approach has a lot of external validity. Unfortu-

nately, the approach introduces a serious confound, 

too—a given keyboard, by its shape or character lay-

out, is likely to influence a user’s typing behavior. Dif-

ferent keyboards, such as standard, ergonomic, laptop, 

kinesis, natural, kinesis maxim split and so forth will 

shape typing in a way that’s peculiar to the keyboard 

itself. In addition to the shape of the keyboard, the key 

pressures required to make electrical contact differ 

from one keyboard to another. The point is that not 

all keyboards are the same, with the consequence that 

users may type the same strings differently, depend-

ing on the keyboard and its layout. In the extreme, if 

everyone in the experiment used a different keyboard, 

you wouldn’t be able to separate the effect of the key-

boards from the effect of typing rhythm; whether your 

experimental results showed good separation of typists 

or not, you wouldn’t know if the results were due to 

the typists’ differences or to the differences among the 

keyboards. Hence you would not be able to con-

clude that typing rhythms differ among typists. This 

confound can be removed from the experiment by 

ensuring that all participants use the same (or perhaps 

same type of) keyboard. The goal of the experiment 

is to determine distinctiveness amongst typists based 

on their individual rhythms, not on the basis of the 

keyboards on which they type. 

Stimulus items—what gets typed. Participants in 

keystroke biometrics experiments need to type some-

thing—the stimulus item in the experiment. While 

there are many kinds of stimuli that could be consid-

ered (e.g., passwords, phrases, paragraphs, transcrip-

tions, free text, etc.), we focus on short, password-like 

strings. There are two fundamental issues: string 

contents and string length. 

String contents. By contents we mean simply the char-

acters contained in the password being typed. Two 

contrasting examples would be a strong password, 

characterized by containing shift and punctuation 

characters, as opposed to a weak password, charac-

terized by a lack of the aforementioned special char-

acters. It’s easy to see that if some users type strong 

passwords, and other users type weak passwords, then 

any discrimination amongst users may not be solely 

attributable to differences among users; it may be at-

tributable to intrinsic differences between strong and 

weak passwords that cause greater rhythmic variability 

in one or the other. The reason may be that strong 

passwords are hard to type, and weak ones aren’t. So 

we may be discriminating not on the basis of user 
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rhythm, but on the basis of typing difficulty which, in 
turn, is influenced by string content. To eliminate this 
confound, the experimenter should not allow users to 
choose their own passwords; the password should be 
chosen by the experimenter, and should be the same 

for each user. 

String length. If users are left to their own devices to 
choose passwords, some may choose short strings, 
while others choose longer strings. If this happens, 
as it has in experiments where passwords were self-
selected, then any distinctiveness detected amongst 
users cannot be attributed solely to differences among 
user typing rhythms; the distinctions could have been 
caused by differences in string lengths that the users 
typed, or by intrinsic characteristics that cause more 
variability in one length than in another. So, we don’t 
know if the experimental results are based on user 
differences or on length differences. To remove this 
confound, the experimenter should ensure that all 
participants type same-length strings. 

Typing expertise and practice. Everyone has some 
amount of typing expertise, ranging roughly from low 
to high. Expertise comes from practice, and the more 
you practice, the better you get. This pertains to typ-
ing just as much as it pertains to piano playing. Two 
things happen when someone has become practiced 
at typing a password. First, the total amount of time 
to type the password decreases; second, the time 
variation with which particular letter pairs (digrams) 
are typed diminishes. It takes, on average, about 214 
repetitions of a ten-character password to attain a 
level of expertise such that typing doesn’t change by 
more than 1 millisecond on average (less than 0.1%) 
over the total time (about 3–5 seconds) taken to type 
a password. At this level of practice it can be safely 
assumed that everyone’s typing is stable; that is, it’s 
not changing significantly. Due to this stability, it is 
safe to compare typists using keystroke biometrics. 
A classifier will be able to distinguish among a group 
of practiced typists, and will have a particular success 
rate (often in the region of 95–99%). 

But what if, as in some studies, the level of exper-
tise among the subjects ranges from low to high, with 
some people very practiced and others hardly at all? 
If practiced typists are consistent, with low variation 
across repeated typings, but unpracticed typists are 
inconsistent with high variability, then it would be 
relatively easy for a classifier to distinguish users in 

such groups from one another. This could make clas-

sification outcomes more optimistic than they really 

are, making them misleading at best. In one study 

25 people were asked to type a password 400 times. 

Some people in the study did this, but others typed 

the password only 150 times, putting a potentially 

large expertise gap between these subjects. No matter 

what the outcome if everyone had been at the same 

level of expertise, it’s easy to see that the classification 

results would likely be quite different than if there was 

a mixture of practice levels among the subjects. This 

is an example of a lack of internal validity, where the 

confound of differential expertise or practice is operat-

ing. There is no way that the classifier results can be 

attributed solely to users’ typing rhythms alone; they 

are confounded with level of practice. 

Instructions to typists. In any experiment there needs 

to be a protocol by which the experiment is carried 

out. This protocol should be followed assiduously, lest 

errors creep into the experiment whilst the researcher 

is unaware. Here we give two examples in which in-

structions to subjects are important. 

First, in our own experience, we had told subjects to 

type the password normally, as if they were logging in 

to their own computer. This should be straightforward 

and simple, but it’s not. We discovered that some sub-

jects were typing with extraordinary quickness. When 

we asked those people if that’s how they typed every 

day, they said no—they thought that the purpose of 

our experiment was to see who could type the fastest 

or the most accurately, even though we had never said 

that. This probably happened because we are a univer-

sity laboratory, and it’s not unusual in university ex-

periments (especially in psychology) to have their true 

intentions disguised from the participant; otherwise 

the participant may game the experiment, and hence 

ruin it. People in our experiment assumed that we had 

a hidden agenda (we didn’t), and the people respond-

ed to what they thought was the true agenda by typing 

either very quickly or very carefully or both. When 

we discovered this, we changed our instructions to tell 

subjects explicitly that there was no hidden agenda, 

and that we really meant it when we said that we were 

seeking their normal, everyday typing behavior. After 

the instructions were changed to include this, we no 

longer observed the fast and furious typing behavior 

that had drawn our attention in the first place. If we 

had not done this, then we would have left an internal 
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invalidity in the experiment; our results would have 

been confounded with normal typing by some and 

abnormally fast typing by others. Naturally, a classi-

fier would be able to distinguish between fast and slow 

typists, thereby skewing the outcomes unrealistically. 

Second, if there is no written protocol by which 

to conduct an experiment, and by which to instruct 

participants as to what they are being asked to do, 

there is a tendency for the experimenter to ad lib the 

instructions. While this might be fine, what can hap-

pen in practice is that the experimenter will become 

aware of a slightly better way to word or express the 

instructions, and will slightly alter the instructions for 

the next subject. This might slightly improve things for 

that subject. However, for the subject after that, the in-

structions might change again, even if ever so slightly. 

As this process continues, there will come a point at 

which some of the later subjects are receiving instruc-

tions that are quite different from those received by 

the earlier subjects. This means that two different 

sets of instructions were issued to subjects, and these 

subjects may have responded in two different ways, 

leading to a confound. Whatever the classification 

outcomes might be, they cannot be attributed solely 

to differences in user typing rhythms; they might have 

been due to differences in instructions as well, and we 

can’t tease them apart. Hence it is important not only 

to have clear instructions, but also to have them in 

writing so that every subject is exposed to exactly the 

same set of instructions. 

6. What’s the solution for all 

these problems? 

All of the problems discussed so far are examples of 

threats to validity, and internal validity in particular. 

The confounds we’ve identified can render an experi-

ment useless, and in those circumstances not only 

has time and money been wasted, but any published 

results run a substantial risk of misleading the reader-

ship. For example, if a study claims 99.9% correct clas-

sification of users typing passwords, that’s pretty good; 

perhaps we can consider the problem solved. But if 

that 99.9% was achieved because some confound, such 

as typing expertise, artificially enhanced the results, 

then we would have reached an erroneous conclusion, 

perhaps remaining unaware of it. This is a serious 

research error; in this section we offer some ways to 

avoid the kinds of problems caused by invalidity. 

Control. We use the term “control” to mean that 

something has been done to mitigate a potential bias 

or confound in an experiment. For example, if an 

experimental result could be explained by more than 

one causal mechanism, then we would need to control 

that mechanism so that only one cause could be attrib-

uted to the experimental outcome. As an example, the 

length of the password should be controlled so that ev-

eryone types a password of the same length; that way, 

length will not be a factor in classifying typing vectors. 

A second example would be to control the content of 

the password, most simply by having every partici-

pant type the same password. In doing this, we would 

be more certain that the outcome of the experiment 

would be influenced only by differences in people’s 

typing rhythms, and not by password length or 

content. Of course while effecting control in this way 

makes the experiment internally valid, it doesn’t reflect 

how users in the real world choose their passwords; 

certainly they don’t all have the same password. But 

the goal of this experiment is to determine the extent 

to which individuals have unique typing rhythms, and 

in that case tight experimental control is needed to 

isolate all the extraneous factors that might confound 

the outcome. Once it’s determined that people really 

do have unique typing rhythms that are discriminable, 

then we can move to the real world with confidence. 

Repeatability and reproducibility (again). We earlier 

mentioned two important concepts: repeatability—the 

extent to which an experimenter can obtain the same 

measurements or outcomes when he repeats the ex-

periment in his own laboratory—and reproducibility, 

which strives for the same thing, but when different 

experimenters in other laboratories, using similar but 

physically different apparatus, obtain the same results 

as the original experimenters did. If we strive to make 

an experiment repeatable, it means that we try hard to 

make the same measures each time. To do this suc-

cessfully requires that all procedures are well defined 

so that they can be repeated exactly time after time. 

Such definitions are sometimes called operational 

definitions, because they specify a measurement in 

terms of the specific operations used to obtain it. For 

example, when measuring people’s height, it’s im-

portant that everyone do it the same way. An opera-

tional definition for someone’s height would specify 

exactly the procedure and apparatus for taking such 
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measurements. The procedure should be written so 

that it can be followed exactly every time. Repeatabil-

ity can be ensured if the experiment’s measurements 

and procedures are operationally defined and fol-

lowed assiduously. Reproducibility can be ensured by 

providing those operational details when reporting the 

experiment in the literature, thereby enabling others 

to follow the original procedures. 

Discovering confounds. There is no easy way to 

discover the confounds lurking in an experimental 

procedure. It requires deep knowledge of the domain 

and the experiment being conducted, and it requires 

extensive thought as to how various aspects of the 

experiment may interact. One approach is to trace the 

signal of interest (in our case, the keystroke timings 

and the user behaviors) from their source to the point 

at which they are measured or manifested. For key-

stroke timings, the signal begins at the scan matrix in 

the keyboard, traveling through the keyboard encoder, 

the keyboard-host interface (e.g., PS2, USB, wireless, 

etc.), the keyboard controller in the operating sys-

tem (which is in turn influenced by the scheduler), 

and finally to the timestamping mechanism, which is 

influenced by the particular clock being used. At each 

point along the way, it is important to ask if there are 

any possible interactions between these waypoints and 

the integrity of the signal. If there are, then these are 

candidates for control. For example, keyboard signals 

travel differently through the PS2 interface than they 

do through the USB interface. This difference suggests 

that only one type of keyboard interface be used—ei-

ther PS2 or USB, but not both. Otherwise, part of the 

classification accuracy would have to be attributed to 

the different keyboard interfaces. A similar mapping 

procedure would ask about aspects of the experi-

ment that would influence user typing behavior. We 

have already given the example of different types of 

keyboards causing people to type differently. Counter-

ing this would be done simply by using only one type 

of keyboard. 

Method section. A method section in a paper is the 

section in which the details are provided regarding 

how the experiment was designed and conducted. 

Including a method section in an experimental 

paper has benefits that extend to both reader and 

researcher. The benefit to the reader is that he can see 

exactly what was done in the experiment, and not 

be left to wonder about details that could affect the 

outcome. For example, saying how a set of experi-

ment participants was recruited can be important; if 

some were recruited outside the big-and-tall shop, it 

could constitute a bias in that these people are likely 

to have large hands, and large-handed people might 

have typing characteristics that make classification 

artificially effective or ineffective. If this were revealed 

in the method section of a paper, then a reader would 

be aware of the potential confound, and could moder-

ate his expectations on that basis. If the reader were a 

reviewer, the confound might provoke him to ask the 

author to make adjustments in the experiment. 

For the experimenter the method section has two 

benefits. First, the mere act of writing the method sec-

tion can reveal things to the experimenter that were 

not previously obvious. If, in the course of writing 

the section, the experimenter discovers an egregious 

bias or flaw in the experiment, he can choose another 

approach, he can relax the claims made by the paper, 

or he can abandon the undertaking to conduct the 

experiment again under revised and more favor-

able circumstances. If the method section is written 

before the experiment is done—as a sort of planning 

exercise—the flaws will become apparent in time for 

the experimental design to be modified in a way that 

eliminates the flaw or confound. This will result in a 

much better experiment, whose outcome will stand 

the test of time. 

Pilot studies. Perhaps the best way to check your work 

is to conduct a pilot study—a small-scale preliminary 

test of procedures and measurement operations—to 

shake any unanticipated bugs out of an experiment, 

and to check for methodological problems such as 

confounded variables. Pilot studies can be very effec-

tive in revealing problems that, at scale, would ruin 

an experiment. It was through a pilot study that we 

first understood the impact of instructions to sub-

jects, and subsequently adjusted our method to avoid 

the problems encountered (previously discussed). If 

there had been no pilot, we would have discovered 

the problem with instructions anyway, but we could 

not have changed the instructions in the middle of 

the experiment, because then we’d have introduced 

the confound of some subjects having heard one set 

of instructions, and other subjects having heard a dif-

ferent set; the classification outcome could have been 

attributed to the differences in instructions as well as 

to differences amongst typists. 
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7. Conclusion 

We have shown how several very simple oversights in 

the design and conduct of an experiment can result 

in confounds and biases that may invalidate experi-

mental outcomes. If the details of an experiment are 

not fully described in a method section of the paper, 

there is a risk that the flaws will never be discovered, 

with the consequence that we come away thinking that 

we’ve learned a truth (that isn’t true) or we’ve solved 

a problem (that isn’t really solved). Other researchers 

may base their studies on flawed results, not know-

ing about the flaws because there was no information 

provided that would lead to a deep understanding of 

how the experiment was designed and carried out. 

Writing a method section can help experimenters 

avoid invalidities in experimental design, and can 

help readers and reviewers determine the quality of 

the undertaking. 

Of course there are still other things that can go 

wrong. For example, even if you have ensured that 

your methods and measurements are completely 

valid, the chosen analysis procedure could be inap-

propriate for the undertaking. At least, however, you’ll 

have confidence that you won’t be starting out with 

invalid data. 

While the confounding issues discussed here apply 

to an easily-understood domain like keystroke bio-

metrics, they were nevertheless subtle, and have gone 

virtually unnoticed in the literature for decades. Your 

own experiments, whether in this domain or another, 

are likely to be just as susceptible to confounding and 

methodological errors, and their consequences just 

as damaging. We hope that this paper has raised the 

collective consciousness so that other researchers will 

be vigilant for the presence and effects of method-

ological flaws, and will do their best to identify and 

mitigate them. 

Richard Feynman, the 1965 Nobel Laureate in 

physics, said, “The principle of science, the definition 

almost, is the following: The test of all knowledge is 

experiment. Experiment is the sole judge of scientific 

‘truth’” [2]. Truth is separated from fiction by dem-

onstration—by experiment. In doing experiments, 

we want to make claims about the results. For those 

claims to be credible, the experiments supporting 

them need first to be free of the kinds of methodologi-

cal errors and confounds presented here. 
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1. On security engineering

A number of blind men came to an elephant. 

Somebody told them that it was an 

elephant. The blind men asked, “What is the 

elephant like?” and they began to touch its body. 

One of them said: “It is like a pillar.” This blind 

man had only touched its leg. Another man 

said, “The elephant is like a husking basket.” 

This person had only touched its ears. Similarly, 

he who touched its trunk or its belly talked of 

it differently.

~Ramakrishna Paramahamsa~

Security means many things to many people. For a 

software engineer, it often means that there are no 

buffer overflows or dangling pointers in the code. For 

a cryptographer, it means that any successful attack on 

the cypher can be reduced to an algorithm for com-

puting discrete logarithms or to integer factorization. 

For a diplomat, security means that the enemy can-

not read the confidential messages. For a credit card 

operator, it means that the total costs of the fraudulent 

transactions and of the measures to prevent them 

are low, relative to the revenue. For a bee, security 

means that no intruder into the beehive will escape 

her sting . . .

Is it an accident that all these different ideas go 

under the same name? What do they really have in 

common? They are studied in different sciences, 

ranging from computer science to biology, by a wide 

variety of different methods. Would it be useful to 

study them together?

1.1. What is security engineering?

If all avatars of security have one thing in common, it 

is surely the idea that there are enemies and potential 

On bugs and elephants:  

Mining for science of security
D u s k o  P a v l o v i c

attackers out there. All security concerns, from compu-

tation to politics and biology, come down to averting 

the adversarial processes in the environment that are 

poised to subvert the goals of the system. There are, 

for instance, many kinds of bugs in software, but only 

those that the hackers use are a security concern.

In all engineering disciplines, the system guaran-

tees a functionality, provided that the environment 

satisfies some assumptions. This is the standard 

assume-guarantee format of the engineering correct-

ness statements. Such statements are useful when the 

environment is passive so that the assumptions about 

it remain valid for a while. The essence of security en-

gineering is that System and Environment face off as 

opponents, and Environment actively seeks to invali-

date System’s assumptions.

Security is thus an adversarial process. In all engi-

neering disciplines, failures usually arise from some 

engineering errors. In security, failures arise in spite of 

compliance with the best engineering practices of the 

moment. Failures are the first-class citizens of security. 

For all major software systems, we normally expect 

security updates, which usually arise from attacks and 

often inspire them.

1.2. Where did security engineering 

come from?

The earliest examples of security technologies are 

found among the earliest documents of civilization. 

Figure 1, on the following page, shows security tokens 

with a tamper protection technology from almost 

6,000 years ago. Figure 2 depicts the situation where 

this technology was probably used. Alice has a lamb 

and Bob has built a secure vault, perhaps with multiple 

security levels, spacious enough to store both Bob’s 

and Alice’s assets. For each of Alice’s assets deposited 
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in the vault, Bob issues a clay token with an inscrip-

tion identifying the asset. Alice’s tokens are then 

encased into a bulla—a round, hollow envelope of 

clay—that is then baked to prevent tampering. When 

she wants to withdraw her deposits, Alice submits 

her bulla to Bob; he breaks it, extracts the tokens, 

and returns the goods. Alice can also give her bulla 

to Carol, who can also submit it to Bob to withdraw 

the goods, or pass it on to Dave. Bullae can thus be 

traded and facilitate an exchange economy. The tokens 

used in the bullae evolved into the earliest forms of 

money; and the inscriptions on them led to the earliest 

numeral systems, as well as to Sumerian cuneiform 

script, which was one of the earliest alphabets. Secu-

rity thus predates literature, science, mathematics, and 

even money.

1.3. Where is security engineering going?

Through history, security technologies evolved gradu-

ally, serving the purposes of war and peace, protecting 

public resources and private property. As computers 

pervaded all aspects of social life, security became 

interlaced with computation, and security engineering 

came to be closely related with computer science. The 

developments in the realm of security are nowadays 

inseparable from the developments in the realm of 

computation. The most notable such development is, 

of course, cyberspace.

A brief history of cyberspace. In the beginning, engi-

neers built computers and wrote programs to control 

computations. The platform of computation was the 

computer, and it was used to execute algorithms and 

calculations, allowing people to discover, for example, 

fractals, and to invent compilers that allowed them to 

write and execute more algorithms and more calcula-

tions more efficiently. Then the operating system be-

came the platform of computation, and software was 

developed on top of it. The era of personal comput-

ing and enterprise software broke out. And then the 

Internet happened, followed by cellular networks, and 

wireless networks, and ad hoc networks, and mixed 

networks. Cyberspace emerged as the distance-free 

FIGURE 2. To withdraw her sheep from Bob’s secure vault, Alice 

submits a tamper-proof token, like those shown in figure 1.

FIGURE 1. Tamper protection (bulla envelope with 11 plain and 

complex tokens inside) from the Near East, circa 3700–3200 BC. 

(The Schøyen Collection MS 4631. ©The Schøyen Collection, 

Oslo and London. Available at: www.schoyencollection.com.)
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space of instant, costless communication. Nowadays, 

software is developed to run in cyberspace. 

The Web is, strictly speaking, just a software system, 

albeit a formidable one. A botnet is also a software 

system. As social space blends with cyberspace, many 

social (business, collaborative) processes can be use-

fully construed as software systems that run on social 

networks as hardware. Many social and computational 

processes become inextricable. Table 1 summarizes 

the crude picture of the paradigm shifts that led to this 

remarkable situation.

TABLE 1. Paradigms of computation

Ancient 

Times

Middle  

Ages

Modern 

Times

Platform computer operating 

system

network

Applications Quicksort, 

compiler

MS Word, 

Oracle

WWW, 

botnets

Requirements correctness, 

termination

liveness, 

safety

trust,  

privacy

Tools programming 

languages

specification 

languages

scripting 

languages

But as every person got connected to a computer, 

and every computer to a network, and every net-

work to a network of networks, computation became 

interlaced with communication and ceased to be 

programmable. The functioning of the web and of 

web applications is not determined by the code in the 

same sense as in a traditional software system; after 

all, web applications do include the human users as a 

part of their runtime. The fusion of social and compu-

tational processes in cybersocial space leads to a new 

type of information processing, where the purposeful 

program executions at the network nodes are supple-

mented by spontaneous data-driven evolution of 

network links. While the network emerges as the new 

computer, data and metadata become inseparable, and 

a new type of security problems arises.

A brief history of cybersecurity. In early computer 

systems, security tasks mainly concerned sharing of 

the computing resources. In computer networks, se-

curity goals expanded to include information protec-

tion. Both computer security and information security 

essentially depend on a clear distinction between 

the secure areas and the insecure areas, separated 

by a security perimeter. Security engineering caters 

for computer security and for information security 

by providing the tools to build the security perim-

eter. In cyberspace, the secure areas are separated 

from the insecure areas by the “walls” of cryptogra-

phy, and they are connected through the “gates” of 

cryptographic protocols.

But as networks of computers and devices spread 

through physical and social spaces, the distinctions 

between the secure and the insecure areas become 

blurred. And in such areas of cybersocial space, where 

information processing does not yield to program-

ming and cannot be secured by cryptography and 

protocols, security cannot be assured by engineer-

ing methodologies alone. The methodologies of data 

mining and classification, needed to secure such areas, 

form a bridge from information science to a putative 

security science.

2. On security science

It is the aim of the natural scientist to discover 

mathematical theories, formally expressed as 

predicates describing the relevant observations 

that can be made of some [natural] system. 

. . . The aim of an engineer is complementary 

to that of the scientist. He starts with a 

specification, formally expressible as a predicate 

describing the desired observable behaviour. 

Then . . . he must design and construct a 

product that meets that specification.

~Tony Hoare~

The preceding quote was the first paragraph in one 

of the first papers on formal methods for software 

engineering, published under the title “Programs 

are predicates.” Following this slogan, software has 

been formalized by logical methods and viewed as 

an engineering task ever since. But computation 

evolved, permeated all aspects of social life, and came 

to include not just the purposeful program executions, 

but also spontaneously evolving network processes. 

Data and metadata processing became inseparable. In 

cyberspace, computations are not localized at network 

nodes, but also propagate with nonlocal data flows 

and with the evolution of network links. While the 

local computations remain the subject of software 

engineering, network processes are also studied in the 

emerging software and information sciences, where 

the experimental validation of mathematical models 
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has become the order of the day. Modern software 

engineering is therefore coupled with an empiric soft-

ware science, as depicted in figure 3. In a similar way, 

modern security engineering needs to be coupled with 

an empiric security science.

2.1. Why security science?

Conjoining cyber, physical, and social spaces by net-

works gives rise to new security problems that com-

bine computational, physical, and social aspects. They 

cross the boundaries of the disciplines where security 

was studied before, and require new modeling tools, 

and a new, unified framework, with a solid scientific 

foundation, and empiric methods to deal with the 

natural and social processes on which security now 

depends. In many respects, a scientific foundation for 

the various approaches to security would have been 

beneficial even before; but now it became necessary.

Let us have a closer look at the paradigm shift to 

postmodern cybersecurity in table 2. It can be il-

lustrated as the shift from figure 4 to figure 5. The 

fortress in figure 4 represents the static, architectural 

view of security. A fortress consists of walls and gates 

separating the secure area within from the insecure 

area outside. The boundary between these two areas 

is the security perimeter. The secure area may be 

further subdivided into areas of higher security and 

areas of lower security. These intuitions extend into 

cyberspace, where crypto systems and access controls 

can be viewed as the walls, preventing the undesired 

traffic; whereas, authentication protocols and authori-

zation mechanisms can be construed as the gates, al-

lowing the desired traffic. But as every fortress owner 

knows, the walls and the gates are not enough for 

security; you also need weapons, soldiers, and maybe 

even some detectives and judges. They take care of the 

dynamic aspects of security. Dynamic security evolves 

through social processes, such as trust, privacy, repu-

tation, or influence. The static and dynamic aspects 

depend on each other. For example, the authentication 

on the gates is based on some credentials intended to 

prove that the owner is honest. These credentials may 

be based on some older credentials, but down the line 

a first credential must have resulted from a process of 

trust building or from a trust decision, whereby the 

principal’s honesty was accepted with no credentials. 

The word credential has its root in Latin credo, which 

means “I believe.”

The attacks mostly studied in security research can 

be roughly divided into cryptanalytic attacks and pro-

tocol attacks. They are the cyber versions of the simple 

frontal attacks on the walls and the gates of a fortress. 

Such attacks are static in the sense that the attack-

ers are outside, the defenders inside, and the two are 

easily distinguished. The dynamic attacks come about 

when some attackers penetrate the security perimeter 

and attack from within, as in figure 5. They may even 

blend with the defenders and become spies. Some 

of them may build up trust and infiltrate the fortress 

earlier, where they wait as moles. Some of the insiders 

may defect and become attackers. The traitors and the 

spies are the dynamic attackers; they use the vulner-

abilities in the process of trust. To deter them, all 

cultures reserve for the breaches of trust the harshest 

punishments imaginable; Dante, in his description of 

Hell, places the traitors into the deepest, Ninth Circle. 

As a dynamic attack, treason was always much easier 

to punish than to prevent.

In cybersecurity, a brand new line of defense 

against dynamic attacks relies on predictive analytics, 

based on mining the data gathered by active or passive 

TABLE 2. Paradigms of security

Middle 

Ages

Modern 

Times

Postmodern 

Times

Space computer 

center

cyberspace cybersocial 

space

Assets computing 

resources

information public and 

private 

resources

Requirements availability, 

authorization

integrity, 

confidentiality

trust, privacy

Tools locks, tokens, 

passwords

cryptography, 

protocols

mining and 

classification

Specification

   Software

Engineering: 

Implement, 

synthesize

Science: 

Analyze, 

learn

FIGURE 3. Conceptualization loop: The life cycle of computation.

Engineering: 

implement, 

synthesize

Science: 

analyze, 

learn
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FIGURE 4. Static security: Multilevel architecture. (Illustration by Mark Burgess at 

www.markburgess.co.uk.)

observations, network probes, honeypots, or direct 

interactions. It should be noted that the expanding 

practices of predictive modeling are not engineering 

methodologies, geared toward building some specified 

systems, but the first simple tools of a security science, 

recognizing security as a process. 

2.2. What is security science?

Although the security environment maliciously defies 

any system’s assumptions that it can, security engi-

neering still pursues its tasks strictly within the frame-

work of the assume-guarantee methods. Indeed, to 

engineer a system, we must frame an environment for 

it; to guarantee system behavior, we must assume the 

environment behavior; to guarantee system security, 

we must specify an attacker model. That is the essence 

of the engineering approach. Following that approach, 

the cryptographic techniques of security engineering 

are based on the fixed assumption that the environ-

ment is computationally limited and cannot solve 

certain hard problems.  (Defy that, Environment!)

But sometimes, as we have seen, it is not realistic 

to assume even that there is a clear boundary between 

the system and the environment. Such situations have 

become pervasive with the spread of networks sup-

porting not only social, commercial, and collaborative 

applications, but also criminal and terrorist organiza-

tions. When there is a lot going on, you cannot be sure 
FIGURE 5. Security dynamics: Threats within.

who is who. In large networks, with 

immense numbers of processes, 

the distinction between the sys-

tem and the environment becomes 

meaningless, and the engineering 

assume-guarantee approach must be 

supplemented by the analyze-adapt 

approach of science.  The task of the 

analyze-adapt approach of science 

is to recover the distinction between 

system and environment—whenever 

possible, albeit as a dynamic vari-

able—and to adaptively follow its 

evolution. Similar situations, where 

engineering interventions are inter-

leaved with scientific analyses, arise 

not only in security—where they 

elicit security science to support 

security engineering—but also, for 

example, in the context of health—

where they elicit medical science to 

support health care. And just as health is not achieved 

by isolating the body from the external world, but by 

supporting its internal defense mechanisms, security is 

not achieved by erecting fortresses, but by supporting 
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dynamic defenses, akin to the immune response. 

While security engineering provides blueprints and 

materials for static defenses, it is the task of security 

science to provide guidance and adaptation methods 

for dynamic defenses.

In general, science is the process of understanding 

the environment, adapting the system to it, chang-

ing the environment by the system, adapting to these 

changes, and so on. Science is thus an ongoing dialog 

of the system and the environment, separated and 

conjoined along the ever-changing boundaries. Dy-

namic security, on the other hand, is an ongoing battle 

between the ever-changing teams of attackers and 

defenders. Only scientific probing and analyses of this 

battle can tell who is who at any particular moment.

In summary, if security engineering is a family of 

methods to keep the attackers out, security science is 

a family of methods to catch the attackers once they 

get in.

It may be interesting to note that these two families 

of methods, viewed as strategies in an abstract security 

game, turn out to have opposite winning odds. It is 

often observed that the attackers only need to find one 

attack vector to enter the fortress, whereas the defend-

ers must defend all attack vectors to prevent them. But 

when the battle switches to the dynamic mode and the 

defense moves inside, then the defenders only need to 

find one marker to recognize and catch the attackers; 

whereas, the attackers must cover all their markers. 

This strategic advantage is also the critical aspect of 

the immune response, where the invading organisms 

are purposely sampled and analyzed for chemical 

markers. In security science, this sampling and analy-

ses take the form of data mining.

2.3. Where to look for security science?

The germs of a scientific approach to security, with 

data gathering, statistical analyses, and experimental 

validation, are already present in many intrusion de-

tection and antivirus systems, as well as in spam filters 

and some firewalls. Such systems use measurable 

inputs and have quantifiable performance and model 

accuracy and thus conform to the basic requirements 

of the scientific method. The collaborative processes 

for sharing data, comparing models, and retesting 

and unifying results complete the social process of 

scientific research.

However, a broader range of deep security problems 
is still awaiting applications of a broader range of pow-
erful scientific methods that are available in this realm. 
At least initially, the statistical methods of security sci-
ence will need to be borrowed from information sci-
ence. Security, however, imposes special data analysis 
requirements, some of which have been investigated in 
the existing work and led to novel approaches. In the 
long run, security science will undoubtedly engender 
its own domain-specific data analysis methods.

In general, security engineering solutions are based 
on security infrastructure: Internet protocol security 
(IPSec) suites, Rivest-Shamir-Adleman (RSA) systems, 
and elliptic curve cryptography (ECC) provide typi-
cal examples. In contrast, security science solutions 
emerge where the available infrastructure does not 
suffice for security. The examples abound—a mobile 
ad hoc network (MANET), for example, is a network 
of nodes with no previous contacts, direct or indirect, 
and thus no previous infrastructure. Although ad-
vanced MANET technologies have been available for 
more than 15 years, secure MANETs are still a bit of 
a holy grail. Device pairing, social network security, 
and web commerce security also require secure ad hoc 
interactions akin to the social protocols that regulate 
new encounters in social space. Such protocols are 
invariably incremental and accumulating, analyzing 
and classifying the data from multiple channels until 
a new link is established or aborted. Powerful data-
mining methods have been developed and deployed in 
web commerce and financial security, but they are still 
awaiting systematic studies in noncommercial security 
research and systematic applications in noncommer-
cial security domains.

3. Summary

Security processes are distributed, subtle, and com-
plex, and there are no global observers. Security is like 
an elephant, and we are like the blind men touching 
its body. For the cryptographers among us, the secu-
rity elephant consists of elliptic curves and of integers 
with large factors. Many software engineers among us 
derive their view of the security elephant entirely from 
their view of the software bugs flying around it.

Beyond and above all of our partial views is the 

actual elephant—people cheating each other, stealing 

secrets and money, forming online gangs and terror-

ist networks. There is a whole wide world of social 
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processes of attacking and defending the assets by 

methods beyond the reach of security engineering. 

Such attacks and fraud cannot be debugged or pro-

grammed away; they cannot be eliminated by cryp-

tography, protocols, or policies. Security engineer-

ing defers such attacks to the marginal notes about 

“social engineering.”

However, since these attacks nowadays evolve in 

networks, the underlying social processes can be 

observed, measured, analyzed, understood, validated, 

and even experimented with. Security can be im-

proved by security science, combining and refining the 

methods of information sciences, social sciences, and 

computational sciences. 
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1. Introduction

Compositional security is a well-recognized scientific 
challenge [1]. Contemporary systems are built up 
from smaller components, but even if each compo-
nent is secure in isolation, a system composed of 
secure components may not meet its security require-
ments—an adversary may exploit complex interac-
tions between components to compromise security. 
Attacks using properties of one component to subvert 
another have shown up in practice in many different 
settings, including network protocols and infrastruc-
ture [2, 3, 4, 5, 1], web browsers and infrastructure 
[6, 7, 8, 9, 10], and application and systems software 

and hardware [11, 12, 13]. 

A theory of compositional security should iden-
tify relationships among systems, adversaries, and 

Programming language 

methods for compositional 

security  |  
A n u p a m  D a t t a  a n d  

J o h n  C .  M i t c h e l l

D
ivide-and-conquer is an important paradigm in computer 

science that allows complex software systems to be 

built from interdependent components. However, 

there are widely recognized difficulties associated with 

developing divide-and-conquer paradigms for computer 

security; we do not have principles of compositional security 

that allow us to put secure components together to produce 

secure systems. The following article illustrates some of the 

problems and solutions we have explored in recent research on 

compositional security, compares them to other approaches 

explored in the research community, and describes important 

remaining challenges.

properties, such that pre-

cisely defined operations 

over systems and adversaries 

preserve security properties. It 

should explain known attacks, 

predict previously unknown attacks, 

and inform design of new systems. 

The theory should be general—it should 

apply to a wide range of systems, adver-

saries, and properties. Guided by these 

desiderata, we initiated an investigation of 

compositional security in the domain of security 

protocols with the Protocol Composition Logic (PCL) 

project [14, 15, 16]. Building on these results, we then 

developed general secure composition principles 

that transcend specific application domains (for ex-

ample, security protocols, access control systems, web 
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platform) in the Logic of Secure Systems (LS2) proj-

ect [17]. These theories have been applied to explain 

known attacks, predict previously unknown attacks, 

and inform the design of practical protocols and 

software systems [12, 4, 18, 3, 19, 20, 21].

In both projects, we addressed two basic 

problems in compositional security: non-

destructive and additive composition.

Nondestructive composition 

ensures that if two system compo-

nents are combined, then neither 

degrades the security properties 

of the other. This is particular-

ly complicated when system 

components share state. 

For example, if an alter-

native mode of operation 

is added to a protocol, 

then some party may 

initiate a session in 

one mode and simul-

taneously respond to 

another session in 

another mode, using 

the same public key 

(an example of shared 

state) in both. Unless 

the modes are de-

signed not to interfere, 

there may be an attack 

on the multimode 

protocol that would not 

arise if only one mode 

were possible. In a simi-

lar example, new attacks 

became possible when 

trusted computing systems 

were augmented with a new 

hardware instruction that 

could operate on protected reg-

isters (an example of shared state) 

previously accessible only through a 

prescribed protocol [12].

Additive composition supports a combina-

tion of system components in a way that accumulates 

security properties. Combining a basic key exchange 

protocol with an authentication mechanism to 

produce a protocol for authenticated key exchange 

provides one example of additive composition [15]. 

Systematically adding cryptographic operations to 

basic authentication protocols to provide additional 

properties such as identity protection provides anoth-

er example of additive composition [22].

Both additive and nondestructive compositions are 

important in practice. If we want a system with the 

positive security features of two components, A and B, 

we need nondestructive composition conditions to be 

sure that we do not lose security features we want, and 

we need additive composition conditions to make sure 

we get the advantages of A and B combined.

Before turning to a high-level presentation of tech-

nical aspects of nondestructive and additive composi-

tion in PCL and LS2, we present two concrete ex-

amples that illustrate how security properties fail to be 

preserved under composition (that is, both examples 

are about the failure of nondestructive composition). 

We also compare our composition methods to three 

related approaches—compositional reasoning for cor-

rectness properties of systems [23, 24], the universal 

composability framework [25, 26], and a refinement 

type system for compositional type-checking of secu-

rity protocols [27]. Finally, we describe directions for 

future work.

2. Two examples

While these protocol examples are contrived, the 

phenomena they illustrate are not: It is possible for 

one component of a system to expose an interface to 

the adversary that does not affect its own security but 

compromises the security of other components. Later, 

we will describe two general principles of composi-

tional security that could be used to design security 

protocols and other kinds of secure software systems 

while avoiding the kind of insecure interaction illus-

trated by these examples.

Example 1: Authentication failure. The following two 

protocols use digital signatures. The first protocol 

provides one-way authentication when used in isola-

tion; however, this property is not preserved when the 

second protocol is run concurrently.

 Protocol 1.1. Alice generates a fresh random 

number r and sends it to Bob. Upon receiving 

such a message, Bob replies to the sender of the 

message (as recorded in the message) with his 

signature over the fresh random number and 
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the sender’s name—that is, if Bob receives the 

message with the random number r from sender 

A, then Bob replies with his signature over r and 

A. This protocol guarantees a form of one-way 

authentication: After sending the first message 

to Bob and then receiving Bob’s second message, 

Alice is guaranteed that Bob received the first 

message that she sent to him and then sent the 

second message and intended it for her.

 Protocol 1.2. Upon receiving any message m, Bob 

signs it with his private signing key and sends it 

out on the network. 

When the two protocols are run concurrently, 

protocol 1.1 no longer provides one-way authentica-

tion: Alice cannot be certain that Bob received her 

first message and intended the signed message for her 

as part of the execution of this protocol; it could very 

well be that Bob produced the signature as part of 

protocol 1.2 in response to an adversary M who inter-

cepted Alice’s message and used it to start a session of 

protocol 1.2 with Bob.

Example 2: Secrecy failure. Using network protocols 

as an illustration, here are two secure, unidirectional 

protocols for communication between Alice and Bob. 

Both involve public key cryptography, in which two 

different keys are used for encryption and decryption, 

and the encryption key may be distributed publicly.

 Protocol 2.1. In this protocol, for communication 

from Alice to Bob, Alice sends a message to Bob 

by encrypting it with Bob’s public encryption 

key. As part of each message, in order to make 

our example illustrate the general point, Alice 

also reveals her secret decryption key, making 

public-key encryption to Alice insecure.

 Protocol 2.2. This protocol is the same as the pre-

vious one (that is, protocol 2.1), but in reverse: 

Bob communicates to Alice by encrypting mes-

sages using Alice’s public key and revealing his 

own private decryption key.

Both protocol 2.1 and 2.2 are secure when used by 

themselves: If Bob sends Alice a message encrypted 

with Alice’s public key, then only Alice can decrypt 

and read the message. However, it should be clear that 

composing these two protocols to communicate be-

tween Alice and Bob in both directions is completely 

insecure because when Alice sends Bob a message, 

she leaks her private key, and when Bob communi-

cates to Alice, he leaks his private key. After at least 

one message in each direction, both public keys have 

been leaked and any eavesdropper on the network can 

decrypt and read all the messages.

3. Two principles of secure composition

In the following, we describe two principles of se-

cure composition, and we use these principles to 

explain the examples of insecure composition in the 

previous section.

3. 1. Principle 1: Preserving invariants of 

system components 

The central idea behind this principle is that the 

security property of a system component is preserved 

under composition if every other component respects 

invariants used in the proof of security of the com-

ponent in the face of attack. In example 1, the only 

relevant invariant for the authentication property of 

protocol 1.1 is of the following form: “If an honesta 

principal signs a message of the form < r, A >, then he 

must have previously received r in a message with A as 

the identifier for the sender.” This invariant is not pre-

served by protocol 1.2, as demonstrated by the attack 

described in the previous section, leading to a failure 

of nondestructive composition.

To illustrate the generality of this principle, we 

briefly discuss a published analysis of the widely de-

ployed Trusted Computing Group (TCG) technology 

using this principle [12], and we discuss the conse-

quent discovery of a real incompatibility between an 

existing standard protocol for attesting the integrity 

of the software stack to a remote party and a newly 

added hardware instruction. Machines with trusted 

computing abilities include a special, tamper-proof 

hardware called the Trusted Platform Module or 

TPM, which contains protected append-only registers 

to store measurements (that is, hashes) of programs 

loaded into memory and a dedicated coprocessor 

to sign the contents of the registers with a unique 

hardware-protected key. The protocol in question, 

called Static Root of Trust Measurement (SRTM), 

uses this hardware to establish the integrity of the 

software stack on a machine to a trusted remote third 

a. A principal is honest if he does not deviate from the steps of the protocol.



 The Next Wave | Vol. 19 No. 2 | 2012 | 33

party. The protocol works by requiring each program 

to store, in the protected registers, the hash of any 

program it loads. The hash of the first program loaded 

into memory, usually the boot loader, is stored in the 

protected registers by the booting firmware, usually 

the basic input/output system (BIOS). The integrity of 

the software stack of a machine following this protocol 

can be proved to a third party by asking the coproces-

sor to sign the contents of the protected registers with 

the hardware-protected key, and sending the signed 

hashes of loaded programs to the third party. The 

third party can compare the hashes to known ones, 

thus validating the integrity of the software stack.

Note that the SRTM protocol is correct only if soft-

ware that has not already been measured cannot ap-

pend to the protected registers. Indeed, this invariant 

was true in the hardware prescribed by the initial TCG 

standard and, hence, this protocol was secure then. 

However, a new instruction, called latelaunch, 

added to the standard in a later extension allows an 

unmeasured program to be started with full access to 

the TPM. This violates the necessary invariant- and 

results in an actual attack on the SRTM protocol: 

A program invoked with latelaunch may add 

hashes of arbitrary programs to the protected registers 

without actually loading them. Since the program is 

not measured, the remote third party obtaining the 

signed measurements will never detect its presence. 

An analysis of the protocol using the method outlined 

here discovered this incompatibility between the 

SRTM protocol and the latelaunch instruction. 

In the analysis, the TPM instruction set, including 

latelaunch, were modeled as interfaces available 

to programs. The invariant can be established for all 

interfaces except latelaunch, thus leading to failure 

of a proof of correctness of SRTM with latelaunch 

and leading to discovery of the actual attack.

This composition principle is related to the form 

of assume-guarantee reasoning initially proposed 

by Jones for reasoning about correctness properties 

of concurrent programs [23]. However, one differ-

ence is that, in contrast to Jones’ work, we consider 

preservation of properties of system components 

under composition in the presence of an active ad-

versary whose exact program (or invariants) is not 

known. After sketching the technical approach in the 

next sections, we will explain how we address this 

additional complexity.

3.2. Principle 2: Secure rely-guarantee 

reasoning 

Inductive security properties (that is, properties which 

hold at a point of time if and only if they have held 

at all prior points of time) require a different form of 

compositional reasoning that builds on prior work on 

rely-guarantee reasoning for correctness properties 

of programs [23, 24].

Suppose we wish to prove that property φ holds 

at all times. First, we identify a set S = {T
1
,…, T

n
} of 

trusted components relevant to the property and local 

properties Ψ
T1

,…,Ψ
Tn

 of these components, satisfying 

the following conditions:

(1)    If φ holds at all time points strictly before any 

given time point, then each of Ψ
T1

,…,Ψ
Tn

 holds 

at the given time point.

(2)    If φ does not hold at any time, then at least one 

of Ψ
T1

,…,Ψ
Tn

 must have been violated strictly 

before that time.
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The rely-guarantee principle states that under these 
conditions, if φ holds initially, then φ holds forever.

We return to example 2 to illustrate the application 

of this principle. In order to prove the secrecy of the 

encrypted message, it is necessary to prove that the 

private decryption key is known only to the associated 

party. If protocol 2.1 (or protocol 2.2) were to run in 

isolation, the relevant decryption key would indeed 

be known only to the associated party (Alice or Bob). 

This can be proved using the rely-guarantee reasoning 

technique described above and noting that the recipi-

ent of the encrypted message never sends out his or 

her private decryption key and that the other party 

cannot send it out (assuming that it has not already 

been sent out). However, when the two protocols are 

composed in parallel, the proof no longer works be-

cause the sender in one protocol is the recipient in the 

other; thus, we can no longer prove that the recipient’s 

private decryption key is not sent out on the network. 

Indeed, the composition attack arises precisely be-

cause the recipient’s private decryption key is sent out 

on the network.

Another application of the rely-guarantee technique 
is in proofs of secrecy of symmetric keys generated in 
network protocols. We explain one instance here—
proving that the so called authentication key (AKey) 
generated during the Kerberos V protocol (a widely 
used industry standard) becomes known only to three 
protocol participants [17, 18]: the client authenticated 
by the key, the Kerberos authentication server (KAS) 
that generates the key, and the ticket granting server 
(TGS) to whom the key authenticates the client. At 
the center of this proof is the property that whenever 
any of these three participants send out the AKey onto 
the (unprotected) network, it is encrypted with other 
secure keys. Proving this property requires induction 
because, as part of the protocol, the client blindly for-
wards an incoming message to the TGS. Consequently, 
the client’s outgoing message does not contain the un-
encrypted AKey because the incoming message does 
not contain the unencrypted AKey in it. The latter fol-
lows from the inductive hypothesis that any network 
adversary could not have had the unencrypted AKey 

to send to the client.

Formally, the rely-guarantee framework is instanti-
ated by choosing φ to be the property that any mes-
sage sent out on the network does not contain the un-
encrypted AKey. The properties Ψ

T 
, for components 

T of the client, KAS, and the TGS model the require-
ment that the respective components do not send out 
the AKey unencrypted. Then, the proof of condition 
(2) of the rely-guarantee framework is trivial, and 
condition (1) follows from an analysis of the programs 
of the client, the KAS, and the TGS. The first of these, 
as mentioned earlier, uses the assumption that φ holds 
at all points in the past. Note that the three programs 
are analyzed individually, even though the secrecy 
property relies on the interactions between them, that 
is, the proof is compositional.

4. Protocol Composition Logic

Protocol Composition Logic (PCL) [14, 15, 16] is a 

formal logic for proving security properties of network 

protocols that use public and symmetric key cryptog-

raphy. The system has several parts:

 A simple programming language for defining 

protocols by writing programs for each role 

of the protocol. For example, the secure sock-

ets layer (SSL) protocol can be modeled in this 

language by writing two programs—one for the 

client role and one for the server role of SSL. 

Each program is a sequence of actions, such as 

sending and receiving messages, decryption, and 

digital signature verification. The operational 

semantics of the programming language de-

fine how protocols execute concurrently with a 

symbolic adversary (sometimes referred to as the 

Dolev-Yao adversary) that controls the network 

but cannot break the cryptographic primitives.

 A pre/postcondition logic for describing the 

starting and ending security conditions for 

protocol. For example, a precondition might 

state that a symmetric key is shared by two 

agents, and a postcondition might state that 

a new key exchanged using the symmetric 

key for encryption is only known to the same 

two agents.

 Modal formulas, denoted θ[P]X 
 

, for stating 

that if a precondition θ holds initially, and a 

protocol thread X completes the steps P, then 

the postcondition  will be true afterwards irre-

spective of concurrent actions by other agents 

and the adversary. Typically, security proper-

ties of protocols are specified in PCL using such 

modal formulas.
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A formal proof system for deriving true modal 

formulas about protocols. The proof system 

consists of axioms about individual protocol 

actions and inference rules that yield assertions 

about protocols composed of multiple steps.

One of the important ideas in PCL is that although 

assertions are written only using the steps of the 

protocol, the logic is sound in a strong sense: Each 

provable assertion involving a sequence of actions 

holds in any protocol run containing the given actions 

and arbitrary additional actions by a malicious adver-

sary. This approach lets us prove security properties 

of protocols under attack while reasoning only about 

the actions of honest parties in the protocol, thus 

significantly reducing the size of protocol proofs in 

comparison to other proof methods, such as Paulson’s 

Inductive Method [28].

Intuitively, additive combination is achieved using 

modal formulas of the form θ[P]
A

. For example, the 

precondition θ might assert that A knows B’s public 

key, the actions P allow A to receive a signed message 

and verify B’s signature, and the postcondition  may 

say that B sent the signed message that A received. 

The importance of modal formulas with before-after 

assertions is that we can combine assertions about 

individual protocol steps to derive properties of a se-

quence of steps: If [P]
A
Ψ and Ψ[P']

A
θ, then [PP']

A
θ. 

For example, an assertion assuming that keys have 

been successfully distributed can be combined with 

steps that do key distribution to prove properties of a 

protocol that distributes keys and uses them.

We ensure one form of nondestructive combination 

using invariance assertions, capturing the first compo-

sition principle described in Section 3. The central as-

sertion in our reasoning system, Γ [P]
A
Ψ, says that 

in any protocol satisfying the invariant Γ, the before-

after assertion [P]
A
Ψ holds in any run (regardless of 

any actions by any dishonest attacker). Typically, our 

invariants are statements about principals that follow 

the rules of a protocol, as are the final conclusions. 

For example, an invariant may state that every honest 

principal maintains secrecy of its keys, where honest 

means simply that the principal only performs actions 

that are given by the protocol. A conclusion in such a 

protocol may be that if Bob is honest (so no one else 

knows his key), then after Alice sends and receives 

certain messages, Alice knows that she has communi-

cated with Bob. Nondestructive combination occurs 

when two protocols are combined and neither violates 

the invariants of the other.

PCL also supports a specialized form of secure 

rely-guarantee reasoning about secrecy properties, 

capturing the second composition principle in Section 

3. In order to prove that the network is safe (that is, all 

occurrences of the secret on the network appear under 

encryption with a set of keys κ not known to the 

adversary), the proof system requires us to prove that 

assuming that the network is safe, all honest agents 

only send out “safe” messages, that is, messages from 

which the secret cannot be extracted without knowing 

the keys in the set κ [18].

These composition principles have been applied to 

prove properties of a number of industry standards 

including SSL/TLS, IEEE 802.11i, and Kerberos V5.

5. Logic of Secure Systems

The Logic of Secure Systems (LS2) (initially presented 

in [12]) builds on PCL to develop related composition 

principles for secure systems that perform network 

communication and operations on local shared 

memory as well as on associated adversary models. 

These principles have been applied to study industrial 

trusted computing system designs. The study uncov-

ered an attack that arises from insecure composition 

between two remote attestation protocols (see [12] 

for details). A natural scientific question to ask is 

whether one could build on these results to develop 

general secure composition principles that transcend 

specific application domains, such as network proto-

cols and trusted computing systems. Subsequent work 

on LS2 [17], which we turn to next, answers exactly 

this question.

Two goals drove the development of LS2. First, we 
posit that a general theory of secure composition must 
enable one to flexibly model and parametrically reason 
about different classes of adversaries. To develop such 
a theory, we view a trusted system in terms of the in-
terfaces its various components expose: Larger trusted 
components are built by connecting interfaces in the 
usual ways (client-server, call-return, message-passing, 
etc.). The adversary is confined to some subset of the 
interfaces, but its program is unspecified and can call 
those interfaces in ways that are not known a priori. 
Our focus on interface-confined adversaries thus 
provides a generic way to model different classes of 
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adversaries in a compositional setting. For example, 

in virtual machine monitor-based secure systems, 

we model an adversarial guest operating system by 

confining it to the interface exposed by the virtual 

machine monitor. Similarly, adversary models for web 

browsers, such as the gadget adversary (an attractive 

vector for malware today that leverages properties 

of Web 2.0 sites), can be modeled by confining the 

adversary to the read and write interfaces for frames 

guarded by the same-origin policy as well as by frame 

navigation policies [7]. The network adversary model 

considered in prior work on PCL and the adversary 

against trusted computing systems considered in the 

initial development of LS2 are also special cases of this 

interface-confined adversary model. At a technical 

level, interfaces are modeled as recursive functions in 

an expressive programming language. Trusted com-

ponents and adversaries are also represented using 

programs in the same programming language. Typi-

cally, we assume that the programs for the trusted 

components (or their properties) are known. However, 

an adversary is modeled by considering all possible 

programs that can be constructed by combining calls 

to the interfaces to which the adversary is confined.

Our second goal was to develop compositional rea-

soning principles for a wide range of classes of inter-

connected systems and associated interface-confined 

adversaries that are described using a rich logic. The 

approach taken by LS2 uses a logic of program specifi-

cations, employing temporal operators to express not 

only the states and actions at the beginning and end of 

a program, but also at points in between. This expres-

siveness is crucial because many security properties of 

interest, such as integrity properties, are safety prop-

erties [29]. LS2 supports the two principles of secure 

composition discussed in the previous section in the 

presence of such interface-confined adversaries. The 

first principle follows from a proof rule in the logic, 

and the second principle follows from first-order rea-

soning in the logic. We refer the interested reader to 

our technical paper for details [17].

6. Related work

We compare our approach to three related approach-

es—compositional reasoning for correctness proper-

ties of systems [23, 24], the Universal Composability 

(UC) framework [25, 26], and a refinement type 

system for compositional type-checking of security 

protocols [27].

The secure composition principles we developed are 

related to prior work on rely-guarantee reasoning for 

correctness properties of programs [23, 24]. However, 

the prior work was developed for a setting in which 

all programs are known. In computer security, how-

ever, it is unreasonable to assume that the adversary’s 

program is known a priori; rather, we model adversar-

ies as arbitrary programs that are confined to certain 

system interfaces as explained earlier. We prove invari-

ants about trusted programs and system interfaces 

that hold irrespective of concurrent actions by other 

trusted programs and the adversary. This additional 

generality, which is crucial for the secure composition 

principles, is achieved at a technical level using novel 

invariant rules. These rules allow us to conclude that 

such invariants hold by proving assertions of the form 

θ[P]
x
 over trusted programs or system interfaces; 

note that because of the way the semantics of the 

modal formula is defined, the invariants hold irrespec-

tive of concurrent actions by other trusted programs 

and the adversary, although the assertion only refers 

to actions of one thread X.

Recently, Bhargavan et al. developed a type system 

to modularly check interfaces of security protocols, 

implemented the system, and applied it to analysis of 

secrecy properties of cryptographic protocols [27]. 

Their approach is based on refinement types (that is, 

ordinary types qualified with logical assertions), which 

can be used to specify program invariants and pre- 

and postconditions. Programmers annotate various 

points in the model with assumed and asserted facts. 

The main safety theorem states that all programmer 

defined assertions are implied by programmer as-

sumed facts in a well-typed program. 

However, a semantic connection between the 

program state and the logical formulas representing 

assumed and asserted facts is missing. In contrast, 

we prove that the inference systems of our logics of 

programs (PCL and LS2) are sound with respect to 

trace semantics of the programming language. Our 

logic of programs may provide a semantic founda-

tion for the work of Bhargavan et al. and, dually, the 

implementation in that work may provide a basis for 
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mechanizing the formal system in our logics of pro-

grams. Bhargavan et al.’s programming model is more 

expressive than ours because it allows higher-order 

functions. We intend to add higher-order functions to 

our framework in the near future.

While all the approaches previously discussed 
involve proving safety properties of protocols and 
systems modeled as programs, an alternative approach 
to secure composition involves comparing the real 
protocol (or system) whose security we are trying 
to evaluate to an ideal functionality that is secure by 
construction and prove that the two are equivalent 
in a precise sense. Once the equivalence between the 
real protocol and the ideal functionality is established, 
the composition theorem guarantees that any larger 
system that uses the real protocol is equivalent to the 
system where the real protocol is replaced by the ideal 

functionality. 

This approach has been taken in the UC framework 
for cryptographic protocols [25, 26] and is also related 
to the notion of observational equivalence and simula-
tion relations studied in the programming languages 
and verification literature [30, 31]. When possible, 
this form of composition result is indeed very strong: 
Composition is guaranteed under no assumptions 
about the environment in which a component is used. 
However, components that share state and rely on one 
another to satisfy certain assumptions about how that 
state is manipulated cannot be compositionally ana-
lyzed using this approach; the secure rely-guarantee 
principle we develop is better suited for such analyses. 
One example is the compositional security analysis of 
the Kerberos protocol that proceeds from proofs of its 

constituent programs [18].

7. Future work

There are several directions for further work on this 
topic. First, automating the compositional reason-
ing principles we presented is an open problem. 
Rely-guarantee reasoning principles have already 
been automated for functional verification of realistic 
systems. We expect that progress can be made on this 
problem by building on these prior results. Second, 
while sequential composition of secure systems is 

an important step forward, a general treatment of 

additive composition that considers other forms of 

composition is still missing. Third, it is important to 

extend the compositional reasoning principles pre-

sented here to support analysis of more refined models 

that consider, for example, features of implementation 

languages such as C. Finally, a quantitative theory 

of compositional security that supports analysis of 

systems built from components that are not perfectly 

secure would be a significant result. 

About the authors

Anupam Datta is an assistant research professor 

at Carnegie Mellon University. Dr. Datta’s research 

focuses on foundations of security and privacy. He 

has made contributions toward advancing the scien-

tific understanding of security protocols, privacy in 

organizational processes, and trustworthy software 

systems. Dr. Datta has coauthored a book and over 30 

publications in conferences and journals on these top-

ics. He serves on the Steering Committee of the IEEE 

Computer Security Foundations Symposium (CSF), 

and has served as general chair of CSF 2008 and as 

program chair of the 2008 Formal and Computational 

Cryptography Workshop and the 2009 Asian Comput-

ing Science Conference. Dr. Datta obtained MS and 

PhD degrees from Stanford University and a BTech 

from the Indian Institute of Technology, Kharagpur, 

all in computer science.

John C. Mitchell is the Mary and Gordon Crary 

Family Professor in the Stanford Computer Sci-

ence Department. His research in computer secu-

rity focuses on trust management, privacy, security 

analysis of network protocols, and web security. He 

has also worked on programming language analysis 

and design, formal methods, and other applications 

of mathematical logic to computer science. Professor 

Mitchell is currently involved in the multiuniversity 

Privacy, Obligations, and Rights in Technology of 

Information Assessment (PORTIA) research project 

to study privacy concerns in databases and informa-

tion processing systems, and the National Science 

Foundation Team for Research in Ubiquitous Secure 

Technology (TRUST) Center.



38

Programming language methods for compositional security

References

[1] Wing JM. A call to action: Look beyond the horizon. 

IEEE Security & Privacy. 2003;1(6):62–67. DOI: 10.1109/

MSECP.2003.1253571

[2] Asokan N, Niemi V, Nyberg K. Man-in-the-middle in 

tunnelled authentication protocols. In: Christianson B, Cris-

po B, Malcolm JA, Roe M, editors. Security Protocols 11th 

International Workshop, Cambridge, UK, April 2-4, 2003, 

Revised Selected Papers. Berlin (Germany): Springer-Verlag; 

2005. p. 28–41. ISBN 13: 978-354-0-28389-8

[3] Kuhlman D, Moriarty R, Braskich T, Emeott S, Tripuni-

tara M. A correctness proof of a mesh security architecture. 

In: Proceedings of the 21st IEEE Computer Security Founda-

tions Symposium; Jun 2008; Pittsburgh, MA. p. 315–330. 

DOI: 10.1109/CSF.2008.23

[4] Meadows C, Pavlovic D. Deriving, attacking and 

defending the GDOI protocol. In: Proceedings of the Ninth 

European Symposium on Research in Computer Security; 

Sep 2004; Sophia Antipolis, France. p. 53–72. Available at: 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1

12.3254&rep=rep1&type=pdf

[5] Mitchell JC, Shmatikov V, Stern U. Finite-state analysis 

of SSL 3.0. In: Proceedings of the Seventh Conference on 

USENIX Security Symposium; Jan 1998; San Antonio, TX. p. 

16. Available at: http://www.usenix.org/publications/library/

proceedings/sec98/mitchell.html

[6] Barth A, Jackson C, Mitchell JC. Robust defenses 

for cross-site request forgery. In: Proceedings of the 

15th ACM Conference on Computer and Communica-

tions Security; Oct 2008; Alexandria, VA. p. 75–88. DOI: 

10.1145/1455770.1455782

[7] Barth A, Jackson C, Mitchell JC. Securing frame com-

munication in browsers. In: Proceedings of the 17th USENIX 

Security Symposium; Jul 2008; San Jose, CA. p. 17–30. 

Available at: http://www.usenix.org/events/sec08/tech/

full_papers/barth/barth.pdf

[8] Chen S, Mao Z, Wang YM, Zhang M. Pretty-bad-proxy: 

An overlooked adversary in browsers’ HTTPS deployments. 

In: Proceedings of the 30th IEEE Symposium on Security 

and Privacy; May 2009; Oakland, CA. p. 347–359. DOI: 

10.1109/SP.2009.12

[9] Jackson C, Barth A. ForceHTTPS: Protecting high-

security web sites from network attacks. In: Proceedings 

of the 17th International Conference on World Wide Web; 

Apr 2008; Beijing, China. p. 525–534. Available at: http://

www2008.org/papers/pdf/p525-jacksonA.pdf

[10] Jackson C, Barth A, Bortz A, Shao W, Boneh D. 

Protecting browsers from DNS rebinding attacks. In: 

Proceedings of the 14th ACM Conference on Computer and 

Communications Security; Oct 2007; Alexandria, VA. p. 

421–431. DOI: 10.1145/1315245.1315298

[11] Cai X, Gui Y, Johnson R. Exploiting Unix file-system 

races via algorithmic complexity attacks. In: Proceedings 

of the 30th IEEE Symposium on Security and Privacy; May 

2009; Oakland, CA; p. 27–41. DOI: 10.1109/SP.2009.10

[12] Datta A, Franklin J, Garg D, Kaynar D. A logic of 

secure systems and its application to trusted computing. In: 

Proceedings of the 30th IEEE Symposium on Security and Pri-

vacy; May 2009; Oakland, CA. p. 221–236. DOI: 10.1109/

SP.2009.16

[13] Tsafrir D, Hertz T, Wagner D, Da Silva D. Portably 

solving file TOCTTOU races with hardness amplification. 

In: Proceedings of the Sixth USENIX Conference on File 

and Storage Technologies; Feb 2008; San Jose, CA. p. 1–18. 

Available at: http://www.usenix.org/events/fast08/tech/

tsafrir.html

[14] Datta A, Derek A, Mitchell JC, Pavlovic D. A deriva-

tion system and compositional logic for security protocols. 

Journal of Computer Security. 2005;13(3):423–482. Available 

at: http://seclab.stanford.edu/pcl/papers/ddmp-jcs05.pdf

[15] Datta A, Derek A, Mitchell JC, Roy A. Pro-

tocol composition logic (PCL). Electronic Notes in 

Theoretical Computer Science. 2007;172:311–358. DOI: 

10.1016/j.entcs.2007.02.012

[16] Durgin N, Mitchell JC, Pavlovic D. A compositional 

logic for proving security properties of protocols. Jour-

nal of Computer Security. 2003;11(4):677–721. Available 

at: http://www-cs-students.stanford.edu/~nad/papers/

comp-jcs205.pdf

[17] Garg D, Franklin J, Kaynar DK, Datta A. Compo-

sitional system security with interface-confined adver-

saries. Electronic Notes in Theoretical Computer Science. 

2010;265:49–71. DOI: 10.1016/j.entcs.2010.08.005

[18] Roy A, Datta A, Derek A, Mitchell JC, Seifert JP. 

Secrecy analysis in protocol composition logic. In: Okada 

M, Satoh I, editors. Advances in Computer Science – ASIAN 

2006: Secure Software and Related Issues, 11th Asian Com-

puting Science Conference, Tokyo, Japan, December 6-8, 

2006. Berlin (Germany): Springer-Verlag; 2007. p. 197–213.

[19] Butler KRB, McLaughlin SE, McDaniel PD. Kells: 

A protection framework for portable data. In: Proceed-

ings of the 26th Annual Computer Security Applications 

Conference; Dec 2010; Austin, TX. p. 231–240. DOI: 

10.1145/1920261.1920296

[20] Kannan J, Maniatis P, Chun B. Secure data preserv-

ers for web services.  In: Proceedings of the Second USENIX 

Conference on Web Application Development; Jun 2011; 

Portland, OR. p. 25–36. Available at: http://www.usenix.org/

events/webapps11/tech/final_files/Kannan.pdf



[21] He C, Sundararajan M, Datta A, Derek A, Mitchell JC. 

A modular correctness proof of IEEE 802.11i and TLS. In: 

Proceedings of the 12th ACM Conference on Computer 

and Communications Security; Nov 2005; Alexandria, VA. 

p. 2–15. DOI: 10.1145/1102120.1102124

[22] Datta A, Derek A, Mitchell JC, Pavlovic D. Abstrac-

tion and refinement in protocol derivation. In: Proceedings 

of 17th IEEE Computer Security Foundations Workshop; 

Jun 2004; Pacific Grove, CA. p. 30–45. DOI: 10.1109/

CSFW.2004.1310730

[23] Jones CB. Tentative steps toward a development 

method for interfering programs. ACM Transactions on 

Programming Languages and Systems. 1983;5(4):596–619. 

DOI: 10.1145/69575.69577

[24] Misra J, Chandy KM. Proofs of networks of pro-

cesses. IEEE Transactions on Software Engineering. 

1981;7(4):417–426. DOI: 10.1109/TSE.1981.230844

[25] Canetti R. Universally composable security: A new 

paradigm for cryptographic protocols. In: Proceedings of 

the 42nd IEEE Symposium on the Foundations of Computer 

Science; Oct 2001; Las Vegas, NV. p. 136–145. DOI: 10.1109/

SFCS.2001.959888

[26] Pfitzmann B, Waidner M. A model for asynchronous 

reactive systems and its application to secure message 

transmission. In: IEEE Symposium on Security and Privacy; 

May 2001; Oakland, CA. p. 184–200. DOI: 10.1109/

SECPRI.2001.924298

[27] Bhargavan K, Fournet C, Gordon AD. Modular verifi-

cation of security protocol code by typing. In: Proceedings of 

the 37th ACM SIGACT-SIGPLAN Symposium on Principles 

of Programming Languages; Jan 2010; Madrid, Spain. 

p. 445–456. DOI: 10.1145/1706299.1706350

[28] Paulson L. Proving properties of security protocols by 

induction. In: Proceedings of 10th IEEE Computer Security 

Foundations Workshop; Jun 1997; Rockport, MA. p. 70–83. 

DOI: 10.1109/CSFW.1997.596788

[29] Alpern B, Schneider FB. Recognizing safety and live-

ness. Distributed Computing. 1987;2(3):117–126. DOI: 

10.1007/BF01782772

[30] Canetti R, Cheung L, Kaynar DK, Liskov M, Lynch 

NA, Pereira O, Segala R. Time-bounded task-PIOAs: A 

framework for analyzing security protocols. In: Proceed-

ings of the 20th International Symposium on Distributed 

Computing; Sep 2006; Stockholm, Sweden. p. 238–253. DOI: 

10.1007/11864219_17

[31] Kϋsters R, Datta A, Mitchell JC, Ramanathan A. On the 

relationships between notions of simulation-based security. 

Journal of Cryptology. 2008;21(4):492–546. DOI: 10.1007/

s00145-008-9019-9



40

W
hen running software applications and services, we rely on the underlying 

execution platform: the hardware and the lower levels of the software stack. 

The execution platform is susceptible to a wide range of threats, ranging from 

accidental bugs, faults, and leaks to maliciously induced Trojan horses. The problem is 

aggravated by growing system complexity and by increasingly pertinent outsourcing 

and supply chain consideration. Traditional mechanisms, which painstakingly validate all 

system components, are expensive and limited in applicability. 

What if the platform assurance 

problem is just too hard? Do we have 

any hope of securely running software 

when we cannot trust the underlying 

hardware, hypervisor, kernel, libraries, 

and compilers? 

This article will discuss a potential 

approach for doing just so: conducting 

trustworthy computation on untrusted 

execution platforms. The approach, 

proof-carrying data (PCD), circumnavi-

gates the threat of faults and 

leakage by reasoning solely 

about properties of a computa-

tion’s output data, regardless 

of the process that produced 

it. In PCD, the system designer 

prescribes the desired proper-

ties of the computation’s out-

puts. These properties are then 

enforced using cryptographic 

proofs attached to all data flow-

ing through the system and 

verified at the system perimeter 

as well as internal nodes. 
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1. Introduction 

Integrity of data, information flow control, and fault 

isolation are three examples of security properties 

of which attainment, in the general case and under 

minimal assumptions, is a major open problem. Even 

when particular solutions for specific cases are known, 

they tend to rely on platform trust assumptions (for 

example, the kernel is trusted, the central processing 

unit is trusted), and even then they cannot cross trust 

boundaries between mutually untrusting parties. For 

example, in cloud computing, clients are typically 

interested in both integrity [1] and confidentiality [2] 

when they delegate their own computations to the 

untrusted workers. 

Minimal trust assumptions and very strong cer-

tification guarantees are sometimes almost a basic 

requirement. For example, within the information 

technology supply chain, faults can be devastating 

to security [3] and hard to detect; moreover, hard-

ware and software components are often produced in 

faraway lands from parts of uncertain origin where 

it is hard to carry out quality assurance in case trust 

is not available [4]. This all implies risks to the users 

and organizations [5, 6, 7, 8]. 

2. Goals 

In order to address the aforementioned problems, we 

propose the following goal: 

Goal. A compiler that, given a protocol for a 

distributed computation and a security property 

(in the form of a predicate to be verified at every 

node of the computation), yields an augmented 

protocol that enforces the security property. 

We wish this compiler to respect the original 

distributed computation (that is, the compiler should 

preserve the computation’s communication graph, dy-

namics, and efficiency). This implies, for example, that 

scalability is preserved: If the original computation can 

be jointly conducted by numerous parties, then the 

compiler produces a secure distributed computation 

that has the same property.

3. Our approach 

We propose a generic solution approach, proof-

carrying data (PCD), to solve the aforementioned 

problems by defining appropriate checks to be per-

formed on each party’s computation and then letting 

parties attach proofs of correctness to each message. 

Every piece of data flowing through a distributed 

computation is augmented by a short proof string 

that certifies the data as compliant with some desired 

property. These proofs can be propagated and ag-

gregated “on the fly,” as the computation proceeds. 

These proofs may be between components of a single 

platform or between components of mutually un-

trusting platforms, thereby extending trust to any 

distributed computation. 

But what “properties” do we consider? Certainly 

we want to consider the property that every node 

carried out its own computation without making any 

mistakes. More generally, we consider properties that 

can be expressed as a requirement that every step in 

the computation satisfies some compliance predicate 

C computable in polynomial time; we call this notion 

C-compliance. Thus, each party receives inputs that 

are augmented with proof strings, computes some 

outputs, and augments each of the outputs with a 

new proof string that will convince the next party (or 

the verifier of the ultimate output) that the output is 

consistent with a C-compliant computation. See figure 

1 for a high-level diagram of this idea. 

For example, C could simply require that each 

party’s computation was carried out without errors. 

Or, C could require that not only each party’s com-

putation was carried out without errors, but also that 

the program run by each party carried a signature 

valid under the system administrator’s public key; in 

such a case, the local program supplied by each party 

would be the combination of the program and the 

signature. Or, C could alternatively require that each 

party’s computation involved a binary produced by 
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a compiler prescribed by the system administrator, 

which is known to perform certain tests on the code to 

be compiled (for example, type safety, static analysis, 

dynamic enforcement). Note that a party’s local pro-

gram could be a combination of code, human inputs, 

and randomness. 

To formalize the above, we define and construct 

a PCD scheme: A cryptographic primitive that fully 

encapsulates the proof system machinery and pro-

vides a simple but very general “interface” to be used 

in applications.a

Our construction does require a minimal trusted 

setup: Every party should have black-box access to 

a simple signed-input-and-randomness functional-

ity, which signs every input it receives along with 

some freshly-generated random bits. This is similar to 

standard functionality of cryptographic signing tokens 

and can also be implemented using Trusted Platform 

Module chips or a trusted party. 

3.1. Our results 

We introduce the generic approach of PCD for secur-

ing distributed computations and describing the 

cryptographic primitive of PCD schemes to capture 

this approach: 

Theorem (informal). PCD schemes 

can be constructed under standard 

cryptographic assumptions, given 

signed-input-and-randomness tokens. 

3.2. The construction and its practicality 

We do not rely on the traditional notion of a proof; in-

stead, we rely on computationally sound proofs. These 

are proofs that always exist for true theorems and can 

be found efficiently given the appropriate witness. For 

false theorems, however, we only have the guarantee 

that no efficient procedure will be able to write a proof 

that makes us accept with more than negligible prob-

ability. Nonetheless, computationally sound proofs 

are just as good as traditional ones, for we are not 

interested in being protected against infeasible attack 

procedures, nor do we mind accepting a false theorem 

with, say, 2-100 probability. 

The advantage of settling for computationally sound 

proofs is that they can be much shorter than the com-

putation to which they attest and can be verified much 

more quickly than repeating the entire computation. 

To this end, we use probabilistically checkable proofs 

(PCPs) [11, 12], which originate in the field of com-

putational complexity and its cryptographic exten-

sions [9, 13, 14]. 

While our initial results establish theoretical foun-

dations for PCD and show their possibility in prin-

ciple, the aforementioned PCPs are computationally 

heavy and are notorious for being efficient only in the 

asymptotic sense, and they are not yet of practical rel-

evance. Motivated by the potential impact of a practi-

cal PCD scheme, we have thus taken on the challenge 

of constructing a practical PCP system, in an ongoing 

collaboration with Professor Eli Ben-Sasson and a 

team of programmers at the Technion. 

4. Related approaches 

Cryptographic tools. Secure multiparty computation 

[15, 16, 17] considers the problem of secure function 

evaluation; our setting is not one function evaluation, 

but ensuring a single invariant (that is, C-compli-

ance) through many interactions and computations 

between parties. 

Platforms, languages, and static analysis. Integ-

rity can be achieved by running on suitable fault-

tolerant systems. Confidentiality can be achieved 

by platforms with suitable information flow control 

mechanisms following [18, 19] (for example, at the 

operating-system level [20, 21]). Various invariants 

can be achieved by statically analyzing programs and 

by programming language mechanisms such as type 

systems following [22, 23]. The inherent limitation of 

these approaches is that the output of such computa-

tion can be trusted only if one trusts the whole plat-

form that executed it; this renders them ineffective in 

the setting of mutually untrusting distributed parties. 

Run-time approaches. In proof-carrying code (PCC) 

[24], the code producer augments the code with for-

mal, efficiently checkable proofs of the desired prop-

erties (typically, using the aforementioned language 

or static analysis techniques); PCC and PCD are 

a. PCD schemes generalize the “computationally-sound proofs” of Micali [9], which consider only the “one-hop” case of a single prover 

and a single verifier and also generalize the “incrementally verifiable computation” of Valiant [10], which considers the case of an a-priori 

fixed sequence of computations.
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complementary techniques, in the sense that PCD can 

enforce properties expressed via PCC. Dynamic analy-

sis monitors the properties of a program’s execution 

at run-time (for example, [25, 26, 27]). Our approach 

can be interpreted as extending dynamic analysis to 

the distributed setting, by allowing parties to (implic-

itly) monitor the program execution of all prior parties 

without actually being present during the executions. 

The Fabric system [28] is similar to PCD in motiva-

tion, but takes a very different approach: Fabric aims 

to make maximal use of distributed-system given trust 

constraints, while PCD creates new trust relations. 

5. The road onward 

We envision PCD as a framework for achieving secu-

rity properties in a nonconventional way that cir-

cumvents many difficulties with current approaches. 

In PCD, faults and leakage are acknowledged as an 

expected occurrence, and rendered inconsequential 

by reasoning about properties of data that are inde-

pendent of the preceding computation. The system 

designer prescribes the desired properties of the 

computation’s output; proofs of these properties are at-

tached to the data flowing through the system and are 

mutually verified by the system’s components. 

We have already shown explicit constructions of 

PCD, under standard cryptographic assumptions, in 

the model where parties have black-box access to a 

simple hardware token. The theoretical problem of 

weakening this requirement, or formally proving that 

it is (in some sense) necessary, remains open. In recent 

work, we show how to resolve this problem in the case 

of a single party’s computation [29]. 

As for practical realizations, since there is evidence 

that the use of PCPs for achieving short proofs is 

inherent [30], we are tackling head-on the challenge of 

making PCPs practical. We are also studying devising 

ways to express the security properties, to be enforced 

by PCD, using practical programming languages such 

as C++. 

In light of these, as real-world practicality of PCD 

becomes closer and closer, the task of compliance 

engineering becomes an exciting direction. While PCD 

provides a protocol compiler to ensure any compliance 

predicate in a distributed computation, figuring out 

what are useful compliance predicates in this or that 

setting is a problem in its own right. 

We already envision problem domains where we 

believe enforcing compliance predicates will come 

a long way toward securing distributed systems in a 

strong sense: 

 Multilevel security. PCD may be used for in-

formation flow control. For example, consider 

enforcing multilevel security [31, Chap. 8.6] in 

a room full of data-processing machines. We 

want to publish outputs labeled “nonsecret,” but 

are concerned that they may have been tainted 

by “secret” information (for example, due to 

bugs, via software side channel attacks [32] or, 

perhaps, via literal eavesdropping [33, 34, 35]). 

PCD then allows you to reduce the problem of 

controlling information flow to the problem of 

controlling the perimeter of the information 

room by ensuring that every network packet 

leaving the room is inspected by the PCD verifier 

to establish it carries a valid proof. 

 IT supply chain and hardware Trojans. Using 

PCD, one can achieve fault isolation and ac-

countability at the level of system components 

(for example, chips or software modules) by 

having each component augment every output 

with a proof that its computation, including all 

history it relied on, was correct. Any fault in the 

computation, malicious or otherwise, will then 

be identified by the first nonfaulty subsequent 

component. Note that even the PCD verifiers 

themselves do not have to be trusted except for 

the very last one. 

 Distributed type safety. Language-based type-

safety mechanisms have tremendous expressive 

power, but are targeted at the case where the 

underlying execution platform can be trusted to 

enforce type rules. Thus, they typically cannot 

be applied across distributed systems consist-

ing of multiple mutually untrusting execution 

platforms. This barrier can be surmounted by 

using PCD to augment typed values passing 

between systems with proofs for the correctness 

of the type. 
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Efforts to understand how to think about com-

pliance in concrete problem domains are likely to 

uncover common problems and corresponding 

design patterns [36], thus improving our overall abil-

ity to correctly phrase desired security properties as 

compliance predicates. 

We thus pose the following challenge: Given a 

genie that grants every wish expressed as a compliance 

predicate on distributed computations, what compli-

ance predicates would you wish for in order to achieve 

the security properties your system needs? 
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1. Introduction

A secure system must defend against all possible at-

tacks—including those unknown to the defender. But 

defenders, having limited resources, typically develop 

defenses only for attacks they know about. New kinds 

of attacks are then likely to succeed. So our growing 

dependence on networked computing systems puts at 

risk individuals, commercial enterprises, the public 

sector, and our military.  

The obvious alternative is to build systems whose 

security follows from first principles. Unfortunately, 

we know little about those principles. We need a 

science of cybersecurity (see box 1) that puts the con-

struction of secure systems onto a firm foundation 

by giving developers a body of laws for predicting the 

consequences of design and implementation choices. 

The laws should

 transcend specific technologies and attacks, yet 

still be applicable in real settings, 

 introduce new models and abstractions, thereby 

bringing pedagogical value besides predictive 

power, and

 facilitate discovery of new defenses as well as de-

scribe non-obvious connections between attacks, 

defenses, and policies, thus providing a better 

understanding of the landscape. 

The research needed to develop this science 

of cybersecurity must go beyond the search for 

vulnerabilities in deployed systems and beyond the de-

velopment of defenses for specific attacks. Yet, use of a 

science of cybersecurity when implementing a system 

should not be equated with implementing absolute 

security or even with concluding that security requires 

perfection in design and implementation. Rather, a 

science of cybersecurity would provide—independent 

of specific systems—a principled account for tech-

niques that work, including assumptions they require 

and ways one set of assumptions can be transformed 

or discharged by another. It would articulate and or-

ganize a set of abstractions, principles, and trade-offs 

for building secure systems, given the realities of the 

threats and of our cybersecurity needs.

BOX 1. What is a science?

The term science has evolved in meaning since Aristotle used it 

to describe a body of knowledge. To many, it connotes knowl-

edge obtained by systematic experimentation, so they take that 

process as the defining characteristic of a science. The natural 

sciences satisfy this definition. 

Experimentation helps in forming and then affirming 

theories or laws that are intended to offer verifiable predictions 

about man-made and natural phenomena. It is but a small step 

from science as experimentation to science as laws that ac-

curately predict phenomena. The status of the natural sciences 

remains unaffected by changing the definition of a science in 

this way. But computer science now joins. It is the study of what 

processes can be automated efficiently; laws about specification 

(problems) and implementations (algorithms) are a comfortable 

way to encapsulate such knowledge.

Blueprint for a science 

of cybersecurity  |  
F r e d  B .  S c h n e i d e r
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The field of cryptography comes close to exem-

plifying the kind of science base we seek. The focus 

in cryptography is on understanding the design and 

limitations of algorithms and protocols to compute 

certain kinds of results (for example, confidential or 

tamperproof or attributed) in the presence of certain 

kinds of adversaries who have access to some, but not 

all, information involved in the computation. Cryp-

tography, however, is but one of many cybersecurity 

building blocks. A science of cybersecurity would have 

to encompass richer kinds of specifications, comput-

ing environments, and adversaries. Peter Neumann [1] 

summarized the situation well when he opined about 

implementing cybersecurity, “If you think cryptog-

raphy is the answer to your problem, then you don’t 

know what your problem is.”

An analogy with medicine can be instructive for 

contemplating benefits we might expect from a sci-

ence of cybersecurity. Some health problems are best 

handled in a reactive manner. We know what to do 

when somebody breaks a finger, and each year we 

create a new influenza vaccine in anticipation of the 

flu season to come. But only after making significant 

investments in basic medical sciences are we start-

ing to understand the mechanisms by which cancers 

grow, and a cure seems to require that kind of deep 

understanding. Moreover, nobody believes disease will 

someday be a “solved problem.” We make enormous 

strides in medical research, yet new threats emerge 

and old defenses (for example, antibiotics) lose their 

effectiveness. Like good health, cybersecurity is never 

going to be a “solved problem.” Attacks coevolve with 

defenses and in ways to disrupt each new task that is 

entrusted to our networked systems. As with medical 

problems, some attacks are best addressed in a reactive 

way, while others are not. But our success in develop-

ing all defenses will benefit considerably from having 

laws that constitute a science of cybersecurity. 

This article gives one perspective on the shape of 

that science and its laws. Subjects that might be char-

acterized in laws are discussed in section 2. Then, sec-

tion 3 illustrates by giving concrete examples of laws. 

The relationship that a science of cybersecurity would 

have with existing branches of computer science is 

explored in section 4. 

If you think 

cryptography is the 

answer to your problem, 

then you don’t know 

what your problem is. 
 

-PETER NEUMANN
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2. Laws about what? 

In the natural sciences, quantities found in nature are 

related by laws: E = mc2, PV = nRT, etc. Continuous 

mathematics is used to specify these laws. Continuous 

mathematics, however, is not intrinsic to the notion 

of a scientific law—predictive power is. Indeed, laws 

that govern digital computations are often most con-

veniently expressed using discrete mathematics and 

logical formulas. Laws for a science of cybersecurity 

are likely to follow suit because these, too, concern 

digital computation.

But what should be the subject matter of these laws? 

To be deemed secure, a system should, despite attacks, 

satisfy some prescribed policy that specifies what the 

system must do (for example, deliver service) and 

what it must not do (for example, leak secrets). And 

defenses are the means we employ to prevent a system 

from being compromised by attacks. This account 

suggests we strive to develop laws that relate attacks, 

defenses, and policies. 

For generality, we should prefer laws that relate 

classes of attacks, classes of defenses, and classes of 

policies, where the classification exposes essential 

characteristics. Then we can look forward to hav-

ing laws like “Defenses in class enforce policies in 

class  despite attacks from class A” or “By compos-

ing defenses from class ' and class ", a defense is 

constructed that resists the same attacks as defenses 

from class .” Appropriate classes, then, are crucial for 

a science of cybersecurity to be relevant. 

2.1. Classes of attacks 

A system’s interfaces define the sole means by which an 

environment can change or sense the effects of system 

execution. Some interfaces have clear embodiment 

to hardware: the keyboard and mouse for inputs, a 

graphic display or printer for outputs, and a network 

channel for both inputs and outputs. Other hardware 

interfaces and methods of input/output will be less 

apparent, and some are quite obscure. For example, 

Halderman et al. [2] show how lowering the operating 

temperature of a memory board facilitates capture of 

secret cryptographic keys through what they term a 

cold boot attack. The temperature of the environment 

is, in effect, an input to a generally overlooked hard-

ware interface. Most familiar are interfaces created 

by software. The operating system interface often 

provides ways for programs to communicate overtly 

through system calls and shared memory or covertly 

through various side channels (such as battery level or 

execution timings). 

Since (by definition) interfaces provide the only 

means for influencing and sensing system execution, 

interfaces necessarily constitute the sole avenues for 

conducting attacks against a system. The set of in-

terfaces and the specific operations involved is thus 

one obvious basis for defining classes of attacks. For 

example, we might distinguish attacks (such as SQL-

injections) that exploit overly powerful interfaces 

from attacks (such as buffer overflows) that exploit 

insufficiently conservative implementations. Another 

basis for defining classes of attacks is to characterize 

the information or effort required for conducting the 

attack. With some cryptosystems, for instance, effi-

cient techniques exist for discovering a decryption key 

if samples of ciphertext with corresponding plaintext 

are available for that key, but these techniques do not 

work when only ciphertext is available.

A given input might cause some policies to be 

violated but not others. So whether an input consti-

tutes an attack on a given system could depend on the 

policy that system is expected to enforce. This depen-

dence suggests that classes of attacks could be defined 

in terms of what policies they compromise. The defini-

tion of denial-of-service attacks, for instance, equates 

a class of attacks with system availability policies. 

For attacks on communications channels, cryptog-

raphers introduce classifications based on the compu-

tational power or information available to the attacker. 

For example, Dolev-Yao attackers are limited to read-

ing, sending, deleting, or modifying fields in messages 

being sent as part of some protocol execution [3]. (The 

altered traffic confuses the protocol participants, and 

they unwittingly undertake some action the attacker 

desires.) But it is not obvious how to generalize these 

attack classes to systems that implement more com-

plex semantics than message delivery and that provide 
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operations beyond reading, sending, deleting, or 

modifying messages. 

Finally, the role of people in a system can be a basis 

for defining classes of attacks. Security mechanisms 

that are inconvenient will be ignored or circumvented 

by users; security mechanisms that are difficult to 

understand will be misused (with vulnerabilities intro-

duced as a result). Distinct classes of attacks can thus 

be classified according to how or when the human 

user is fooled into empowering an adversary. Phishing 

attacks, which enable theft of passwords and ultimate-

ly facilitate identity theft, are one such class of attacks. 

2.2. Classes of policies  

Traditionally, the cybersecurity community 

has formulated policies in terms of three kinds 

of requirements:

 Confidentiality refers to which principals are al-

lowed to learn what information.

 Integrity refers to what changes to the system 

(stored information and resource usage) and to 

its environment (outputs) are allowed.

 Availability refers to when must inputs be read 

or outputs produced. 

This classification, as it now stands, is likely to be 

problematic as a basis for the laws that form a science 

of cybersecurity.

One problem is the lack of widespread agree-

ment on mathematical definitions for confidentiality, 

integrity, and availability. A second problem is that 

the three kinds of requirements are not orthogonal. 

For example, secret data can be protected simply by 

corrupting it so that the resulting value no longer 

accurately conveys the true secret value, thus trading 

integrity for confidentiality.a As a second example, any 

confidentiality property can be satisfied by enforcing 

a weak enough availability property, because a system 

that does nothing cannot be accessed by attackers to 

learn secret information.

Contrast this state of affairs with trace properties, 

where safety (“no ‘bad thing’ happens”) and liveness 

(“some ‘good thing’ happens”) are orthogonal classes. 

(Formal definitions of trace properties, safety, and 

liveness are given in box 2 for those readers who are 

interested.) Moreover, there is added value when re-

quirements are formulated in terms of safety and live-

ness, because safety and liveness are each connected to 

a proof method. Trace properties, though, are not ex-

pressive enough for specifying all confidentiality and 

integrity policies. The class of hyperproperties [5], a 

generalization of trace properties, is. And hyperprop-

erties include safety and liveness classes that enjoy the 

same kind of orthogonal decomposition that exists 

for trace properties. So hyperproperties are a promis-

ing candidate for use in a science of cybersecurity. 

BOX 2. Trace properties, safety, and liveness

A specification for a sequential program would characterize for 

each input whether the program terminates and what outputs it 

produces. This characterization of execution as a relation is inad-

equate for concurrent programs. Lamport [6] introduced safety 

and liveness to describe the more expressive class of specifica-

tions that are needed for this setting. Safety asserts that no “bad 

thing” happens during execution and liveness asserts that some 

“good thing” happens. 

A trace is a (possibly infinite) sequence of states; a trace prop-

erty is a set of traces, where each trace in isolation satisfies some 

characteristic predicate associated with that trace property. 

Examples include partial correctness (the first state satisfies the 

input specification, and any terminal state satisfies the output 

specification) and mutual exclusion (in each state, the program 

for at most one process designates an instruction in a critical 

section). Not all sets of traces define trace properties. Informa-

tion flow, which stipulates a correlation between the values 

of the two variables across all traces, is an example. This set of 

traces does not have a characteristic predicate that depends 

only on each individual trace, so the set is not a trace property. 

FIGURE 1. Phishing attacks, which enable theft of passwords 

and ultimately facilitate identity theft, can be classified ac-

cording to how the human user is fooled into empowering 

the adversary.

a. Clarkson and Schneider [4] use information theory to derive a law that characterizes the trade-off between confidentiality and integrity 

for database-privacy mechanisms.
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Every trace property is either safety, liveness, or the con-

junction of two trace properties—one that is safety and one 

that is liveness [7]. In addition, an invariance argument suffices 

for proving that a program satisfies a trace property that is 

safety; a variant function is needed for proving a trace property 

that is liveness [8]. Thus, the safety-liveness classification for 

trace properties comes with proof methods beyond offering 

formal definitions.

Any classification of policies is likely to be associ-

ated with some kind of system model and, in particu-

lar, with the interfaces the model defines (hence the 

operations available to adversaries). For example, we 

might model a system in terms of the set of possible 

indivisible state transitions that it performs while 

operating, or we might model a system as a black 

box that reads information streams from some chan-

nels and outputs on others. Sets of indivisible state 

transitions are a useful model for expressing laws 

about classes of policies enforced by various operating 

system mechanisms (for example, reference monitors 

versus code rewriting) which themselves are con-

cerned with allowed and disallowed changes to system 

state; stream models are often used for quantifying 

information leakage or corruption in output streams. 

We should expect that a science of cybersecurity will 

not be built around a single model or around a single 

classification of policies. 

2.3. Classes of defenses  

A large and varied collection of different defenses can 

be found in the cybersecurity literature.  

Program analysis and rewriting form one natural 

class characterized by expending the effort for deploy-

ing the defense (mostly) prior to execution. This class 

of defenses, called language-based security, can be fur-

ther subdivided according to whether rewriting occurs 

(it might not occur with type-checking, for example) 

and according to the work required by the analysis 

and/or the rewriting. The undecidability of certain 

analysis questions and the high computation costs 

of answering others is sometimes a basis for further 

distinguishing conservative defenses—those analysis 

methods that can reject as being insecure programs 

that actually are secure, and those rewriting methods 

that add unnecessary checks.

Run-time defenses have, as their foundation, only a 

few basic mechanisms:  

 Isolation. Execution of one program is somehow 

prevented from accessing interfaces that are as-

sociated with the execution of others. Examples 

include physically isolated hardware, virtual 

machines, and processes (which, by definition, 

have isolated memory segments).  

 Monitoring. A reference monitor is guaranteed to 

receive control whenever any operation in some 

specified set is invoked; it further has the capac-

ity to block subsequent execution, which it does 

to prevent an operation from proceeding when 

that execution would not comply with what-

ever policy is being enforced. Examples include 

memory mapping hardware, processors having 

modes that disable certain instructions, operat-

ing system kernels, and firewalls.

 Obfuscation. Code or data is transmitted or 

stored in a form that can be understood only 

with knowledge of a secret. That secret is kept 

from the attacker, who then is unable to abuse, 

understand, or alter in a meaningful way the 

content being protected. Examples include data 

encryption, digital signatures, and program 

transformations that increase the work factor 

needed to craft attacks.  

Obviously, a classification of run-time defenses could 

be derived from this taxonomy of mechanisms. 

Another way to view defenses is in terms of trust 

relocation. For example, by running an application 

FIGURE 2. A firewall is an example of a reference monitor.



52

Blueprint for a science of cybersecurity

under control of a reference monitor, we relocate trust 

in that application to trust in the reference monitor. 

This trust-relocation view of defenses invites discovery 

of general laws that govern how trust in one compo-

nent can be replaced by trust in another.

We know that it is always possible for trust in an 

analyzer to be relocated to a proof checker—sim-

ply have an analyzer that concludes P also generate 

a proof of P. Moreover, this specific means of trust 

relocation is attractive because proof checkers can be 

simple, hence easy to trust; whereas, analyzers can 

be quite large and complicated. This suggests a re-

lated question: Is it ever possible to add defenses and 

transform one system into another, where the latter 

requires weaker assumptions about components be-

ing trusted? Perhaps trust is analogous to entropy in 

thermodynamics—something that can be reversed 

only at some cost (where “cost” corresponds to the 

strength of the assumptions that must be made)? Such 

questions are fundamental to the design of secure 

systems, and today’s designers have no theory to help 

with answers. A science of cybersecurity could provide 

that foundation. 

3. Laws already on the books  

Attacks coevolve with defenses, so a system that 

yesterday was secure might no longer be secure 

tomorrow. You can then wonder whether yesterday’s 

science of cybersecurity would be made irrelevant by 

new attacks and new defenses. This depends on the 

laws, but if the classes of attacks, defenses, and poli-

cies are wisely constructed and sufficiently general, 

then laws about them should be both interesting and 

long-lived. Examples of extant laws can provide some 

confirmation, and two (developed by the author) are 

discussed below.  

3.1. Law: Policies and reference monitors  

A developer who contemplates building or modifying 

a system will have in mind some class of policies that 

must be enforced. Laws that characterize what poli-

cies are enforced by given classes of defenses would be 

helpful here. Such laws have been derived for vari-

ous defenses. Next, we discuss a law [9] concerning 

reference monitors.  

The policy enforced by a reference monitor is the 

set of traces that correspond to executions in which 

the reference monitor does not block any operation. 

This set is a trace property, because whether the refer-

ence monitor blocks an operation in a trace depends 

only on the contents of that trace (specifically, the pre-

ceding operations in that trace). Moreover, this trace 

property is safety; the set of finite sequences that end 

in an operation the reference monitor blocks consti-

tutes the “bad thing.” We conclude:  

Law. All reference monitors enforce trace 

properties that are safety.  

This law, for example, implies that a reference mon-

itor cannot enforce an information flow policy, since 

(as discussed in box 2) information flow is not a trace 

property. However, the law does not preclude using a 

reference monitor to enforce a policy that is stronger 

and, by being stronger, implies that the information 

flow policy also will hold. But a stronger policy will 

deem insecure some executions the information flow 

policy does not. So such a reference monitor would 

block some executions that would be allowed by a 

defense that exactly enforces information flow. The 

system designer is thus alerted to a trade-off—employ-

ing a reference monitor for information flow policies 

brings overly conservative enforcement.  

The above law also suggests a new kind of run-time 

defense mechanism [10]. For every trace property ψ 

that is safety, there exists an automaton m
ψ
 that accepts 

the set of traces in ψ [8]. 

Automaton m
ψ
 is a reference monitor for ψ because, 

by definition, it rejects traces that violate ψ. So if code 

M
ψ
 that simulates m

ψ
 is invoked before every instruc-

tion in some given program S, then the result will be 

a new program that behaves just like S except it halts 

rather than executing an instruction that violates 

policy ψ. This is depicted in figure 3, where invoca-

tion M
ψ
(x) simulates the transition that automaton 

m
ψ
 makes for input symbol x and repeatedly returns 

OK until automaton m
ψ
 would reject the sequence of 

inputs it has processed. Thus, the statement

if M
ψ
(“S

1
”) ≠ OK then halt (1)

in figure 3 immediately prior to a program statement 

S
i
 causes execution to terminate if next executing 
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b. There is also experimental evidence [11] that distinct versions built by independent teams nevertheless share vulnerabilities.

S
i
 would violate the policy defined by automaton 

m
ψ
—that is, if executing S

i
 would cause policy ψ to 

be violated.

S
1

if M
ψ
(“S

1
”) ≠ OK then halt

S
2

S
1

S
3

if M
ψ
(“S

2
”) ≠ OK then halt

S
4

S
2

… …

original inlined reference monitor

FIGURE 3. Inlined reference monitor example

Such inlined reference monitors can be more effi-

cient at run-time than traditional reference monitors, 

because a context switch is not required each time an 

inlined reference monitor is invoked. However, an 

inlined reference monitor must be installed separately 

in each program whose execution is being monitored; 

whereas, a traditional reference monitor can be writ-

ten and installed once and for all. The per-program 

installation does mean that inlined reference monitors 

can enforce different policies on different programs, 

an awkward functionality to support with a single 

traditional reference monitor. And per-program in-

stallation also means that code (1) inserted to simulate 

m
ψ
 can be specialized and simplified, thereby allow-

ing unnecessary checks to be eliminated for inlined 

reference monitors.

3.2. Law: Attacks and obfuscators  

We define a set of programs to be diverse if all imple-

ment the same functionality but differ in their imple-

mentation details. Diverse programs are less prone 

to having vulnerabilities in common, because attacks 

often depend on memory layout and/or instruction 

sequence specifics. But building multiple distinct ver-

sions of a program is expensive.b So system implemen-

tors have turned to mechanical means for creating sets 

comprising diverse versions of a given program.

For mechanically generated diversity to work as a 

defense, not only must implementations differ (so they 

have few vulnerabilities in common), but the differ-

ences must be kept secret from attackers. For example, 

buffer overflow attacks are generally written relative to 

some specific run-time stack layout. Alter this layout 

by rearranging the relative locations of variables as 

well as the return address on the stack, and an input 

designed to perpetrate an attack for the original stack 

layout is unlikely to succeed. But if the new stack 

layout were known by the adversary, then crafting an 

attack again becomes straightforward.

Programs to accomplish such transformations have 

been called obfuscators. An obfuscator τ takes two in-

puts—a program S and a secret key K—and produces 

a morph, which is a program τ(S, K) whose semantics 

is equivalent to S but whose implementation differs 

from S and from morphs generated with other keys. 

K specifies which exact transformations are applied in 

producing morph τ(S, K). Note that since S and τ are 

assumed to be publicly known, knowledge of K would 

enable an attacker to learn implementation details for 

successfully attacking morph τ(S, K). 

Different classes of transformations are more or 

less effective in defending against the various different 

classes of attacks. This correspondence is important 

when designing a set of defenses for a given threat 

model, but knowing the specific correspondences is 

not the same as knowing the overall power of mechan-

ically generated diversity as a defense. That defensive 

power for programs written in a C-like language has 

been partially characterized in a set of laws [12]. Each 

Obfuscator Law establishes, for a specific (common) 

type system T
i
 and obfuscator τ

i
 pair, what is the rela-

tionship between two sets of attacks—those blocked 

when type system T
i
 is enforced versus those that 

cause execution of a morph τ
i
 (S, K) to abort for some 

secret key K.

The Obfuscator Laws do not completely quantify 

the difference between the effectiveness of type-check-

ing and obfuscation. But the laws are noteworthy for 

a science of cybersecurity because they circumvent 

the difficult problem of reasoning about attacks not 

yet invented. Laws about classes of known attacks risk 

irrelevance as new attacks are discovered. By formulat-

ing the Obfuscator Laws in terms of a relation between 

sets of attacks, the need to identify or enumerate 

individual attacks is avoided. To wit, the class of at-

tacks that type-checking defends against is not known 

and not given, yet the power of obfuscation to defend 
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against an attack can now be meaningfully conveyed 

relative to the power of type-checking.

4. The science in context  

A science of cybersecurity would build on knowledge 

from several existing areas of computer science. The 

connections to formal methods, fault-tolerance, and 

experimental computer science are nuanced; they are 

discussed below. However, cryptography, information 

theory, and game theory are also likely to be valuable 

sources of abstractions and laws. Finally, the physical 

sciences surely have a role to play—not only in matters 

of physical security but also for understanding un-

conventional interfaces to real devices that attackers 

might exploit (as exemplified by the cold boot attacks 

mentioned in section 2.1).  

Formal methods. Attacks are possible only because 

a system we deploy has flaws in its implementation, 

design, specification, or requirements. Eliminate the 

flaws and we eliminate the need to deploy defenses. 

But even when the systems on which we rely aren’t 

being attacked, we should want confidence that they 

will function correctly. The presence of flaws under-

mines that confidence. So cybersecurity is not the only 

compelling reason to eliminate flaws.  

The focus of formal methods research is on meth-

ods for gaining confidence in a system by using 

rigorous reasoning, including programming logics 

and model checkers.c This work has been remarkably 

successful with small systems or small specifications. It 

is used by companies like Microsoft to validate device 

drivers and Intel to validate chip designs. It is also 

the engine behind strong type-checking in modern 

programming languages (for example, Java and C#) 

and various code-analysis tools used in security audits.   

Further developments in formal methods could serve 

a science of cybersecurity well. However, to date, work 

in formal methods has been based on trace properties 

or something with equivalent expressive power. This 

foundation allows mathematically elegant character-

izations for whether a program satisfies a specification 

and for justifying stepwise refinement of programs. 

But trace properties are not adequately expressive for 

specifying all confidentiality, integrity, and availabil-

ity policies, and stepwise refinement is not sound for 

these richer policies. (A mathematical justification of 

this limitation is provided in box 3 for the interested 

reader.) So the foundations of today’s formal meth-

ods would have to be changed to something with the 

expressiveness of hyperproperties—no small feat.

BOX 3. Satisfies and refinement 

A program S can be modeled as a trace property Σ
S
 containing 

all sequences of states that could arise from executing S, and 

a specific execution of S satisfies a trace property P if the trace 

modeling that execution is in P. Thus, S satisfies P if and only if 

Σ
S
  P holds. 

We say that a program S' refines S, denoted S'  S, when S' 

resolves choices left unspecified by S. For example, a program 

that increments x by 1 refines a program that merely specifies 

that x be increased. A refinement S' of S thus exhibits a subset of 

the executions for S: S'  S holds if and only if Σ
S'
  Σ

S
 holds. 

Notice that “satisfies” is closed under refinement. If S' refines 

S and S satisfies P, then S' satisfies P. Also, if we construct S' by 

performing a series of refinements S'  S
1 

, S
1
  S

2 
, . . . , S

n
  S and 

S satisfies P then we are guaranteed that S' will satisfy P too. So 

programs can be constructed by stepwise refinement.

With richer classes of policies, “satisfies” is unfortunately not 

closed under refinement. As an example, consider two pro-

grams. Program S
x=y

 is modeled by trace property Σ
x=y

 contain-

ing all traces in which x = y holds in all states; program S* is 

modeled by Σ
S*

 containing all sequences of states. We have that 

Σ
x=y

  Σ
S*

 holds, so by definition S
x=y

  S*. However, program S* 

enforces the confidentiality policy that no information flows 

between x and y, whereas (refinement) S
x=y

 does not. Satisfies for 

the confidentiality policy is not closed under refinement, and 

stepwise refinement is not sound for deriving programs that 

satisfy this policy.

Byzantine fault-tolerance. A system is considered 

fault-tolerant if it will continue operating correctly 

even though some of its components exhibit faulty 

behavior. Fault-tolerance is usually defined relative 

to a fault model that defines assumptions about what 

components can become faulty and what kinds of 

behaviors faulty components might exhibit. In the 

Byzantine fault model [13], faulty components are per-

mitted to collude and to perform arbitrary state transi-

tions. A real system is unlikely to experience such 

hostile behavior from its faulty components, but any 

faulty behavior that might actually be experienced is, 

by definition, allowed with the Byzantine fault model. 

So by building a system that works for the Byzantine 

c. Other areas of software engineering are concerned with gaining confidence in a system through the use of experimentation (for ex-

ample, testing) or management (for example, strictures on development processes).
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fault model, we ensure that the system can tolerate 

all behaviors that in practice could be exhibited by its 

faulty components.  

The basic recipe for implementing such Byzantine 

fault-tolerance is well understood. We assume that the 

output of every component is a function of the preced-

ing sequence of inputs. Each component that might 

fail is replaced by 2t + 1 replicas, where these replicas 

all receive the same sequence of inputs. Provided that 

t or fewer replicas are faulty, then the majority of the 

2t + 1 will be correct. These correct replicas will gener-

ate identical correct outputs, so the majority output 

from all replicas is unaffected by the behaviors of 

faulty components.  

A faulty component in the Byzantine fault model 

is indistinguishable from a component that has been 

compromised and is under control of an attacker. We 

might thus conclude that if a Byzantine fault-tolerant 

system can tolerate t component failures, then it also 

could resist as many as t attacks—we could get se-

curity by implementing Byzantine fault-tolerance. 

Unfortunately, the argument oversimplifies, and the 

conclusion is unsound:

 Replication, if anything, creates more opportuni-

ties for attackers to learn confidential informa-

tion. So enforcement of confidentiality is not 

improved by the replication required for imple-

menting Byzantine fault-tolerance. And storing 

encrypted data—even when a different key is 

used for each replica—does not solve the prob-

lem if replicas actually must themselves be able 

to decrypt and process the data they store. 

 Physically separated components connected only 

by narrow bandwidth channels are generally 

observed to exhibit uncorrelated failures. But 

physically separated replicas still will share many 

of the same vulnerabilities (because they will use 

the same code) and, therefore, will not exhibit 

independence to attacks. If a single attack might 

cause any number of components to exhibit 

Byzantine behavior, then little is gained by toler-

ating t Byzantine components. 

What should be clear, though, is that mechanically 

generated diversity creates a kind of independence 

that can be a bridge from Byzantine fault tolerance to 

attack tolerance. The Obfuscation Laws discussed in 

section 3.2 are a first step in this direction.

Experimental computer science. The code for a 

typical operating system can fit on a disk, and all of the 

protocols and interconnections that comprise the In-

ternet are known. Yet the most efficient way to under-

stand the emergent behavior of the Internet is not to 

study the documentation and program code—it is to 

apply stimuli and make measurements in a controlled 

way. Computer systems are frequently too complex 

to admit predictions about their behaviors. So just as 

experimentation is useful in the natural sciences, we 

should expect to find experimentation an integral part 

of computer science.  

Even though we might prefer to derive our cyberse-

curity laws by logical deduction from axioms, the va-

lidity of those axioms will not always be self-evident. 

We often will work with axioms that embody approxi-

mations or describe models, as is done in the natural 

sciences. (Newton’s laws of motion, for example, ig-

nore friction and relativistic effects.) Experimentation 

is the way to gain confidence in the accuracy of our 

approximations and models. And just as experimenta-

tion in the natural sciences is supported by laborato-

ries, experimentation for a science of cybersecurity 

will require test beds where controlled experiments 

can be run.  

Experimentation in computer science is somewhat 

distinct from what is called “experimental computer 

science” though. Computer scientists validate their 

ideas about new (hardware or software) system de-

signs by building prototypes. This activity establishes 

that hidden assumptions about reality are not being 

overlooked. Performance measurements then demon-

strate feasibility and scalability, which are otherwise 

difficult to predict. And for artifacts that will be used 

by people (for example, programming languages and 

systems), a prototype may be the only way to learn 

whether key functionality is missing and what novel 

functionality is useful.  

Since a science of cybersecurity should lead to new 

ideas about how to build systems and defenses, the 

validation of those proposals could require building 

prototypes. This activity is not the same as engineering 

a secure system. Prototypes are built in support of a 
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science of cybersecurity expressly to allow validation 

of assumptions and observation of emergent behav-

iors. So, a science of cybersecurity will involve some 

amount of experimental computer science as well as 

some amount of experimentation. 

5. Concluding remarks  

The development of a science of cybersecurity could 

take decades. The sooner we get started, the sooner we 

will have the basis for a principled set of solutions to 

the cybersecurity challenge before us. Recent new fed-

eral funding initiatives in this direction are a key step. 

It’s now time for the research community to engage. 
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Sources of malware
Malware, short for “malicious software,”  includes computer viruses, worms, and Trojan 

horses, and can spread using various methods, including worms sent through email and 

instant messages, Trojan horses dropped from websites, and virus-infected files downloaded 

from peer-to-peer connections.a This map shows the top 25 geographical sources of 

malware from August of 2011 through October of 2011. Data was provided by Symantec.
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The “McAfee threats report: Second quarter 2011” 

found the following malware trends:b

 Malware has increased 22 percent from 2010 

to 2011. 

 By the end of 2011, McAfee Labs expects to 

have 75 million samples of malware.

 Fake antivirus software continues to grow 

and has even begun to climb aboard a new 

platform—the Mac.

 For-profit mobile malware has increased, 

including simple short message service (SMS)-

sending Trojans and complex Trojans that use 

exploits to compromise smartphones.

 Android is becoming the third-most targeted 

platform for mobile malware.

 Rootkits, also known as “stealth malware,” are 

growing in popularity. A rootkit is code that 

hides malware from operating systems and 

security software.

Cybercrime

60

The “Norton by Symantec cybercrime report 2011” revealed the following statistics based on surveys 

conducted between February 6, 2011 and March 14, 2011 of 19,636 individuals (including children) from 

24 countries:a

a. The full report can be accessed at www.symantec.com/content/en/us/home_homeoffice/html/cybercrimereport/

b. The full report can be accessed at www.mcafee.com/us/resources/reports/rp-quarterly-threat-q2-2011



The Georgia Institute of Technology’s Cyber 

Security Summit on October 11, 2011 resulted in 

the “Emerging cyber threats report 2012.” 

d The key points 

include the following:

Mobile threats

 Mobile applications rely increasingly on the brows-

er, presenting unique challenges to security in terms 

of usability and scale.

 Expect compound threats targeting mobile devices 

to use SMS, email and the mobile Web browser to 

launch an attack, then silently record and steal data.

 While USB flash drives have long been recognized 

for their ability to spread malware, mobile phones 

are becoming a new vector that could introduce 

attacks on otherwise-protected systems.

 Encapsulation and encryption for sensitive portions 

of a mobile device can strengthen security.

Botnets

 Botnet controllers build massive information pro-

files on their compromised users and sell the data to 

the highest bidder.

 Advanced persistent adversaries query botnet op-

erators in search of already compromised machines 

belonging to their attack targets.

The IBM X-Force’s “2011 Mid-year trend and risk 

report” evidences that mobile malware is on the rise.c 

Their report highlights the following points:

 The first half of 2011 saw an increased level of 

malware activity targeting the latest generation of 

smart devices, and the increased number of vulner-

ability disclosures and exploit releases targeting 

mobile platforms seen in 2010 continues into 2011, 

showing no signs of slowing down.

 Mobile devices are quickly becoming a malware 

platform of choice. This malware increase is based 

on premium SMS services that can charge users, a 

rapidly increasing rate of user adoption, and un-

patched vulnerabilities on the devices.

 Two popular methods of malware distribution mod-

els are to create infected versions of existing market 

software and to publish software that claims to be a 

crack, patch, or cheat for some other software.

 Besides sending SMS messages, Android malware 

has been observed collecting personal data from 

the phone and sending it back to a central server. 

This information could be used in phishing attacks 

or for identity theft. We have also seen Android mal-

ware that has the ability to be remotely controlled 

by a remote command and control server—just like 

a bot that infects a Windows desktop machine.

 Enterprise security management of mobile 

endpoint devices will struggle to handle massive 

expansion. One solution may be the convergence 

of endpoint security configuration management to 

incorporate all these new devices.

 Bad guys will borrow techniques from Black Hat 

Search Engine Optimization to deceive current 

botnet defenses like dynamic reputation systems.

Information security

 Security researchers are currently debating whether 

personalization online could become a form of 

censorship.

  Attackers are performing search engine optimi-

zation to help their malicious sites rank highly in 

search results.

 The trend in compromised certificate authorities 

exposes numerous weaknesses in the overall trust 

model for the Internet.

Advanced persistent threats

 Advanced persistent threats will adapt to security 

measures until malicious objectives are achieved.

 Human error, lack of user education, and weak 

passwords are still major vulnerabilities.

 Cloud computing and computer hardware may 

present new avenues of attack, with all malware 

moving down the stack.

 Large, flat networks with perimeter defenses at the 

Internet ingress/egress point break down quickly in 

the face of advanced persistent threats.

EXPERTS
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c. The full report can be accessed at www-935.ibm.com/services/us/iss/xforce/trendreports/

d. The full report can be accessed at www.gtisc.gatech.edu/doc/emerging_cyber_threats_report2012
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New forensics tool exposes 

online activity

Stanford University researchers, led by Elie 

Bursztein, have developed software that bypasses 

the encryption on a personal computer’s hard drive 

to reveal the websites a user has visited and whether 

he/she has any data stored in the cloud. Other than 

Microsoft, Bursztein and his team are the only ones 

to discover how to decrypt the files. Their free, open-

source software—Offline Windows Analysis and 

Data Extraction (OWADE)—runs on a Windows 

operating system and was introduced at the Black 

Hat 2011 security conference in August. OWADE 

can enable, for example, a law enforcement agent to 

reconstruct a suspect’s online activity by extracting 

sensitive data stored by Windows, the browsers, and 

instant messaging software from the computer’s hard 

drive. For more information, visit www.newscientist.

com/article/mg21128285.300-new-forensics-tool-

can-expose-all-your-online-activity.html. The white 

paper can be downloaded from elie.im/talks/beyond-

files-recovery-OWADE-cloud-based-forensic.

Combating next-generation 

computer viruses

Dr. Kevin Hamlen of the University of Texas 

at Dallas’ Cyber Security Research Center has 

discovered a new method to predict the actions 

of computer viruses. Dr. Hamlen’s research uses 

advanced algorithms based on programming-

language research to predict and interrupt the 

actions of malware programs in the microseconds 

before those programs begin to execute and mutate. 

His method builds upon existing computing 

capabilities and features already programmed 

into most central processing unit chips 

currently used in various popular 

devices, such as laptops. This 

research could give way to new, 

proactive antivirus programs. 

For more information, visit 

www.afcea.org/signal/

articles/templates/

Signal_Article_Template.

asp?articleid=2754& 

zoneid=329.

Applying a new mathematical framework to cybersecurity

A team of researchers from the Stevens Institute of Technology and the 

City University of New York, led by Dr. Antonio Nicolosi, is applying a new 

mathematical paradigm to cryptography to secure the Internet. Dr. Nicolosi’s 

team was awarded a grant from the National Science Foundation to support 

the development of new cryptographic tools and protocols and to promote 

collaboration between the cryptography and group-theory research 

communities. The team is applying recent developments in combinatorial 

group therapy (CGT)—a mathematical framework sensitive to the order of 

operations in an equation—to cybersecurity. Cybersecurity depends upon 

the quantifiable hardness of a small number of mathematical equations 

available in cryptographic methodologies; because CGT is sensitive to the 

order of operations, it is an effective method to generate new quantifiable 

mathematical equations that can be used to enhance cybersecurity. 

Dr. Nicolosi believes that CGT could also improve authentication protocol efficiency. Both undergraduate and 

graduate students will be participating in building the systems used to test the equations. For more information, visit 

www.stevens.edu/news/content/applying-new-mathematics-robust-cryptography-and-safer-internet.
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Measuring the effects of a  

Wi-Fi attack

Dr. Wenye Wang and a team of researchers at North 

Carolina State University have developed a method 

to measure the effects of different types of wireless-

fidelity (Wi-Fi) attacks on a network; this method 

will be helpful in developing new cybersecurity 

technologies. The researchers examined two 

Wi-Fi attack models—a persistent attack and an 

intermittent attack—and compared how these 

attacks are affected by different conditions, such as 

the number of users. They developed a metric called 

an order gain, which measures the probability of an 

attacker having access to a Wi-Fi network versus 

the probability of a legitimate user having access to 

the same network. For example, if a user has an 80 

percent chance of accessing a network, and other 

users have the remaining 20 percent, the order gain 

is four. This metric is useful in determining which 

attacks cause the most disruption. The researchers 

suggested that system administrators focus their 

countermeasures on persistent attacks that target 

networks with large numbers of users because this 

yields the largest order gain. For more information, 

visit news.ncsu.edu/releases/wmswangordergain/.

Enhanced security for sensitive data in cloud computing

A team of researchers from North Carolina State 

University (NCSU) and IBM have developed a new 

technique to better protect sensitive data in cloud 

computing while preserving the system’s performance. 

Cloud computing uses hypervisors—programs that 

create a virtual workspace, or cloud, in which different 

operating systems can run in isolation from one another. 

In cloud computing, a common concern is that attackers 

could take advantage of vulnerabilities in the hypervisor 

to steal or corrupt sensitive data from other users in the 

cloud. The new technique, Strongly Isolated Computing 

Environment (SICE), addresses this concern by isolating 

sensitive information and workload from the rest of 

the functions performed by the hypervisor. Dr. Peng Ning, professor of computer science at NCSU and one of the 

researchers on the project, says, “…our approach relies on a software foundation called the Trusted Computing 

Base, or TCB, that has approximately 300 lines of code, meaning that only these 300 lines of code need to be trusted 

in order to ensure the isolation offered by our approach. Previous techniques have exposed thousands of lines of 

code to potential attacks. We have a smaller attack surface to protect.” Additionally, testing indicated that the SICE 

framework used only about three percent of the system’s performance on multicore processors that do not require 

direct network access. For more information, visit news.ncsu.edu/releases/wmsningsice/.

An app that 

logs the 

keystrokes 

on your 

smartphone

Hao Chen and 

Liang Cai of the 

University of California, Davis, have created an 

application that records what you type on your 

Android smartphone. Also called keylogging, 

criminals can use this method to steal your 

passwords, logins, and other private information. The 

application uses the smartphone’s motion sensors to 

detect vibrations that result from tapping the screen, 

and it doesn’t have to be visible on the screen to 

work. Chen and Cai say that the application correctly 

guesses over 70 percent of keystrokes on a virtual 

numerical keypad like those used in calculator 

applications. They expect the accuracy to be even 

higher on tablet devices due to tablets’ larger size 

and resulting movement from tapping the screen. 

For more information, visit www.newscientist.com/

article/mg21128255.200-smartphone-jiggles-reveal-

your-private-data.html.
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Automated tool defeats CAPTCHA on popular websites 

Stanford University researchers Elie Bursztein, Matthieu Martin, 

and John C. Mitchel created an automated tool, Decaptcha, 

that deciphers text-based antispam tests used by many popular 

websites. Completely Automated Public Turing test to tell 

Computers and Humans Apart (CAPTCHA) is a security 

mechanism used by many websites to block spam bots from 

registering for an account or posting a comment; it consists 

of a challenge, such as typing distorted text, that only humans 

are supposed to be able to solve. Decaptcha uses algorithms to 

clean up image background noise and to break text strings into 

individual characters for easier recognition. The researchers ran 

the tool against 15 popular websites and found that it was able to 

beat Visa’s Authorize.net payment gateway 66 percent of the time, 

Blizzard (i.e., World of Warcraft, Starcraft II, and Battle.net) 70 

percent of the time, eBay 43 percent of the time, and Wikipedia 

25 percent of the time. Of the tested websites, Decaptcha could 

not break CAPTCHAs on Google or reCAPTCHA. (See table 1 

for more results.) To download the paper describing this research, 

“Text-based CAPTCHA strengths and weaknesses,” visit elie.im/

publication/text-based-Captcha-strengths-and-weaknesses.

TABLE 1. Results of Decaptcha testing

Website Decaptcha’s Solving Rate

Megaupload 93%

CAPTCHA.net 73%

NIH 72%

Blizzard 70%

Authorize.net 66%

eBay 43%

Reddit 42%

Slashdot 35%

Wikipedia 25%

Digg 20%

CNN 16%

Baidu 5%

Skyrock 2%

Google 0%

reCAPTCHA 0%

Secure cloud computing 

service for US researchers 

On November 2, 2011, Indiana 

University (IU) and Penguin Computing 

announced a partnership to offer US 

researchers access to a secure cloud 

computing service. The service remains 

secure because it is run by a group 

of computers owned by Penguin and 

housed in IU’s secure state-of-the-art 

data center. In addition to IU, initial 

users of the service include the University 

of Virginia, the University of California, 

Berkeley, and the University of Michigan. 

The service will next be available for 

purchase to researchers at other US institutions 

of higher education and federally funded 

research centers. For more information, visit 

ovpitnews.iu.edu/news/page/normal/20208.html.

Vulnerabilities 

found in top Google 

Chrome extensions

Security researchers Adrienne Porter Felt, Nicholas 

Carlini, and Prateek Saxena at the University of Califor-

nia, Berkeley, conducted a review of 100 Google Chrome 

extensions, including the 50 most popular ones, and found 

that 27 percent of them contain one or more JavaScript injec-

tion vulnerabilities. This vulnerability can allow an attacker, 

via the web or an unsecure Wi-Fi hotspot, to take complete 

control of an extension and gain access to a user’s private 

data. The researchers also reported that seven of the vulner-

able extensions were used by 300,000 people or more. 

They sent vulnerability warnings to all the relevant 

developers. For more information, visit www.

informationweek.com/news/security/

vulnerabilities/231602411.
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Internet privacy tools are difficult for most users 

Researchers from the Carnegie Mellon CyLab Usable 

Privacy and Security Laboratory conducted a usability 

study of nine Internet privacy tools and found that they 

were confusing and ineffective for most nontechnical us-

ers. The researchers evaluated the use of privacy settings 

in two popular browsers, Internet Explorer 9 and Mozil-

la Firefox 5, as well as three tools that set opt-out cookies 

to prevent websites from displaying advertisements, and 

four tools that block certain sites from tracking user 

activity. The major findings include the following:

 Users can’t distinguish between trackers. Users 

are unfamiliar with companies that track their 

behavior, so tools that ask them to set opt-out or 

blocking preferences on a per-company basis are 

ineffective. Most users just set the same preferences for every company on a list.

Inappropriate defaults. The default settings of privacy tools and opt-out sites are inappropriate for users; 

they generally do not block tracking. A user must manually adjust the settings of these tools to activate their 

capability to block tracking.

 Communication problems. The tools provide instructions and guidance that are either too simplistic to 

inform a user’s decision, or too technical to be understood.

 Need for feedback. Many of the tools do not provide feedback to let users know that the tool is 

actually working. 

 Users want protections that don’t break things. Users had difficulty determining when the tool they were 

using caused parts of websites to stop working. Subscribing to a Tracking Protection List (TPL) that blocks 

most trackers except those necessary for sites to function can solve this problem, but participants were 

unaware of the need to select a TPL or didn’t know how to choose one.

 Confusing interfaces. The tools suffered from major usability flaws. For example, some users mistook 

registration pages for opt-out pages, and some users did not realize they needed to subscribe to certain 

features of the tools.

To download the technical report describing this research, “Why Johnny can’t opt out: A usability evaluation of tools 

to limit online behavioral advertising,” visit www.cylab.cmu.edu/research/techreports/2011/tr_cylab11017.html.

“Split-manufacturing” microprocessors to protect intellectual property

The Intelligence Advanced Research Project Agency (IARPA) is working toward developing a “split-manufacturing” 

process for microprocessor chips to ensure their design is secure and protected. In split-manufacturing, chip 

fabrication is split into two processes: front-end-of-line (FEOL) and back-end-of-line (BOEL). The FEOL process 

involves the fabrication of transistor layers in offshore foundries, and the BOEL process involves the fabrication 

of metallizations in trusted US facilities. According to IARPA, those working on the FEOL process will not have 

access to information about the design intention of the chips. This split process is intended to prevent malicious 

circuitry as well as protect the intellectual property of the chip design. Sandia National Laboratories will coordinate 

all FEOL and BEOL processes, and the University of Southern California Information Sciences Institute will 

carry out the fabrication runs. For more information, visit www.informationweek.com/news/government/

enterprise-architecture/231902147.



FSC 

logo
iN053748


