
Developing a blueprint
for a science

of cybersecurity

Vol. 19 | No. 2 | 2012

Globe at a Glance | According to the Experts | Pointers

Source
http://www.nsa.gov/research/tnw/tnw192/article1.shtml

The world’s most extensive case of cyberespionage,

including attacks on US government and UN computers,

was reported at the 2011 Black Hat conference by security

firm McAfee. Concluding five years of investigation, McAfee

analysts were “surprised by the enormous diversity of the

victim organizations and were taken aback by the audacity

of the perpetrators.” Wired magazine recently broke a story

revealing that “a computer virus has infected the cockpits of

America’s Predator and Reaper drones, logging pilots’ every

keystroke as they remotely fly missions over Afghanistan

and other war zones.” These are but two examples of what

have become almost routine reports of failures in system

security. Increasingly, these problems directly affect us in

important parts of our daily lives. And even more alarming

is the rapid growth in the breadth and severity of these

spectacular failures.

How are such widespread problems possible after

decades of investment in computer security research and

development? This question has gained the attention of

increasing numbers of security professionals over the past

several years. An emerging view is that these problems

demonstrate that we do not yet have a good understanding

of the fundamental science of security. Instead of fundamental

science, most system security work has focused on developing

ad hoc defense mechanisms and applying variations of the

“attack and patch” strategy that emerged in the earliest days

of computer security. Our national reliance on networked

information systems demands that we approach security

engineering with the same rigor that we expect in other

engineering disciplines. We should expect designers of our

digital infrastructure to have a well understood scientific

foundation and advanced analytic tools comparable to those

used in the production of other critical assets such as bridges,

aircraft, power plants, and water purification systems.

The National Security Agency, the National Science

Foundation (NSF), and the Intelligence Advanced Research

Projects Activity jointly responded to this problem by

sponsoring a workshop in November 2008 to consider

whether a robust science of security was possible and to

describe what it might look like. Academic and industry

experts from a broad set of disciplines including security,

economics, human factors, biology, and experimentation met

with government researchers to help lay the groundwork

for potential future initiatives. Since that meeting, a

number of programs focused on security science have

been initiated, along with an effort to help build a robust

collaboration community.

This issue of The Next Wave is focused upon the important

topic of security science. Included are articles from six of

the experts who attended the 2008 workshop and have

continued to work in the area of security science. Carl

Landwehr from NSF provides a few historical examples

of the relationship between engineering and science and

shows how these examples might help us understand the

evolution of cybersecurity. Adam Shostack from Microsoft

provides another perspective on how science evolves and

describes some steps he considers necessary to advance

the development of cybersecurity science. Roy Maxion from

Carnegie Mellon University (CMU) calls for greater scientific

rigor in the way experimental methods are applied to

cybersecurity. Dusko Pavlovic from Oxford University provides

a unique and unexpected model for security to reason about

what a security science might be. Anupam Datta from CMU

and John Mitchell from Stanford University describe some of

their joint work in one of the core problem areas for security—

how to compose secure systems from smaller building

blocks. Alessandro Chiesa from the Massachusetts Institute of

Technology and Eran Tromer from Tel Aviv University describe

a novel approach based upon probabilistically checkable

proofs to achieve trusted computing on untrusted hardware.

Their insights may lead to new strategies for dealing with

a host of security problems that are currently considered

intractable, including supply chain security.

The capstone article for this issue of The Next Wave,

contributed by Fred Schneider of Cornell University,

methodically constructs a “blueprint” for security science.

Building on his keynote at the 2008 workshop, Schneider

suggests that security science should describe features and

R o b e r t M e u s h a wEditor’s columnGU
ES

T

relationships with predictive value rather than create defenses

reactively responding to attacks. Schneider’s blueprint outlines

the foundation for a security science comprising a body of laws

that allow meaningful predictions about system security.

Developing a robust security science will undoubtedly

require a long-term effort that is both broad based and

collaborative. It will also demand resources well beyond those

available to any single organization. But even with a generally

acknowledged need for science, the temptation will be to

continue fighting security fires with a patchwork of targeted,

tactical activities. Good tactics can win a battle but good

strategy wins the war. We need to create a better strategy for

computer security research. As we continue to struggle with

daily battles in cyberspace, we should not forget to pursue the

fundamental science—the fundamental strategy—that will

help to protect us in the future.

Contents

The Next Wave is published to disseminate technical advancements and
research activities in telecommunications and information technologies.
Mentions of company names or commercial products do not imply
endorsement by the US Government.

Vol. 19 | No. 2 | 2012

2 Cybersecurity: From engineering

to science
Carl Landwehr

6 The evolution of information security
Adam Shostack

13 Making experiments dependable
Roy Maxion

23 On bugs and elephants: Mining for

a science of security
Dusko Pavlovic

30 Programming language methods for

compositional security
Anupam Datta, John Mitchell

40 Proof-carrying data: Secure computation

on untrusted platforms
Alessandro Chiesa, Eran Tromer

47 Blueprint for a science of cybersecurity
Fred Schneider

58 GLOBE AT A GLANCE

60 ACCORDING TO THE EXPERTS

62 POINTERS

Technical Director emeritus

Trusted Systems Research, NSA

2

E
ngineers design and build artifacts—bridges, sewers, cars, airplanes, circuits, software—

for human purposes. In their quest for function and elegance, they draw on the

knowledge of materials, forces, and relationships developed through scientific study,

but frequently their pursuit drives them to use materials and methods that go beyond the

available scientific basis. Before the underlying science is developed, engineers often invent

rules of thumb and best practices that have proven useful, but may not always work. Drawing

on historical examples from architecture and navigation, this article considers the progress of

engineering and science in the domain of cybersecurity.

C ar l E . L an dwe h r

Cybersecurity: From

engineering to science |

Over the past several years, public interest has in-

creased in developing a science of cybersecurity, often

shortened to science of security [1, 2]. In modern

culture, and certainly in the world of research, science

is seen as having positive value. Things scientific are

preferred to things unscientific. A scientific founda-

tion for developing artifacts is seen as a strength. If

one invests in research and technology, one would like

those investments to be scientifically based or at least

to produce scientifically sound (typically meaning

reproducible) results.

This yearning for a sound basis that one might

use to secure computer and communication systems

against a wide range of threats is hardly new. Lampson

characterized access control mechanisms in operat-

ing systems in 1971, over 40 years ago [3]. Five years

later Harrison, Ruzzo, and Ullman analyzed the power

of those controls formally [4]. It was 1975 when Bell

and LaPadula [5], and Walter, et al. [6], published

their respective state-machine based models to specify

precisely what was intended by “secure system.” These

efforts, preceded by the earlier Ware and Anderson

reports [7, 8] and succeeded by numerous attempts to

build security kernel-based systems on these foun-

dations, aimed to put an end to a perpetual cycle of

“penetrate and patch” exercises.

Beginning in the late 1960’s, Djikstra and others de-

veloped the view of programs as mathematical objects

that could and should be proven correct; that is, their

outputs should be proven to bear specified relations

to their inputs. Proving the correctness of algorithms

was difficult enough; proving that programs written in

languages with informally defined semantics imple-

mented the algorithms correctly was clearly infeasible

without automated help.

In the late 1970’s and early 1980’s several research

groups developed systems aimed at verifying proper-

ties of programs. Proving security properties seemed

less difficult and therefore more feasible than proving

general correctness, and significant research funding

flowed into these verification systems in hopes that

they would enable sound systems to be built.

This turned out not to be so easy, for several

 The Next Wave | Vol. 19 No. 2 | 2012 | 3

FEATURE

reasons. One reason is that capturing the mean-

ing of security precisely is difficult in itself. In 1985,

John McLean’s System Z showed how a system might

conform to the Bell-LaPadula model yet still lack

the security properties its designers intended [9]. In

the fall of 1986, Don Good, a developer of verifica-

tion systems, wrote in an email circulated widely at

the time: “I think the time has come for a full-scale

redevelopment of the logical foundations of computer

security . . .” Subsequent discussions led to a workshop

devoted to Computer Security Foundations, inaugu-

rated in 1988, that has met annually since then and led

to the founding of The Journal of Computer Security a

few years later.

All of this is not to say that the foundations for a

science of cybersecurity are in place. They are not. But

the idea of searching for them is also not new, and it’s

clear that establishing them is a long-term effort, not

something that a sudden infusion of funding is likely

to achieve in a short time.

But lack of scientific foundations does not neces-

sarily mean that practical improvements in the state of

the art cannot be made. Consider two examples from

centuries past:

The Duomo, the Cathedral of Santa Maria Del

Fiore, is one of the glories of Florence. At the time

the first stone of its foundations was laid in 1294, the

birth of Galileo was almost 300 years in the future,

and of Newton, 350 years. The science of mechanics

did not really exist. Scale models were built and used

to guide the cathedral’s construction but, at the time

the construction began, no one knew how to build

a dome of the planned size. Ross King tells the fas-

cinating story of the competition to build the dome,

which still stands atop the cathedral more than 500

years after its completion, and of the many innova-

tions embodied both in its design and in the methods

used to build it [10]. It is a story of human innovation

and what might today be called engineering design,

but not one of establishing scientific understanding of

architectural principles.

About 200 years later, with the advent of global

shipping routes, the problem of determining the East-

West position (longitude) of ships had become such an

urgent problem that the British Parliament authorized

a prize of £20,000 for its solution. It was expected

that the solution would come from developments

in mathematics and astronomy, and so the Board of

Longitude, set up to administer the prize competition,

drew heavily on mathematicians and astronomers. In

fact, as Dava Sobel engagingly relates, the problem was

solved by the development, principally by a single self-

taught clockmaker named John Harrison, of mechani-

cal clocks that could keep consistent time even in the

challenging shipboard environments of the day [11].

I draw two observations from of these vignettes in

relation to the establishment of a science of cybersecu-

rity. The first is that scientific foundations frequently

follow, rather than precede, the development of practi-

cal, deployable solutions to particular problems. I

FIGURE 1. The Duomo, the Cathedral of Santa Maria Del Fiore,

is a story of human innovation and what might today be called

engineering design, but not one of establishing scientific under-

standing of architectural principles.

4

Cybersecurity: From engineering to science

claim that most of the large scale software systems on

which society today depends have been developed in a

fashion that is closer to the construction of the Flor-

ence cathedral or Harrison’s clocks than to the model

of specification and proof espoused by Dijkstra and

others. The Internet Engineering Task Force (IETF)

motto asserting a belief in “rough consensus and

running code” [12] reflects this fundamentally utili-

tarian approach. This observation is not intended as

a criticism either of Dijkstra’s approach or that of the

IETF. One simply must realize that while the search

for the right foundations proceeds, construction

will continue.

Second, I would observe that the establishment of

proper scientific foundations takes time. As noted ear-

lier, Newton’s law of gravitation followed Brunelleschi

by centuries and could just as well be traced all the

way back to the Greek philosophers. One should not

expect that there will be sudden breakthroughs in

developing a scientific foundation for cybersecurity,

and one shouldn’t expect that the quest for scientific

foundations will have major near-term effects on the

security of systems currently under construction.

What would a scientific foundation for cybersecu-

rity look like? Science can come in several forms, and

these may lead to different approaches to a science

of cybersecurity [13]. Aristotelian science was one

of definition and classification. Perhaps it represents

the earliest stage of an observational science, and it is

seen here both in attempts to provide a precise charac-

terization of what security means [14] but also in the

taxonomies of vulnerabilities and attacks that pres-

ently plague the cyberinfrastructure.

A Newtonian science might speak in terms of mass

and forces, statics and dynamics. Models of compu-

tational cybersecurity based in automata theory and

modeling access control and information flow might

fall in this category, as well as more general theories

of security properties and their composability, as in

Clarkson and Schneider’s recent work on hyperprop-

erties [15]. A Darwinian science might reflect the

pressures of competition, diversity, and selection. Such

an orientation might draw on game theory and could

model behaviors of populations of machines infected

by viruses or participating in botnets, for example.

A science drawing on the ideas of prospect theory

and behavioral economics developed by Kahneman,

Tversky, and others might be used to model risk

perception and decision-making by organizations

and individuals [16].

In conclusion, I would like to recall Herbert Simon’s

distinction of science from engineering in his land-

mark book, Sciences of the Artificial [17]:

Historically and traditionally, it has been the

task of the science disciplines to teach about

natural things: how they are and how they work.

It has been the task of the engineering schools

to teach about artificial things: how to make

artifacts that have desired properties and how

to design.

From this perspective, Simon develops the idea

that engineering schools should develop and teach a

science of design. Despite the complexity of the arti-

facts humans have created, it is important to keep in

mind that they are indeed artifacts. The community

has the ability, if it has the will, to reshape them to bet-

ter meet its needs. A science of cybersecurity should

help people understand how to create artifacts that

provide desired computational functions without be-

ing vulnerable to relatively trivial attacks and without

imposing unacceptable constraints on users or on

system performance.

FIGURE 2. Scientific foundations frequently follow, rather than

precede, the development of practical, deployable solutions

to particular problems; for example, mechanical clocks were

invented only after determining the longitude of ships had

become such an urgent problem that the British Parliament

authorized a £20,000 prize for its solution.

 The Next Wave | Vol. 19 No. 2 | 2012 | 5

FEATURE

References

[1] Evans D. Workshop report. NSF/IARPA/NSA Work-

shop on the Science of Security; Nov 2008; Berkeley, CA.

Available at: http://sos.cs.virginia.edu/report.pdf

[2] JASON Program Office. Science of cyber-security,

2010. McLean (VA): The Mitre Corporation. Report No.:

JSR-10-102. Available at: http://www.fas.org/irp/agency/

dod/jason/cyber.pdf

[3] Lampson BW. Protection. In: Proceedings of the

Fifth Princeton Symposium on Information Sciences and

Systems; Mar 1971; Princeton, NJ; p. 437–443. Reprinted

in: Operating Systems Review. 1974;8(1):18–24. DOI:

10.1.1.137.1119

[4] Harrison MA, Ruzzo WL, Ullman JD. Protection

in operating systems. Communications of the ACM.

1976;19(8):461–471. DOI: 10.1145/360303.360333

[5] Walter KG, Ogden WF, Gilligan JM, Schaeffer DD,

Schaen SL, Shumway DG. Initial structured specifica-

tions for an uncompromisable computer security system,

1975. Hanscom Air Force Base, Bedford (MA): Deputy

for Command and Management Systems, Electronic

Systems Division (AFSC). Report No.: ESD-TR-75-82,

NTIS AD-A022 490.

[6] Bell DE, La Padula L. Secure computer system: Uni-

fied exposition and multics interpretation, 1975. Hans-

com Air Force Base, Bedford (MA): Deputy for Com-

mand and Management Systems, Electronic Systems

Division (AFSC). Report No.: ESD-TR-75-306, DTIC

AD-A023588. Available at: http://nob.cs.ucdavis.edu/

history/papers/bell76.pdf

[7] Ware W. Security controls for computer systems:

Report of Defense Science Board task force on computer

security, 1970. Washington (DC): The Rand Coporation

for the Office of the Director of Defense Research and

Engineering. Report No.: R609-1. Available at: http://

nob.cs.ucdavis.edu/history/papers/ware70.pdf

[8] Anderson JP. Computer security technology plan-

ning study, 1972. L.G. Hanscom Field, Bedford (MA):

Deputy for Command and Management Systems, HQ

Electronic Systems Division (AFSC). Report No.: ESD-

TR-73-51, Vol. I, NTIS AD-758 206. Available at: http://

nob.cs.ucdavis.edu/history/papers/ande72a.pdf

[9] McLean J. A comment on the ‘Basic Security Theo-

rem’ of Bell and LaPadula. Information Processing Letters.

1985;20(2):6770. DOI: 10.1016/0020-0190(85)90065-1

[10] King R. Brunelleschi’s Dome: How a Renaissance

Genius Reinvented Architecture. New York (NY): Walker

Publishing Company; 2000. ISBN 13: 978-0-802-71366-7

[11] Sobel D. Longitude: The True Story of a Lone Genius

Who Solved the Greatest Scientific Problem of His Time.

New York (NY): Walker Publishing Company; 1995.

ISBN 10: 0-802-79967-1

[12] Hoffman P, Harris S. The Tao of IETF: A novice’s

guide to the Internet Engineering Task Force. Network

Working Group, The Internet Society. RFC 4677, 2006.

Available at: http://www.rfc-editor.org/rfc/rfc4677.txt

[13] Cybenko G. Personal communication, Spring, 2010.

Note: I am indebted to George Cybenko for this observa-

tion and the subsequent four categories.

[14] Avizienis A, Laprie JC, Randell B, Landwehr C.

Basic concepts and taxonomy of dependable and secure

computing. IEEE Transactions on Dependable and

Secure Computing. 2004;1(1):11–33. DOI: 10.1109/

TDSC.2004.2

[15] Clarkson MR, Schneider FB. Hyperproperties. Jour-

nal of Computer Security. 2010;18(6):1157–1210. DOI:

10.3233/JCS-2009-0393

[16] Kahneman D, Tversky A. Prospect theory:

An analysis of decision under risk. Econometrica.

1979;47(2):263–291. DOI: 10.2307/1914185

[17] Simon HA. Sciences of the Artificial. 3rd ed.

Cambridge (MA): MIT Press; 1996. ISBN 13:

978-0-262-69191-8

About the author

Carl E. Landwehr is an independent consultant in

cybersecurity research. Until recently, he was a senior

research scientist for the Institute for Systems Re-

search at the University of Maryland, College Park.

He received his BS in engineering and applied sci-

ence from Yale University and his PhD in computer

and communication sciences from the University of

Michigan. Following a 23-year research career at the

Naval Research Laboratory, he has for the past decade

developed and managed research programs at the Na-

tional Science Foundation and the Advanced Research

Development Activity/Defense Technology Office/

Intelligence Advanced Research Projects Activity. He

is interested in all aspects of trustworthy computing.

In December 2010, he completed a four-year term as

editor in chief of IEEE Security & Privacy Magazine.

6

The evolution of

information security |
A d a m S h o s t a c k

B
efore Charles Darwin wrote his most famous works, The Origin of Species and The Descent of

Man, he wrote a travelogue entitled The Voyage of the Beagle. In it he describes his voyages

through South and Central America. On his journey, he took the opportunity to document

the variety of life he saw and the environments in which it existed. Those observations gave

Darwin the raw material from which he was able to formulate and refine his theory of evolution.

Evolution has been called the best idea anyone ever had. That’s in part because of the explanatory

power it brings to biology and in part because of how well it can help us learn in other fields.

Information security is one field that can make use of the theory of evolution. In this short essay,

I’d like to share some thoughts on how we can document the raw material that software and

information technology professionals can use to better formulate and refine their ideas around

security. I’ll also share some thoughts on how information security might evolve under a variety of

pressures. I’ll argue that those who adopt ideas from science and use the scientific method will be

more successful, and more likely to pass on their ideas, than those who do not.

FEATURE

1. The information security environment

Information security is a relatively new field. Some of

the first people to undertake systematic analysis are

still working in the field. Because the field and associ-

ated degree programs are fairly recent, many of those

working in information security have backgrounds or

degrees in other fields. What’s more, those involved

in information security often have a deep curiosity

about the world, leading them to learn about even

more fields. Thus, we have a tremendous diversity

of backgrounds, knowledge, skills, and approaches

from which the information security community can

draw. Between a virtual explosion of niches in which

new ideas can be brought to bear, and many different

organizations to test those ideas, we ought to have a

natural world of mutation, experimentation, and op-

portunities to learn. We should be living in a golden

age of information security. Yet many security experts

are depressed and demoralized. Debora Plunkett, head

of the NSA’s Information Assurance Directorate has

stated, “There’s no such thing as ‘secure’ anymore.”

To put a pessimistic face on it, risks are unmeasur-

able, we run on hamster wheels of pain, and budgets

are slashed.

In the real world, evolution has presented us with

unimaginably creative solutions to problems. In the

natural world, different ways of addressing problems

lead to different levels of success. Advantages accumu-

late and less effective ways of doing things disappear.

Why is evolution not working for our security prac-

tices? What’s different between the natural world and

information security that inhibits us from evolving

our security policies, practices, and programs?

2. Inhibitors to evolution

Information security programs are obviously not or-
ganisms that pass on their genes to new programs, and
so discussions of how they evolve are metaphorical. I
don’t want to push the metaphor too far, but we ought
to be able to do better than natural organisms because
we can trade information without trading genes. Ad-
ditionally, we have tremendous diversity, strong pres-
sures to change, and even the advantage of being able
to borrow ideas and lessons from each other. So why

aren’t we doing better?

Many challenges of building and operating effec-
tive security programs are well known. They include

demonstrating business value, scoping, and demon-

strating why something didn’t happen. Let’s focus on

one reason that gets less attention: secrecy. To many

who come to information security from a military

background, the value of secrecy is obvious: the less an

attacker knows, the greater the work and risk involved

in an attack. It doesn’t take a military background to

see that putting a red flag on top of every mine makes

a minefield a lot less effective. A minefield is effective

precisely because it slows down attackers who have to

expose themselves to danger to find a way through it.

In information security operations, however, attacks

can be made from a comfy chair on the other side of

the world, with the attacker having first torn apart an

exact copy of your defensive system in their lab. (This

contrast was first pointed out by Peter Swire.)

We know that systems are regularly penetrated.

Some say that all of them are. Despite that knowledge,

we persist in telling each other that we’re doing okay

and are secure. Although the tremendously resilient

infrastructures we’ve built work pretty well, we can

and should do better.

For example, take the problem of stack smashing

buffer overflows. The problem was clearly described

in the public literature as early as 1972. According to

Lance Hoffman, it was well known and influenced

the design of the data flags in the main processors of

the Burroughs B5500. The problem was passed down

repeatedly through the 1980s and 1990s, and was

exploited by the Morris Internet worm and many oth-

ers. It was only after Aleph One published his paper

“Smashing the stack for fun and profit” in 1996 that

systematic defenses began to be created. Those defens-

es include StackGuard, safer string handling libraries,

static analysis, and the useful secrecy in operating

system randomization. Until the problem was publicly

discussed, there were no resources for defenses, and

therefore, while the attacks evolved, the defenses were

starved. The key lesson to take from this problem that

has plagued the industry from 1972 (and is still pres-

ent in too much legacy code) is: keeping the problem

secret didn’t help solve it.

The wrong forms of secrecy inhibit us from learn-

ing from each other’s mistakes. When we know that

system penetrations are frequent, why do we hide

information about the incidents? Those of us in opera-

tional roles regularly observe operational problems.

Those incidents are routinely investigated and the

 The Next Wave | Vol. 19 No. 2 | 2012 | 7

8

The evolution of information security

results of the investigation are almost always closely

held. When we hide information about system failures,

we prevent ourselves from studying those failures. We

restrain our scientists from emulating Darwin’s study

of the variations and pressures that exist. We prevent

the accumulation of data; we inhibit the development

of observational methods; and we prevent scientific

testing of ideas.

Let’s consider what scientific testing of ideas

means, and then get to a discussion of what ideas we

might test.

3. Defining the problem

a. What is science?

For the sake of clarity, let me compare and contrast

three approaches to problem solving and learning:

science, engineering, and mathematics. Mathematics

obviously underpins both science and engineering, but

it will be helpful to untangle them a little.

At the heart of science is the falsification of hy-

potheses. Let me take a moment to explain what that

means. A hypothesis is an idea with some predictive

power. Examples include “everything falls at the same

speed” (modulo friction from the air) and “gravity

bends the path of light.” Both of these hypotheses

allow us to predict what will happen when we act.

What’s more, they’re testable in a decisive way. If I

can produce a material that falls faster than another

in a vacuum, we would learn something fundamen-

tal about gravity. Contrast this with derivation by

logic, where disproof requires a complex analysis of

the proof. Science has many tools which center on fal-

sifying hypotheses: the experiment, peer review, peer

replication, publication, and a shared body of results.

But at the heart of all science is the falsifiable hypoth-

esis. Science consists of testable ideas that predict

behavior under a range of circumstances, the welcom-

ing of such tests and, at its best, the welcoming of the

results. For more on the idea of falsifiability, I recom-

mend Karl Popper’s Conjectures and Refutations.

Science also overlaps heavily with engineering. En-

gineering concerns making tradeoffs between a set of

constraints in a way that satisfies customers and stake-

holders. Engineering can involve pushing boundaries

of science, such as finding a way to produce lasers with

shorter wavelengths, or pushing the limits of scientific

knowledge. For example, when the original Tacoma

Narrows Bridge finally buckled a little too hard, it

drove new research into the aerodynamics of bridges.

The scientific approach of elimination of falsehood

can be contrasted with mathematics, which constructs

knowledge by logical proof. There are elements of

computer security, most obviously cryptography,

which rely heavily on mathematics. It does not devalue

mathematics at all to note that interesting computer

systems demonstrably have properties that are true

but unprovable.

b. What is information security?

Information security is the assurance and reality that

information systems can operate as intended in a

hostile environment. We can and should usefully bring

to bear techniques, lessons, and approaches from all

sorts of places, but this article is about the intersection

of science and security. So we can start by figuring out

what sorts of things we might falsify. One easy target

is the idea that you can construct a perfectly secure

system. (Even what that means might be subject to

endless debate, and not falsification.) Even some of the

most secure systems ever developed may include flaws

from certain perspectives. Readers may be able to

think of examples from their own experience.

But there are other ideas that might be disproven.

For example, the idea that computer systems with

formal proofs of security will succeed in the market-

place can be falsified. It seems like a good idea, but

in practice, such systems take an exceptionally long

time to build, and the investment of resources in

security proofs come at the expense of other features

that buyers want more. In particular, it turns out that

there are several probably false hypotheses about such

computer systems:

 Proofs of security of design relate to the security

of construction.

 Proofs of security of design or construction

result in operational security.

 Proofs of security result in more secure systems

than other security investments.

 Buyers value security above all else.

These are small examples but there are much larger

opportunities to really study our activities and im-

prove their outcomes for problems both technical and

 The Next Wave | Vol. 19 No. 2 | 2012 | 9

FEATURE

human. As any practitioner knows, security is replete

with failures, which we might use to test our ideas.

Unfortunately, we rarely do so, opting instead for the

cold comfort of approaches we know are likely to fail.

Why is it we choose approaches that often fail?

Sometimes we don’t know a better way. Other times,

we feel pressure to make a decision that follows

“standard practice.” Yet other times, we are compelled

by a policy or regulation that ignores the facts of a

given case.

4. Putting it all together: A science of

information security

So what ideas might we test? At the scale which the

US government operates networks, almost any pro-

cess can be framed as testable. Take “always keep your

system up to date” or “never write down a password.”

Such ideas can be inserted into a sentence like “Or-

ganizations that dedicate X percent of their budget

to practice Y suffer fewer incidents than those that

dedicate it to practice Z.”

Let me break down how we can frame this hypothesis:

1. The first choice I’ve made is to focus on organiza-

tions rather than individual systems. Individual

systems are also interesting to study, but it may

be easier to look to whole organizations.

2. The second choice is to focus on budget. Eco-

nomics is always about the allocation of scarce

resources. Money not spent on information se-

curity will be spent on other things, even if that’s

just returning it to shareholders or taxpayers. (As

a taxpayer, I think that would be just fine.)

3. The third choice is to focus on outcomes. As

I’ve said before, security is about outcomes, not

about process (see http://newschoolsecurity.

com/2009/04/security_is_about_outcome/). So

rather than trying again to measure compliance,

we look to incidents as a proxy for effectiveness.

Of course, incidents are somewhat dependent

on attacks being widely and evenly distributed.

Fortunately, wide distribution of attacks is pretty

much assured. Even distribution between various

organizations is more challenging, but I’m confi-

dent that we’ll learn to control for that over time.

4. The final choice is that of comparisons. We
should compare our programs to those of other

organizations, and to their choices of practices.

Of course, comparing one organization to another

without consideration of how they differ might be a

lot like comparing the outcomes of heart attacks in

40-year-olds to 80-year-olds. Good experimental de-

sign will require either that we carefully match up the

organizations being compared or that we have a large

set and are randomly distributing them between con-

ditions. Which is preferable? I don’t know, and I don’t

need to know today. Once we start evaluating out-

comes and the choices that lead to them, we can see

what sorts of experiments give us the most actionable

information and refine them from there. We’ll likely

find several more testable hypotheses that are useful.

Each of the choices above can be reframed as a

testable hypothesis of “does measuring this get us the

results we want?” If you think the question of, “Do

organizations that dedicate X percent of their budget

to practice Y suffer fewer incidents than those that

dedicate it to practice Z?” is interesting, then, before

testing any ideas, bringing science to information

security helps us ask more actionable questions.

Similarly, we can think about building outcome-
oriented tests for technology. Proof of concept ex-
ploit code can be thought of as disproving the trivial
hypothesis that, “This program has no exploitable
vulnerability of class X.” Since we know that programs
usually have a variety of flaws associated with the lan-
guages used to construct them, we would expect many
of those hypotheses to be false. Nevertheless, demon-
stration code can focus attention on a particular issue
and help get it resolved. But we can aspire to more
surprising hypotheses.

5. Next steps

Having laid out some of the challenges that face infor-

mation security and some of what we will gain as we

apply the scientific method, here is what we need to do

to see those benefits:

1. Robust information sharing (practices and

outcomes). We need to share information
about what organizations are doing to protect
their information and operations, and how
those protections are working. Ideally, we will
make this information widely available so that
people of different backgrounds and skills can
analyze it. Through robust and broad debate,

10

The evolution of information security

we’re more likely to overcome groupthink and

inertia. Fortunately, the federal government

already shares practice data in reports from

the Office of the Inspector General and the

Government Accountability Office. Outcome

reporting is also available, in the form of data

sent to the US Computer Emergency Readiness

Team (US-CERT). The Department of Veterans

Affairs publishes the information security

reports it sends to Congress. Expanding on

this information publication will accelerate our

ability to do science.

2. Robust hypothesis testing. With the availability

of data, we need to start testing some hypotheses.

I suggest that nothing the information security

community could do would make millions

of people happier faster and at less risk than

reducing password requirements. Testing

to see if password complexity requirements

have any impact on outcomes could allow

many organizations to cut their help desk

and password reset requirements at little cost

to security.

3. Fast reaction and adaptation. Gunnar Peterson

has pointed out that as technologies evolved

from file transfer protocol (FTP) to hypertext

transfer protocol (HTTP) to simple object access

protocol (SOAP), security technologies have

remained “firewalls and SSL.” It can seem like

the only static things in security are our small

toolbox and our depression. We need to ensure

that innovations by attackers are understood

and called out in incident responses and that

these innovations are matched by defenders

in ways that work for each organization and

its employees.

There are objections to these ideas of data sharing

and testing. Let me take on two in particular.

The first objection is “This will help attackers.” But

information about defensive systems is easily discov-

ered. For example, as the DEF CON 18 Social Engi-

neering contest made irrefutable, calling employees

on the phone pretending to be the help desk reveals all

sorts of information about the organization. “Train-

ing and education” were clearly not effective for those

organizations. If you think your training works well,

please share the details, and perhaps someone will

falsify your belief. My hypothesis is that every organi-

zation of more than a few hundred people has a great

deal of information on their defenses which is easily

discovered. (As if attackers need help anyway.)

The second objection is that we already have

information-sharing agreements. While that is true,

they generally don’t share enough data or share the

data widely enough to enable meaningful research.

Information security is held back by our lack of

shared bodies of data or even observations. Without

such collections available to a broad community of re-

search, we will continue along today’s path. That’s not

acceptable. Time after time, the scientific approach has

demonstrated effectiveness at helping us solve thorny

problems. It’s time to bring it to information security.

The first step is better and broader sharing of infor-

mation. The second step is testing our ideas with that

data. The third step will be to apply those ideas that

have passed the tests, and give up on the superstitions

which have dogged us. When we follow Darwin and

Robust information sharing Robust hypothesis testing Fast reaction and adaptation

 The Next Wave | Vol. 19 No. 2 | 2012 | 11

FEATURE

Further reading

Aleph One. 1996. Smashing the stack for fun and profit.

Phrack. 1996;7(49). Available at: http://www.phrack.org/

issues.html?issue=49&id=14#article

Anderson JP. Computer security technology planning

study, 1972. L.G. Hanscom Field, Bedford (MA): Deputy

for Command and Management Systems, HQ Electronic

Systems Division (AFSC). Report No.: ESD-TR-73-51,

Vol. I, NTIS AD-758 206. Available at: http://nob.

cs.ucdavis.edu/history/papers/ande72a.pdf

Hoffman L. Personal communication, but see also the

Burroughs tribute page available at: http://web.me.com/

ianjoyner/Ian_Joyner/Burroughs.html

Popper K. Conjectures and Refutations: The Growth of

Scientific Knowledge. London: Routledge; 1963. ISBN 13:

978-0-710-01966-0

Swire P. A model for when disclosure helps security:

What is different about computer and network security?

Journal on Telecommunications and High Technology

Law. 2004;3(1):163–208.

Zorz Z. NSA considers its networks compromised. Help

Net Security. 2010 Dec 17. Available at: http://www.net-

security.org/secworld.php?id=10333

his naturalist colleagues in documenting the variety of

things we see, we will be taking an important step out

of the muck and helping information security evolve.

About the author

Adam Shostack is a principal program manager on

the Microsoft Usable Security team in Trustworthy

Computing. As part of ongoing research into clas-

sifying and quantifying how Windows machines get

compromised, he recently led the drive to change

Autorun functionality on pre-Win7 machines; the

update has so far improved the protection of nearly

500 million machines from attack via universal se-

rial bus (USB). Prior to Usable Security, he drove the

Security Development Lifecycle (SDL) Threat Modeling

Tool and Elevation of Privilege: The Threat Model-

ing Game as a member of the SDL core team. Before

joining Microsoft, Adam was a leader of successful

information security and privacy startups and helped

found the Common Vulnerabilities and Exposures list,

the Privacy Enhancing Technologies Symposium, and

the International Financial Cryptography Association.

He is coauthor of the widely acclaimed book, The New

School of Information Security.

12

Information security and privacy continue to grow in importance as threats proliferate, privacy

erodes, and attackers find new sources of value. Yet the security of information systems and the

privacy offered by them depends on more than just technology. Each requires an understanding

of the incentives and trade-offs inherent to the behavior of people and organizations. As society’s

dependence on information technology has deepened, policymakers have taken notice. Now more

than ever, careful research is needed to characterize accurately threats and countermeasures, in both

the public and private sectors.

The Workshop on the Economics of Information Security (WEIS) is the leading forum for

interdisciplinary scholarship on information security and privacy, combining expertise from the

fields of economics, social science, business, law, policy, and computer science. Prior workshops have

explored the role of incentives between attackers and defenders of information systems, identified

market failures surrounding Internet security, quantified risks of personal data disclosure, and assessed

investments in cyber-defense. The 2012 workshop will build on past efforts using empirical and

analytic tools not only to understand threats, but also to strengthen security and privacy through

novel evaluations of available solutions.

WEIS encourages economists, computer scientists, legal scholars, business school researchers,

security and privacy specialists, as well as industry experts to submit their research and participate by

attending the workshop.

Contact: If you have any questions, please contact info@weis2012.econinfosec.org and respond to the

automatic verification message. Your message will be forwarded to the organizers.

WORKSHOP INFORMATION

Location: Berlin, Germany

Venue: Berlin Brandenburg Academy of Sciences (BBWA)

Host: DIW Berlin

IMPORTANT DATES

Submission due: 24 February 2012

Notification of acceptance: 13 April 2012

Final paper due: 1 June 2012

Workshop: 25–26 June 2012

11th Annual

Workshop on the Economics of Information Security

WEIS 2012
Berlin, Germany

 The Next Wave | Vol. 19 No. 2 | 2012 | 13

Making experiments

dependable |
R o y M a x i o n *

A
bstract. In computer science and computer

security we often do experiments to establish or

compare the performance of one approach vs.

another to some problem, such as intrusion detec-

tion or biometric authentication. An experiment is

a test or an assay for determining the characteristics

of the item under study, and hence experimentation

involves measurements.

Measurements are susceptible to various kinds of

error, any one of which could make an experimental

outcome invalid and untrustworthy or undependable.

This paper focuses on one kind of methodological er-

ror—confounding—that can render experimental out-

comes inconclusive, but often without the investigator

knowing it. Hence, valuable time and other resources

can be expended for naught. We show examples from

the domain of keystroke biometrics, explaining several

different examples of methodological error, their con-

sequences, and how to avoid them.

1. Science and experimentation

You wouldn’t be surprised if, in a chemistry experi-

ment, you were told that using dirty test tubes and

beakers (perhaps contaminated with chemicals from a

past procedure) could ruin your experiment, making

your results invalid and untrustworthy. While we don’t

use test tubes in cyber security, the same admonition

applies: keep your experiments clean, or the contami-

nation will render them useless.

Keeping your glassware clean is part of the chem-

lab methodology that helps make experimental mea-

surements dependable, which is to say that the mea-

surements have minimal error and no confounding

variables. In cyber security we also need measure-
ments that are dependable and error-free; undepend-
able measurements make for undependable values
and analyses, and for invalid conclusions. A rigorous
experimental methodology will help ensure that mea-
surements are valid, leading to outcomes in which we

can have confidence.

A particularly insidious form of error is the con-
found—when the value of one variable or experi-
mental phenomenon is confounded or influenced by
the value of another. An example, as above, would be
measuring the pH of a liquid placed in contaminated
glassware where the influence of the contaminant on
pH varied with the temperature of the liquid being
measured. This is a confound, and to make things
worse, the experimenter would likely be unaware of its
presence or influence. The resulting pH values might
be attributed to the liquid, to the temperature, or to
the contaminant; they cannot be distinguished (with-
out further experimentation). Similar measurement
error can creep into cyber security experiments, mak-
ing their measures similarly invalid.

This article describes some of the issues to be con-

sidered, and the rationales for decisions that need to

be made, to ensure that an experiment is valid—that

is, that outcomes can be attributed to only one cause

(no alternative explanations for causal relations), and

that experimental results will generalize beyond the

experimental setting.

In the sections to follow, we first consider the hall-

marks of a good experiment: repeatability, reproduc-

ibility and validity. Then we focus on what is arguably

the most important of these—validity. We examine

a range of threats to validity, using an experiment in

* The author is grateful for support under National Science Foundation grant number CNS-0716677. Any opinions, findings, conclu-

sions or recommendations expressed in this material are those of the author, and do not necessarily reflect the views of the National

Science Foundation.

C . B . Jo n e s a n d J . L . L l o y d (E d s .) : Fe s t s c h r i f t R a n d e l l , L N C S 6 8 7 5 , p p. 3 4 4 – 3 5 7 , 2 0 1 1 . | © S p r i n g e r- Ve r l a g

B e r l i n He i d e l b e r g 2 0 1 1 | R e p u b l i s h e d w i t h k i n d p e r m i s s i o n o f S p r i n g e r S c i e n c e + B u s i n e s s Me d i a .

14

Making experiments dependable

keystroke biometrics to provide examples. The experi-

ment is laid out first, and is then critiqued; remedies

for the violations are suggested. We close by sug-

gesting simple ways to avoid the kinds of problems

described here.

2. Hallmarks of a good experiment

There are clear differences between experiments that

are well-designed and those that are not. While there

may be many details that are different between the

two, the main ones usually reduce to issues of repeat-

ability (sometimes called reliability), reproducibility

and validity. While our main focus here will be on

validity, we will first look briefly at what each of the

other terms means, just to put them all in context.

Repeatability refers to the variation in repeated

measurements taken by a single person or instrument

on the same item and under the same conditions; we

seek high agreement, or consistency, from one mea-

sured instance to another [9]. That is, the experiment

can be repeated in its entirety, and the results will be

the same every time, within measurement error. For

example, if you measure the length of a piece of string

with a tape measure, you should get about the same

result every time. If an experiment is not repeatable,

even by the same person using the same measuring

apparatus, then there is a risk that the measurement

is wrong, and hence the outcome of the experiment

may be wrong, too; but no one will realize it, and so

erroneous values will be reported (and assumed to be

correct by readers).

Reproducibility relates to the agreement of experi-

mental results with independent researchers using

similar but physically different test apparatus, and

different laboratory locations, but trying to achieve

the same outcome as was reported in a source ar-

ticle [9]. Measurements should yield the same results

each time they are taken, irrespective of who does

the measuring. Using the length-of-string example, if

other people can measure that same piece of string in

another setting using a similar measuring device, they

should get about the same result as the first group did.

If they don’t, then the procedure is not reproducible;

it can’t be replicated. Reproduction (sometimes called

replication) allows an assessment of the control on the

operating conditions of the measurement procedure,

i.e., the ability to reset the conditions to some desired

state. Ultimately, replication reflects how well the pro-

cedure was operationalized.

Note that reproducibility doesn’t mean hitting

return and analyzing the same data set again with

the same algorithm. It means conducting the entire

experiment again, data collection and all. If an experi-

ment is not reproducible, then it cannot be replicated

by others in a reliable way. This means that no one will

be able to verify that the experiment was done cor-

rectly in the first place, hence placing an air of untrust-

worthiness on the original results. Reproducibility

hinges on operational definitions for the measures and

procedures employed in the course of the experi-

ment. An operational definition defines a variable or

a concept in terms of the procedures or operations

used to measure it. An operational definition is like a

recipe or set of detailed instructions for describing or

measuring something.

Validity relates to the logical well-groundedness of

how the experiment is conducted, as well as the extent

to which the results will generalize to circumstances

beyond those in the laboratory. The next section ex-

pands on the concept of validity.

3. Validity

What does the term valid mean? Drawing from a stan-

dard dictionary, when some thing or some argument

or some process is valid, it is well-grounded or justifi-

able; it is logically correct; it is sound and flawlessly

reasoned, supported by an objective truth.

FIGURE 1. Hallmarks of a good experiment.

 The Next Wave | Vol. 19 No. 2 | 2012 | 15

FEATURE

To conduct an experiment that was anything other

than valid, in the above sense, would be foolish, and

yet we see such experiments all the time in the litera-

ture. Sometimes we can see the flaws (which some

would call threats to validity) directly in the experi-

ment, and sometimes we can’t tell, because authors do

not report the details of how their experiments were

conducted. Generally speaking, there are two kinds of

validity—internal and external. Conceptually, these

are pretty simple.

Internal validity. In most experiments we are trying to

find out if A has a given effect on B, or if A causes B.

To claim that A indeed causes B, the experiment must

not offer any alternative causes nor alternative expla-

nations for the outcome; if this is case, then the experi-

ment is internally valid [8]. An alternative explanation

for an experimental outcome can be due, for example,

to confounded variables that have not been controlled.

For example, suppose we want to understand the

cause of errors in programming. We recruit students

in university programming classes (one class uses C,

and the other uses Java). We ask all the students to

write a program that calculates rocket trajectories.

The results indicate that C programmers make more

programming errors, and so we conclude that the C

programming language is a factor in software errors.

Drawing such a conclusion would be questionable,

because there are other factors that could explain

the results just as well. Suppose, for example, that

the Java students were more advanced (juniors, not

sophomores) than the C students. The outcome of

the experiment could be due to the experience level

of the students, just as much as it could be due to the

language. Since we can’t distinguish distinctly be-

tween experience level and language, we say that the

experiment confounds two factors—language and

experience—and is therefore not valid. Note that it can

sometimes be quite difficult to ensure internal valid-

ity. Even if all the students are at the same experience

level, if they self-selected Java vs C it would still allow

for a confound in that a certain kind of student might

be predisposed to select Java, and a different kind of

student might be predisposed to select C. The two

different kinds of students might be differentially good

at one language or the other. The remedy for such an

occurrence would be to assign the language-student

pairs randomly.

External validity. In most experiments we hope that

the findings will apply to all users, or all software,

or all applications. We want the experimental find-

ings to generalize from a laboratory or experimental

setting to a much broader setting. To the extent that

a study’s findings generalize to a broader population

(usually taken to be “the real world”), the experiment

is externally valid [8]. If the findings are limited to the

conditions surrounding the study (and not to broader

settings), then the experiment lacks external validity.

Another way to think about this is that external valid-

ity is the extent to which a causal relationship holds

when there are variations in participants, settings

and other variables that are different from the narrow

ranges employed in the laboratory.

Referring back to our earlier example, suppose we

were to claim that the experiment’s outcome (that

the C language promotes errors) generalizes to a set

of programmers outside the experimental environ-

ment—say, in industry. The generalization might not

hold, perhaps because the kind of problem presented

to the student groups was not representative of the

kinds of problems typically encountered in industry.

This is an example of an experiment not generalizing

beyond its experimental conditions to a set of condi-

tions more general; it’s not externally valid.

Trade-off between internal and external validity. It

should be noted that not all experiments can be valid

both internally and externally at the same time; it

depends on the purpose of the experiment whether

we seek high internal or high external validity. Typi-

cally there is a trade-off in which one kind of validity

is sacrificed for the other. For example, laboratory

experiments designed to answer a very focused ques-

tion are often more internally valid than externally

valid. Once a research question seems to have been

settled (e.g., that poor exception handling is a major

cause of software failure), then a move to a broader,

more externally valid, experiment would be the right

thing to do.

4. Example domain—keystroke biometrics

In this section we introduce the domain from

which we draw concrete examples of experimental

invalidities—keystroke biometrics.

Keystroke biometrics, or keystroke dynamics, is

16

Making experiments dependable

the term given to the procedure of measuring and

assessing a user’s typing style, the characteristics of

which are thought to be unique to a person’s physiol-

ogy, behavior, and habits. The idea has its origin in the

observation that telegraph operators have distinctive

patterns, called fists, of keying messages over telegraph

lines. One notable aspect of fists is that they emerge

naturally, as noted over a hundred years ago by Bryan

& Harter, who showed that operators are distinc-

tive due to the automatic and unconscious way their

personalities express themselves, such that they could

be identified on the basis of having telegraphed only a

few words [1].

These measures of key presses and key releases,

based largely on the timing latencies between key-

strokes, are compared to a user profile as part of a

classification procedure; a match or a non-match can

be used to decide whether or not the user is authenti-

cated, or whether or not the user is the true author of

a typed sequence. For a brief survey of the keystroke

literature, see [7].

We use keystroke dynamics as an example here

for two reasons. First, it’s easy to understand—much

easier, for example, than domains like network proto-

cols. If we’re going to talk about flaws and invalidities

in experiment design, then it’s better to talk about

an experiment that’s easily understood; the lessons

learned can be extended to almost any other domain

and experiment. Second, keystroke dynamics shares

many problems with other cyber-security disciplines,

such as intrusion detection. Examples are classification

and detection accuracy; selection of best classifier or

detector; feature extraction; and concept drift, just to

name a few. Again, problems solved in the keystroke

domain are very likely to transfer to other domains

where the same type of solution will be effective.

4.1. What is keystroke dynamics good for?

Keystroke dynamics is typically thought of as an

example of the second factor in two-factor authentica-

tion. For example, for a user to authenticate, he’d have

to know not only his own password (the first factor),

but he would also have to type the password with a

rhythm consistent with his own rhythm. An impos-

tor, then, might know your password, but would not

be able to replicate your rhythm, and so would not be

allowed into the system. Another application, along a

similar line, would be continuous re-authentication,

in which the system continually checks to see that

the typing rhythm matches that of the logged-in user,

thereby preventing, say, insiders from masquerading

as you. A third application would be what forensics

experts call questioned-document analysis, which asks

whether a particular user typed a particular document

or parts of it. Finally, keystroke rhythms could be used

to track terrorists from one cyber café to another,

or to track a predator from one chat-room session

to another.

4.2. How does keystroke dynamics work?

The essence of keystroke dynamics is that timing data

are collected as a typist enters a password or other

string. Each keystroke is timestamped twice; once on

its downstroke and once on its upstroke. From those

timings we can compute the amount of time that a key

was held down (hold time) and the amount of time

it took to transition from one key to the next (transi-

tion latency). The hold times and the latencies are

called features of the typed password, and for a given

typing instance these features would be grouped into

a feature vector. For a 10-character password there

would be eleven hold times and ten latencies if we

include the return key.a If a typist enters a password

many times, then the several resulting feature vectors

can be assembled into a template which represents the

central tendency of the several vectors. Each typist will

have his or her own such template. These templates are

formed during an enrollment period, during which

legitimate users provide typing samples; these samples

form the templates. Later, when a user wishes to log

in, he types the password with the implicit claim that

the legitimate user has typed the password. The key-

stroke dynamics system examines the feature vector of

the presently-typed password, and classifies it as either

belonging to the legitimate user or not. The classifier

operates as an anomaly detector; if the rhythm of the

typed password is a close enough match to the stored

template, then the user is admitted to the system. The

key aspect of this mechanism is the detector. In ma-

chine learning there are many such detectors, distin-

guished by the distance metrics that they use, such as

Euclidean, Manhattan and Mahalanobis, among others

[4]. Any of these detectors can be used in a keystroke

a. There are two kinds of latencies—keydown to keydown and keyup to keydown. Some researchers use one or the other of these, and

some researchers use both. In our example we would have 31 features if we used both.

 The Next Wave | Vol. 19 No. 2 | 2012 | 17

dynamics system; under some circumstances, some
detectors work better than others, but it is an open
research question as to which classifier is overall best.

5. A typical keystroke experiment

In this section we discuss several aspects of conduct-

ing a study in keystroke dynamics, we show what can

go wrong, and we share some examples of how (in)

validity can affect the outcome of a real experiment.

We will discuss some examples and experimental flaws

that are drawn from the current literature, although

not all of the examples are drawn from a single paper.

Walkthrough. Let’s walk through a typical experiment

in keystroke dynamics, and we’ll point out some errors

that we’ve observed in the literature, why they’re er-

rors, how to correct them, and what the consequences

might be if they’re left uncorrected. Note that the

objective of the experiment is to discriminate among

users on the basis of their typing behavior, not on the

basis of their typing behavior plus, possibly unspeci-

fied, other factors; the typing behavior needs to be iso-

lated from other factors to make the experiment valid.

A typical keystroke dynamics experiment would
test how well a particular algorithm can determine
that a user, based on his typing rhythm, is or is not
who he claims to be. In a keystroke biometric system,
a user would present himself to the system with his
login ID, thereby claiming to be the person associ-
ated with the ID. The system verifies this claim by two
means: it checks that the password typed by the user
is in fact the user’s password; and it checks that the
password is typed with the same rhythm with which
the legitimate user would type it. If these two factors
match the system’s stored templates for the user, then
the user is admitted to the system.

Checking that the correct password is offered is old
hat; checking that its typing rhythm is correct is an-
other matter. This is typically done by having the user
“enroll” in the biometric component of the system. For
different biometric systems the enrollment process is
different, depending on the biometric being used; for
example, if a fingerprint is used, then the user needs to
present his fingerprint to the system so that the system
can encrypt and store it for later matching against
a user claiming to be that person who enrolled. For

keystroke biometric systems, the process is similar;

the user types his password several times so that

the system can form a profile of the typing rhythm

for later matching. The biometric system’s detection

algorithm is tested in two ways. In the first test, sample

data from the enrolled user is presented to the system;

the system should recognize that the user is legitimate.

The second test determines whether the detector can

recognize that an impostor is not the claimed user.

This would be done by presenting the impostor’s login

keystroke sequence to the system, posing as a legiti-

mate user. Across a group of legitimate users and im-

postors, the percentage of mistakes, or errors, serves as

a gauge of how good the keystroke biometric system

is. Several details concerning exactly how these tests

are done can have enormous effects on the outcome.

We turn now to those details.

What can go wrong? There are several parts of an

experiment where things can go wrong. Most experi-

ments measure something; the measuring apparatus

can be flawed, producing flawed measurements. If the

measurements are flawed, then the data will be flawed,

and any analytical results and conclusions will be

cast into doubt. The way that something is measured

can be unsound; if you measure code complexity by

counting the number of lines, you’ll get a numeri-

cal outcome, but it may not be an accurate reflection

of code complexity. The way or method of taking

measurements is the biggest source of error in most

experiments. Compounding that error is the lack of

detail with which the measurement methodology

is reported, often making it difficult to determine

whether or not something went wrong. We turn now

to specific examples of methodological problems.

Clock resolution and timing. Keystroke timings are

based on operating-system calls to various timers. In

the keystroke literature we see different timers being

used by different researchers, with timing accura-

cies often reported to several decimal places. But it’s

not the accuracy (number of decimal places) of the

timing that’s of overriding importance; it’s the resolu-

tion. When keystroke dynamics systems are written

for Windows-based machines (e.g., Windows XP),

it’s usually the tick timer, or Windows-event clock [6]

that’s used; this has a resolution of 15.625 milliseconds

(ms), corresponding to 64 updates per second. If done

on a Unix system, the resolution is about 10 millisec-

onds. On some Windows systems the resolution can

FEATURE

18

Making experiments dependable

be much finer if the QPC timer is used. The reason

that timing resolution matters is not because people

type as fast as one key every 15 milliseconds (66 keys

per second); it’s because the time between keystrokes

can differ by less than 15 milliseconds. If some typists

make key-to-key transitions faster than other ones,

but the clock resolution is unable to separate them,

then detection accuracy could suffer. One paper has

reported a 4.2% change in error rate due to exactly this

sort of thing [3]. A related issue is how you know what

your clock resolution is. It’s unwise to simply read this

off the label; better to perform a calibration. A related

paper explained how this is done in a keystroke dy-

namics environment [5]. A last word on timing issues

concerns how the timestamping mechanism actually

works; if it’s subject to influence from the scheduler,

then things like system load can change the accuracy

of the timestamps.

The effect of clock resolution and timing is that they

can interact with user rhythms as a confound. If dif-

ferent users type on different machines whose timing

resolutions differ, then any distinctions made among

users, based on timing, could be due to differences in

user typing rhythms (timings) or they could be due to

differences in clock resolutions. Moreover, since sys-

tem load can influence keystroke timing, it’s possible

that rhythmic differences attributed to different users

would be due to load differences, not to user differenc-

es. Hence we would not be able to claim distinctive-

ness based on user behavior, because this cannot be

separated from timing errors induced by clock resolu-

tion and system load. If the purpose of the experiment

is to differentiate amongst users on the basis of typing

rhythm, then the confounds of clock resolution and

system load must be removed. The simplest way to

achieve this is to ensure that the experimental systems

use the same clock, with the same resolution (as high

as possible), and have the same operating load. This is

possible in the laboratory by using a single system on

which to collect data from all participants.

Keyboards. Experiments in keystroke dynamics

require people to type, of course, and keyboards on

which to do that typing. Most such experiments re-

ported in the literature allow subjects to use whatever

keyboard they want; after all, in the real world people

do use whatever keyboard they prefer. Consequently,

this approach has a lot of external validity. Unfortu-

nately, the approach introduces a serious confound,

too—a given keyboard, by its shape or character lay-

out, is likely to influence a user’s typing behavior. Dif-

ferent keyboards, such as standard, ergonomic, laptop,

kinesis, natural, kinesis maxim split and so forth will

shape typing in a way that’s peculiar to the keyboard

itself. In addition to the shape of the keyboard, the key

pressures required to make electrical contact differ

from one keyboard to another. The point is that not

all keyboards are the same, with the consequence that

users may type the same strings differently, depend-

ing on the keyboard and its layout. In the extreme, if

everyone in the experiment used a different keyboard,

you wouldn’t be able to separate the effect of the key-

boards from the effect of typing rhythm; whether your

experimental results showed good separation of typists

or not, you wouldn’t know if the results were due to

the typists’ differences or to the differences among the

keyboards. Hence you would not be able to con-

clude that typing rhythms differ among typists. This

confound can be removed from the experiment by

ensuring that all participants use the same (or perhaps

same type of) keyboard. The goal of the experiment

is to determine distinctiveness amongst typists based

on their individual rhythms, not on the basis of the

keyboards on which they type.

Stimulus items—what gets typed. Participants in

keystroke biometrics experiments need to type some-

thing—the stimulus item in the experiment. While

there are many kinds of stimuli that could be consid-

ered (e.g., passwords, phrases, paragraphs, transcrip-

tions, free text, etc.), we focus on short, password-like

strings. There are two fundamental issues: string

contents and string length.

String contents. By contents we mean simply the char-

acters contained in the password being typed. Two

contrasting examples would be a strong password,

characterized by containing shift and punctuation

characters, as opposed to a weak password, charac-

terized by a lack of the aforementioned special char-

acters. It’s easy to see that if some users type strong

passwords, and other users type weak passwords, then

any discrimination amongst users may not be solely

attributable to differences among users; it may be at-

tributable to intrinsic differences between strong and

weak passwords that cause greater rhythmic variability

in one or the other. The reason may be that strong

passwords are hard to type, and weak ones aren’t. So

we may be discriminating not on the basis of user

 The Next Wave | Vol. 19 No. 2 | 2012 | 19

FEATURE

rhythm, but on the basis of typing difficulty which, in
turn, is influenced by string content. To eliminate this
confound, the experimenter should not allow users to
choose their own passwords; the password should be
chosen by the experimenter, and should be the same

for each user.

String length. If users are left to their own devices to
choose passwords, some may choose short strings,
while others choose longer strings. If this happens,
as it has in experiments where passwords were self-
selected, then any distinctiveness detected amongst
users cannot be attributed solely to differences among
user typing rhythms; the distinctions could have been
caused by differences in string lengths that the users
typed, or by intrinsic characteristics that cause more
variability in one length than in another. So, we don’t
know if the experimental results are based on user
differences or on length differences. To remove this
confound, the experimenter should ensure that all
participants type same-length strings.

Typing expertise and practice. Everyone has some
amount of typing expertise, ranging roughly from low
to high. Expertise comes from practice, and the more
you practice, the better you get. This pertains to typ-
ing just as much as it pertains to piano playing. Two
things happen when someone has become practiced
at typing a password. First, the total amount of time
to type the password decreases; second, the time
variation with which particular letter pairs (digrams)
are typed diminishes. It takes, on average, about 214
repetitions of a ten-character password to attain a
level of expertise such that typing doesn’t change by
more than 1 millisecond on average (less than 0.1%)
over the total time (about 3–5 seconds) taken to type
a password. At this level of practice it can be safely
assumed that everyone’s typing is stable; that is, it’s
not changing significantly. Due to this stability, it is
safe to compare typists using keystroke biometrics.
A classifier will be able to distinguish among a group
of practiced typists, and will have a particular success
rate (often in the region of 95–99%).

But what if, as in some studies, the level of exper-
tise among the subjects ranges from low to high, with
some people very practiced and others hardly at all?
If practiced typists are consistent, with low variation
across repeated typings, but unpracticed typists are
inconsistent with high variability, then it would be
relatively easy for a classifier to distinguish users in

such groups from one another. This could make clas-

sification outcomes more optimistic than they really

are, making them misleading at best. In one study

25 people were asked to type a password 400 times.

Some people in the study did this, but others typed

the password only 150 times, putting a potentially

large expertise gap between these subjects. No matter

what the outcome if everyone had been at the same

level of expertise, it’s easy to see that the classification

results would likely be quite different than if there was

a mixture of practice levels among the subjects. This

is an example of a lack of internal validity, where the

confound of differential expertise or practice is operat-

ing. There is no way that the classifier results can be

attributed solely to users’ typing rhythms alone; they

are confounded with level of practice.

Instructions to typists. In any experiment there needs

to be a protocol by which the experiment is carried

out. This protocol should be followed assiduously, lest

errors creep into the experiment whilst the researcher

is unaware. Here we give two examples in which in-

structions to subjects are important.

First, in our own experience, we had told subjects to

type the password normally, as if they were logging in

to their own computer. This should be straightforward

and simple, but it’s not. We discovered that some sub-

jects were typing with extraordinary quickness. When

we asked those people if that’s how they typed every

day, they said no—they thought that the purpose of

our experiment was to see who could type the fastest

or the most accurately, even though we had never said

that. This probably happened because we are a univer-

sity laboratory, and it’s not unusual in university ex-

periments (especially in psychology) to have their true

intentions disguised from the participant; otherwise

the participant may game the experiment, and hence

ruin it. People in our experiment assumed that we had

a hidden agenda (we didn’t), and the people respond-

ed to what they thought was the true agenda by typing

either very quickly or very carefully or both. When

we discovered this, we changed our instructions to tell

subjects explicitly that there was no hidden agenda,

and that we really meant it when we said that we were

seeking their normal, everyday typing behavior. After

the instructions were changed to include this, we no

longer observed the fast and furious typing behavior

that had drawn our attention in the first place. If we

had not done this, then we would have left an internal

20

Making experiments dependable

invalidity in the experiment; our results would have

been confounded with normal typing by some and

abnormally fast typing by others. Naturally, a classi-

fier would be able to distinguish between fast and slow

typists, thereby skewing the outcomes unrealistically.

Second, if there is no written protocol by which

to conduct an experiment, and by which to instruct

participants as to what they are being asked to do,

there is a tendency for the experimenter to ad lib the

instructions. While this might be fine, what can hap-

pen in practice is that the experimenter will become

aware of a slightly better way to word or express the

instructions, and will slightly alter the instructions for

the next subject. This might slightly improve things for

that subject. However, for the subject after that, the in-

structions might change again, even if ever so slightly.

As this process continues, there will come a point at

which some of the later subjects are receiving instruc-

tions that are quite different from those received by

the earlier subjects. This means that two different

sets of instructions were issued to subjects, and these

subjects may have responded in two different ways,

leading to a confound. Whatever the classification

outcomes might be, they cannot be attributed solely

to differences in user typing rhythms; they might have

been due to differences in instructions as well, and we

can’t tease them apart. Hence it is important not only

to have clear instructions, but also to have them in

writing so that every subject is exposed to exactly the

same set of instructions.

6. What’s the solution for all

these problems?

All of the problems discussed so far are examples of

threats to validity, and internal validity in particular.

The confounds we’ve identified can render an experi-

ment useless, and in those circumstances not only

has time and money been wasted, but any published

results run a substantial risk of misleading the reader-

ship. For example, if a study claims 99.9% correct clas-

sification of users typing passwords, that’s pretty good;

perhaps we can consider the problem solved. But if

that 99.9% was achieved because some confound, such

as typing expertise, artificially enhanced the results,

then we would have reached an erroneous conclusion,

perhaps remaining unaware of it. This is a serious

research error; in this section we offer some ways to

avoid the kinds of problems caused by invalidity.

Control. We use the term “control” to mean that

something has been done to mitigate a potential bias

or confound in an experiment. For example, if an

experimental result could be explained by more than

one causal mechanism, then we would need to control

that mechanism so that only one cause could be attrib-

uted to the experimental outcome. As an example, the

length of the password should be controlled so that ev-

eryone types a password of the same length; that way,

length will not be a factor in classifying typing vectors.

A second example would be to control the content of

the password, most simply by having every partici-

pant type the same password. In doing this, we would

be more certain that the outcome of the experiment

would be influenced only by differences in people’s

typing rhythms, and not by password length or

content. Of course while effecting control in this way

makes the experiment internally valid, it doesn’t reflect

how users in the real world choose their passwords;

certainly they don’t all have the same password. But

the goal of this experiment is to determine the extent

to which individuals have unique typing rhythms, and

in that case tight experimental control is needed to

isolate all the extraneous factors that might confound

the outcome. Once it’s determined that people really

do have unique typing rhythms that are discriminable,

then we can move to the real world with confidence.

Repeatability and reproducibility (again). We earlier

mentioned two important concepts: repeatability—the

extent to which an experimenter can obtain the same

measurements or outcomes when he repeats the ex-

periment in his own laboratory—and reproducibility,

which strives for the same thing, but when different

experimenters in other laboratories, using similar but

physically different apparatus, obtain the same results

as the original experimenters did. If we strive to make

an experiment repeatable, it means that we try hard to

make the same measures each time. To do this suc-

cessfully requires that all procedures are well defined

so that they can be repeated exactly time after time.

Such definitions are sometimes called operational

definitions, because they specify a measurement in

terms of the specific operations used to obtain it. For

example, when measuring people’s height, it’s im-

portant that everyone do it the same way. An opera-

tional definition for someone’s height would specify

exactly the procedure and apparatus for taking such

 The Next Wave | Vol. 19 No. 2 | 2012 | 21

FEATURE

measurements. The procedure should be written so

that it can be followed exactly every time. Repeatabil-

ity can be ensured if the experiment’s measurements

and procedures are operationally defined and fol-

lowed assiduously. Reproducibility can be ensured by

providing those operational details when reporting the

experiment in the literature, thereby enabling others

to follow the original procedures.

Discovering confounds. There is no easy way to

discover the confounds lurking in an experimental

procedure. It requires deep knowledge of the domain

and the experiment being conducted, and it requires

extensive thought as to how various aspects of the

experiment may interact. One approach is to trace the

signal of interest (in our case, the keystroke timings

and the user behaviors) from their source to the point

at which they are measured or manifested. For key-

stroke timings, the signal begins at the scan matrix in

the keyboard, traveling through the keyboard encoder,

the keyboard-host interface (e.g., PS2, USB, wireless,

etc.), the keyboard controller in the operating sys-

tem (which is in turn influenced by the scheduler),

and finally to the timestamping mechanism, which is

influenced by the particular clock being used. At each

point along the way, it is important to ask if there are

any possible interactions between these waypoints and

the integrity of the signal. If there are, then these are

candidates for control. For example, keyboard signals

travel differently through the PS2 interface than they

do through the USB interface. This difference suggests

that only one type of keyboard interface be used—ei-

ther PS2 or USB, but not both. Otherwise, part of the

classification accuracy would have to be attributed to

the different keyboard interfaces. A similar mapping

procedure would ask about aspects of the experi-

ment that would influence user typing behavior. We

have already given the example of different types of

keyboards causing people to type differently. Counter-

ing this would be done simply by using only one type

of keyboard.

Method section. A method section in a paper is the

section in which the details are provided regarding

how the experiment was designed and conducted.

Including a method section in an experimental

paper has benefits that extend to both reader and

researcher. The benefit to the reader is that he can see

exactly what was done in the experiment, and not

be left to wonder about details that could affect the

outcome. For example, saying how a set of experi-

ment participants was recruited can be important; if

some were recruited outside the big-and-tall shop, it

could constitute a bias in that these people are likely

to have large hands, and large-handed people might

have typing characteristics that make classification

artificially effective or ineffective. If this were revealed

in the method section of a paper, then a reader would

be aware of the potential confound, and could moder-

ate his expectations on that basis. If the reader were a

reviewer, the confound might provoke him to ask the

author to make adjustments in the experiment.

For the experimenter the method section has two

benefits. First, the mere act of writing the method sec-

tion can reveal things to the experimenter that were

not previously obvious. If, in the course of writing

the section, the experimenter discovers an egregious

bias or flaw in the experiment, he can choose another

approach, he can relax the claims made by the paper,

or he can abandon the undertaking to conduct the

experiment again under revised and more favor-

able circumstances. If the method section is written

before the experiment is done—as a sort of planning

exercise—the flaws will become apparent in time for

the experimental design to be modified in a way that

eliminates the flaw or confound. This will result in a

much better experiment, whose outcome will stand

the test of time.

Pilot studies. Perhaps the best way to check your work

is to conduct a pilot study—a small-scale preliminary

test of procedures and measurement operations—to

shake any unanticipated bugs out of an experiment,

and to check for methodological problems such as

confounded variables. Pilot studies can be very effec-

tive in revealing problems that, at scale, would ruin

an experiment. It was through a pilot study that we

first understood the impact of instructions to sub-

jects, and subsequently adjusted our method to avoid

the problems encountered (previously discussed). If

there had been no pilot, we would have discovered

the problem with instructions anyway, but we could

not have changed the instructions in the middle of

the experiment, because then we’d have introduced

the confound of some subjects having heard one set

of instructions, and other subjects having heard a dif-

ferent set; the classification outcome could have been

attributed to the differences in instructions as well as

to differences amongst typists.

22

Making experiments dependable

7. Conclusion

We have shown how several very simple oversights in

the design and conduct of an experiment can result

in confounds and biases that may invalidate experi-

mental outcomes. If the details of an experiment are

not fully described in a method section of the paper,

there is a risk that the flaws will never be discovered,

with the consequence that we come away thinking that

we’ve learned a truth (that isn’t true) or we’ve solved

a problem (that isn’t really solved). Other researchers

may base their studies on flawed results, not know-

ing about the flaws because there was no information

provided that would lead to a deep understanding of

how the experiment was designed and carried out.

Writing a method section can help experimenters

avoid invalidities in experimental design, and can

help readers and reviewers determine the quality of

the undertaking.

Of course there are still other things that can go

wrong. For example, even if you have ensured that

your methods and measurements are completely

valid, the chosen analysis procedure could be inap-

propriate for the undertaking. At least, however, you’ll

have confidence that you won’t be starting out with

invalid data.

While the confounding issues discussed here apply

to an easily-understood domain like keystroke bio-

metrics, they were nevertheless subtle, and have gone

virtually unnoticed in the literature for decades. Your

own experiments, whether in this domain or another,

are likely to be just as susceptible to confounding and

methodological errors, and their consequences just

as damaging. We hope that this paper has raised the

collective consciousness so that other researchers will

be vigilant for the presence and effects of method-

ological flaws, and will do their best to identify and

mitigate them.

Richard Feynman, the 1965 Nobel Laureate in

physics, said, “The principle of science, the definition

almost, is the following: The test of all knowledge is

experiment. Experiment is the sole judge of scientific

‘truth’” [2]. Truth is separated from fiction by dem-

onstration—by experiment. In doing experiments,

we want to make claims about the results. For those

claims to be credible, the experiments supporting

them need first to be free of the kinds of methodologi-

cal errors and confounds presented here.

About the author

Roy Maxion is a research professor in the Computer
Science and Machine Learning Departments at
Carnegie Mellon University (CMU). He is also
director of the CMU Dependable Systems Labora-
tory where the range of activities includes computer
security, behavioral biometrics, insider detection,
usability, and keystroke forensics as well as general
issues of hardware/software reliability. In the interest
of the integrity of experimental methodologies, Dr.
Maxion teaches a course on Research Methods for Ex-
perimental Computer Science. He is on the editorial
boards of IEEE Security & Privacy and the Interna-
tional Journal of Biometrics, and is past editor of IEEE
Transactions on Dependable and Secure Computing
and IEEE Transactions on Information Forensics and
Security. Dr. Maxion is a Fellow of the IEEE.

References

[1] Bryan, W.L., Harter, N.: Studies in the physiology and
psychology of the telegraphic language. Psychological Re-
view 4(1), 27–53 (1897)

[2] Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman
Lectures on Physics, vol. 1, p. 1–1. Addison-Wesley,
Reading (1963)

[3] Killourhy, K., Maxion, R.: The effect of clock resolu-
tion on keystroke dynamics. In: Lippmann, R., Kirda, E.,
Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230, pp.
331–350. Springer, Heidelberg (2008)

[4] Killourhy, K.S., Maxion, R.A.: Comparing anomaly-
detection algorithms for keystroke dynamics. In: IEEE/IFIP
International Conference on Dependable Systems and Net-
works (DSN 2009), pp. 125–134. IEEE Computer Society
Press, Los Alamitos (2009)

[5] Maxion, R.A., Killourhy, K.S.: Keystroke biometrics
with number-pad input. In: IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN
2010), pp. 201–210. IEEE Computer Society Press, Los
Alamitos (2010)

[6] Microsoft Developer Network: EVENTMSG struc-
ture (2008), http://msdn2.microsoft.com/en-us/library/
ms644966(VS.85).aspx

[7] Peacock, A., Ke, X., Wilkerson, M.: Typing patterns: A
key to user identification. IEEE Security and Privacy 2(5),
40–47 (2004)

[8] Shadish, W.R., Cook, T.D., Campbell, D.T.: Experimental
and Quasi-Experimental Designs for Generalized Causal
Inference. Houghton Mifflin, Boston (2002)

[9] Taylor, B.N., Kuyatt, C.E.: Guidelines for evaluating and
expressing the uncertainty of NIST measurement results.
NIST Technical Note, 1994 Edition 1297, National Insti-
tute of Standards and Technology (NIST), Gaithersburg,
Maryland 20899-0001 (September 1994)

 The Next Wave | Vol. 19 No. 2 | 2012 | 23

1. On security engineering

A number of blind men came to an elephant.

Somebody told them that it was an

elephant. The blind men asked, “What is the

elephant like?” and they began to touch its body.

One of them said: “It is like a pillar.” This blind

man had only touched its leg. Another man

said, “The elephant is like a husking basket.”

This person had only touched its ears. Similarly,

he who touched its trunk or its belly talked of

it differently.

~Ramakrishna Paramahamsa~

Security means many things to many people. For a

software engineer, it often means that there are no

buffer overflows or dangling pointers in the code. For

a cryptographer, it means that any successful attack on

the cypher can be reduced to an algorithm for com-

puting discrete logarithms or to integer factorization.

For a diplomat, security means that the enemy can-

not read the confidential messages. For a credit card

operator, it means that the total costs of the fraudulent

transactions and of the measures to prevent them

are low, relative to the revenue. For a bee, security

means that no intruder into the beehive will escape

her sting . . .

Is it an accident that all these different ideas go

under the same name? What do they really have in

common? They are studied in different sciences,

ranging from computer science to biology, by a wide

variety of different methods. Would it be useful to

study them together?

1.1. What is security engineering?

If all avatars of security have one thing in common, it

is surely the idea that there are enemies and potential

On bugs and elephants:

Mining for science of security
D u s k o P a v l o v i c

attackers out there. All security concerns, from compu-

tation to politics and biology, come down to averting

the adversarial processes in the environment that are

poised to subvert the goals of the system. There are,

for instance, many kinds of bugs in software, but only

those that the hackers use are a security concern.

In all engineering disciplines, the system guaran-

tees a functionality, provided that the environment

satisfies some assumptions. This is the standard

assume-guarantee format of the engineering correct-

ness statements. Such statements are useful when the

environment is passive so that the assumptions about

it remain valid for a while. The essence of security en-

gineering is that System and Environment face off as

opponents, and Environment actively seeks to invali-

date System’s assumptions.

Security is thus an adversarial process. In all engi-

neering disciplines, failures usually arise from some

engineering errors. In security, failures arise in spite of

compliance with the best engineering practices of the

moment. Failures are the first-class citizens of security.

For all major software systems, we normally expect

security updates, which usually arise from attacks and

often inspire them.

1.2. Where did security engineering

come from?

The earliest examples of security technologies are

found among the earliest documents of civilization.

Figure 1, on the following page, shows security tokens

with a tamper protection technology from almost

6,000 years ago. Figure 2 depicts the situation where

this technology was probably used. Alice has a lamb

and Bob has built a secure vault, perhaps with multiple

security levels, spacious enough to store both Bob’s

and Alice’s assets. For each of Alice’s assets deposited

24

On bugs and elephants: Mining for science of security

in the vault, Bob issues a clay token with an inscrip-

tion identifying the asset. Alice’s tokens are then

encased into a bulla—a round, hollow envelope of

clay—that is then baked to prevent tampering. When

she wants to withdraw her deposits, Alice submits

her bulla to Bob; he breaks it, extracts the tokens,

and returns the goods. Alice can also give her bulla

to Carol, who can also submit it to Bob to withdraw

the goods, or pass it on to Dave. Bullae can thus be

traded and facilitate an exchange economy. The tokens

used in the bullae evolved into the earliest forms of

money; and the inscriptions on them led to the earliest

numeral systems, as well as to Sumerian cuneiform

script, which was one of the earliest alphabets. Secu-

rity thus predates literature, science, mathematics, and

even money.

1.3. Where is security engineering going?

Through history, security technologies evolved gradu-

ally, serving the purposes of war and peace, protecting

public resources and private property. As computers

pervaded all aspects of social life, security became

interlaced with computation, and security engineering

came to be closely related with computer science. The

developments in the realm of security are nowadays

inseparable from the developments in the realm of

computation. The most notable such development is,

of course, cyberspace.

A brief history of cyberspace. In the beginning, engi-

neers built computers and wrote programs to control

computations. The platform of computation was the

computer, and it was used to execute algorithms and

calculations, allowing people to discover, for example,

fractals, and to invent compilers that allowed them to

write and execute more algorithms and more calcula-

tions more efficiently. Then the operating system be-

came the platform of computation, and software was

developed on top of it. The era of personal comput-

ing and enterprise software broke out. And then the

Internet happened, followed by cellular networks, and

wireless networks, and ad hoc networks, and mixed

networks. Cyberspace emerged as the distance-free

FIGURE 2. To withdraw her sheep from Bob’s secure vault, Alice

submits a tamper-proof token, like those shown in figure 1.

FIGURE 1. Tamper protection (bulla envelope with 11 plain and

complex tokens inside) from the Near East, circa 3700–3200 BC.

(The Schøyen Collection MS 4631. ©The Schøyen Collection,

Oslo and London. Available at: www.schoyencollection.com.)

 The Next Wave | Vol. 19 No. 2 | 2012 | 25

FEATURE

space of instant, costless communication. Nowadays,

software is developed to run in cyberspace.

The Web is, strictly speaking, just a software system,

albeit a formidable one. A botnet is also a software

system. As social space blends with cyberspace, many

social (business, collaborative) processes can be use-

fully construed as software systems that run on social

networks as hardware. Many social and computational

processes become inextricable. Table 1 summarizes

the crude picture of the paradigm shifts that led to this

remarkable situation.

TABLE 1. Paradigms of computation

Ancient

Times

Middle

Ages

Modern

Times

Platform computer operating

system

network

Applications Quicksort,

compiler

MS Word,

Oracle

WWW,

botnets

Requirements correctness,

termination

liveness,

safety

trust,

privacy

Tools programming

languages

specification

languages

scripting

languages

But as every person got connected to a computer,

and every computer to a network, and every net-

work to a network of networks, computation became

interlaced with communication and ceased to be

programmable. The functioning of the web and of

web applications is not determined by the code in the

same sense as in a traditional software system; after

all, web applications do include the human users as a

part of their runtime. The fusion of social and compu-

tational processes in cybersocial space leads to a new

type of information processing, where the purposeful

program executions at the network nodes are supple-

mented by spontaneous data-driven evolution of

network links. While the network emerges as the new

computer, data and metadata become inseparable, and

a new type of security problems arises.

A brief history of cybersecurity. In early computer

systems, security tasks mainly concerned sharing of

the computing resources. In computer networks, se-

curity goals expanded to include information protec-

tion. Both computer security and information security

essentially depend on a clear distinction between

the secure areas and the insecure areas, separated

by a security perimeter. Security engineering caters

for computer security and for information security

by providing the tools to build the security perim-

eter. In cyberspace, the secure areas are separated

from the insecure areas by the “walls” of cryptogra-

phy, and they are connected through the “gates” of

cryptographic protocols.

But as networks of computers and devices spread

through physical and social spaces, the distinctions

between the secure and the insecure areas become

blurred. And in such areas of cybersocial space, where

information processing does not yield to program-

ming and cannot be secured by cryptography and

protocols, security cannot be assured by engineer-

ing methodologies alone. The methodologies of data

mining and classification, needed to secure such areas,

form a bridge from information science to a putative

security science.

2. On security science

It is the aim of the natural scientist to discover

mathematical theories, formally expressed as

predicates describing the relevant observations

that can be made of some [natural] system.

. . . The aim of an engineer is complementary

to that of the scientist. He starts with a

specification, formally expressible as a predicate

describing the desired observable behaviour.

Then . . . he must design and construct a

product that meets that specification.

~Tony Hoare~

The preceding quote was the first paragraph in one

of the first papers on formal methods for software

engineering, published under the title “Programs

are predicates.” Following this slogan, software has

been formalized by logical methods and viewed as

an engineering task ever since. But computation

evolved, permeated all aspects of social life, and came

to include not just the purposeful program executions,

but also spontaneously evolving network processes.

Data and metadata processing became inseparable. In

cyberspace, computations are not localized at network

nodes, but also propagate with nonlocal data flows

and with the evolution of network links. While the

local computations remain the subject of software

engineering, network processes are also studied in the

emerging software and information sciences, where

the experimental validation of mathematical models

26

On bugs and elephants: Mining for science of security

has become the order of the day. Modern software

engineering is therefore coupled with an empiric soft-

ware science, as depicted in figure 3. In a similar way,

modern security engineering needs to be coupled with

an empiric security science.

2.1. Why security science?

Conjoining cyber, physical, and social spaces by net-

works gives rise to new security problems that com-

bine computational, physical, and social aspects. They

cross the boundaries of the disciplines where security

was studied before, and require new modeling tools,

and a new, unified framework, with a solid scientific

foundation, and empiric methods to deal with the

natural and social processes on which security now

depends. In many respects, a scientific foundation for

the various approaches to security would have been

beneficial even before; but now it became necessary.

Let us have a closer look at the paradigm shift to

postmodern cybersecurity in table 2. It can be il-

lustrated as the shift from figure 4 to figure 5. The

fortress in figure 4 represents the static, architectural

view of security. A fortress consists of walls and gates

separating the secure area within from the insecure

area outside. The boundary between these two areas

is the security perimeter. The secure area may be

further subdivided into areas of higher security and

areas of lower security. These intuitions extend into

cyberspace, where crypto systems and access controls

can be viewed as the walls, preventing the undesired

traffic; whereas, authentication protocols and authori-

zation mechanisms can be construed as the gates, al-

lowing the desired traffic. But as every fortress owner

knows, the walls and the gates are not enough for

security; you also need weapons, soldiers, and maybe

even some detectives and judges. They take care of the

dynamic aspects of security. Dynamic security evolves

through social processes, such as trust, privacy, repu-

tation, or influence. The static and dynamic aspects

depend on each other. For example, the authentication

on the gates is based on some credentials intended to

prove that the owner is honest. These credentials may

be based on some older credentials, but down the line

a first credential must have resulted from a process of

trust building or from a trust decision, whereby the

principal’s honesty was accepted with no credentials.

The word credential has its root in Latin credo, which

means “I believe.”

The attacks mostly studied in security research can

be roughly divided into cryptanalytic attacks and pro-

tocol attacks. They are the cyber versions of the simple

frontal attacks on the walls and the gates of a fortress.

Such attacks are static in the sense that the attack-

ers are outside, the defenders inside, and the two are

easily distinguished. The dynamic attacks come about

when some attackers penetrate the security perimeter

and attack from within, as in figure 5. They may even

blend with the defenders and become spies. Some

of them may build up trust and infiltrate the fortress

earlier, where they wait as moles. Some of the insiders

may defect and become attackers. The traitors and the

spies are the dynamic attackers; they use the vulner-

abilities in the process of trust. To deter them, all

cultures reserve for the breaches of trust the harshest

punishments imaginable; Dante, in his description of

Hell, places the traitors into the deepest, Ninth Circle.

As a dynamic attack, treason was always much easier

to punish than to prevent.

In cybersecurity, a brand new line of defense

against dynamic attacks relies on predictive analytics,

based on mining the data gathered by active or passive

TABLE 2. Paradigms of security

Middle

Ages

Modern

Times

Postmodern

Times

Space computer

center

cyberspace cybersocial

space

Assets computing

resources

information public and

private

resources

Requirements availability,

authorization

integrity,

confidentiality

trust, privacy

Tools locks, tokens,

passwords

cryptography,

protocols

mining and

classification

Specification

 Software

Engineering:

Implement,

synthesize

Science:

Analyze,

learn

FIGURE 3. Conceptualization loop: The life cycle of computation.

Engineering:

implement,

synthesize

Science:

analyze,

learn

 The Next Wave | Vol. 19 No. 2 | 2012 | 27

FEATURE

FIGURE 4. Static security: Multilevel architecture. (Illustration by Mark Burgess at

www.markburgess.co.uk.)

observations, network probes, honeypots, or direct

interactions. It should be noted that the expanding

practices of predictive modeling are not engineering

methodologies, geared toward building some specified

systems, but the first simple tools of a security science,

recognizing security as a process.

2.2. What is security science?

Although the security environment maliciously defies

any system’s assumptions that it can, security engi-

neering still pursues its tasks strictly within the frame-

work of the assume-guarantee methods. Indeed, to

engineer a system, we must frame an environment for

it; to guarantee system behavior, we must assume the

environment behavior; to guarantee system security,

we must specify an attacker model. That is the essence

of the engineering approach. Following that approach,

the cryptographic techniques of security engineering

are based on the fixed assumption that the environ-

ment is computationally limited and cannot solve

certain hard problems. (Defy that, Environment!)

But sometimes, as we have seen, it is not realistic

to assume even that there is a clear boundary between

the system and the environment. Such situations have

become pervasive with the spread of networks sup-

porting not only social, commercial, and collaborative

applications, but also criminal and terrorist organiza-

tions. When there is a lot going on, you cannot be sure
FIGURE 5. Security dynamics: Threats within.

who is who. In large networks, with

immense numbers of processes,

the distinction between the sys-

tem and the environment becomes

meaningless, and the engineering

assume-guarantee approach must be

supplemented by the analyze-adapt

approach of science. The task of the

analyze-adapt approach of science

is to recover the distinction between

system and environment—whenever

possible, albeit as a dynamic vari-

able—and to adaptively follow its

evolution. Similar situations, where

engineering interventions are inter-

leaved with scientific analyses, arise

not only in security—where they

elicit security science to support

security engineering—but also, for

example, in the context of health—

where they elicit medical science to

support health care. And just as health is not achieved

by isolating the body from the external world, but by

supporting its internal defense mechanisms, security is

not achieved by erecting fortresses, but by supporting

28

On bugs and elephants: Mining for science of security

dynamic defenses, akin to the immune response.

While security engineering provides blueprints and

materials for static defenses, it is the task of security

science to provide guidance and adaptation methods

for dynamic defenses.

In general, science is the process of understanding

the environment, adapting the system to it, chang-

ing the environment by the system, adapting to these

changes, and so on. Science is thus an ongoing dialog

of the system and the environment, separated and

conjoined along the ever-changing boundaries. Dy-

namic security, on the other hand, is an ongoing battle

between the ever-changing teams of attackers and

defenders. Only scientific probing and analyses of this

battle can tell who is who at any particular moment.

In summary, if security engineering is a family of

methods to keep the attackers out, security science is

a family of methods to catch the attackers once they

get in.

It may be interesting to note that these two families

of methods, viewed as strategies in an abstract security

game, turn out to have opposite winning odds. It is

often observed that the attackers only need to find one

attack vector to enter the fortress, whereas the defend-

ers must defend all attack vectors to prevent them. But

when the battle switches to the dynamic mode and the

defense moves inside, then the defenders only need to

find one marker to recognize and catch the attackers;

whereas, the attackers must cover all their markers.

This strategic advantage is also the critical aspect of

the immune response, where the invading organisms

are purposely sampled and analyzed for chemical

markers. In security science, this sampling and analy-

ses take the form of data mining.

2.3. Where to look for security science?

The germs of a scientific approach to security, with

data gathering, statistical analyses, and experimental

validation, are already present in many intrusion de-

tection and antivirus systems, as well as in spam filters

and some firewalls. Such systems use measurable

inputs and have quantifiable performance and model

accuracy and thus conform to the basic requirements

of the scientific method. The collaborative processes

for sharing data, comparing models, and retesting

and unifying results complete the social process of

scientific research.

However, a broader range of deep security problems
is still awaiting applications of a broader range of pow-
erful scientific methods that are available in this realm.
At least initially, the statistical methods of security sci-
ence will need to be borrowed from information sci-
ence. Security, however, imposes special data analysis
requirements, some of which have been investigated in
the existing work and led to novel approaches. In the
long run, security science will undoubtedly engender
its own domain-specific data analysis methods.

In general, security engineering solutions are based
on security infrastructure: Internet protocol security
(IPSec) suites, Rivest-Shamir-Adleman (RSA) systems,
and elliptic curve cryptography (ECC) provide typi-
cal examples. In contrast, security science solutions
emerge where the available infrastructure does not
suffice for security. The examples abound—a mobile
ad hoc network (MANET), for example, is a network
of nodes with no previous contacts, direct or indirect,
and thus no previous infrastructure. Although ad-
vanced MANET technologies have been available for
more than 15 years, secure MANETs are still a bit of
a holy grail. Device pairing, social network security,
and web commerce security also require secure ad hoc
interactions akin to the social protocols that regulate
new encounters in social space. Such protocols are
invariably incremental and accumulating, analyzing
and classifying the data from multiple channels until
a new link is established or aborted. Powerful data-
mining methods have been developed and deployed in
web commerce and financial security, but they are still
awaiting systematic studies in noncommercial security
research and systematic applications in noncommer-
cial security domains.

3. Summary

Security processes are distributed, subtle, and com-
plex, and there are no global observers. Security is like
an elephant, and we are like the blind men touching
its body. For the cryptographers among us, the secu-
rity elephant consists of elliptic curves and of integers
with large factors. Many software engineers among us
derive their view of the security elephant entirely from
their view of the software bugs flying around it.

Beyond and above all of our partial views is the

actual elephant—people cheating each other, stealing

secrets and money, forming online gangs and terror-

ist networks. There is a whole wide world of social

 The Next Wave | Vol. 19 No. 2 | 2012 | 29

FEATURE

processes of attacking and defending the assets by

methods beyond the reach of security engineering.

Such attacks and fraud cannot be debugged or pro-

grammed away; they cannot be eliminated by cryp-

tography, protocols, or policies. Security engineer-

ing defers such attacks to the marginal notes about

“social engineering.”

However, since these attacks nowadays evolve in

networks, the underlying social processes can be

observed, measured, analyzed, understood, validated,

and even experimented with. Security can be im-

proved by security science, combining and refining the

methods of information sciences, social sciences, and

computational sciences.

Acknowledgements

Just like security, science of security also means many

things to many people. I have presented one view of

it, not because it is the only one I know, but mainly

because it is the simplest one that I could think of,

and maybe the most useful one. But some of my good

friends and collaborators see it differently, and I am

keeping an open mind. I am grateful to Brad Martin

and Robert Meushaw for interesting conversations

and, above all, for their initiative in this area.

About the author

Dusko Pavlovic is a professor of information security

at Royal Holloway, University of London. He received

his PhD in mathematics at the Utrecht University

in 1990. His interests evolved from research in pure

mathematics and theoretical computer science,

through software design and engineering, to problems

of security and network computation. He worked in

academia in Canada, the United Kingdom, and the

Netherlands, and in software research and develop-

ment in the United States. Besides the chair in infor-

mation security at Royal Holloway, he currently holds

a chair in security protocols at University of Twente,

and a visiting professorship at University of Oxford.

His research projects are concerned with extending

the mathematical methods of security beyond the

standard cryptographic models toward capturing the

complex phenomena that arise from physical, eco-

nomic, and social aspects of security processes.

30

1. Introduction

Compositional security is a well-recognized scientific
challenge [1]. Contemporary systems are built up
from smaller components, but even if each compo-
nent is secure in isolation, a system composed of
secure components may not meet its security require-
ments—an adversary may exploit complex interac-
tions between components to compromise security.
Attacks using properties of one component to subvert
another have shown up in practice in many different
settings, including network protocols and infrastruc-
ture [2, 3, 4, 5, 1], web browsers and infrastructure
[6, 7, 8, 9, 10], and application and systems software

and hardware [11, 12, 13].

A theory of compositional security should iden-
tify relationships among systems, adversaries, and

Programming language

methods for compositional

security |
A n u p a m D a t t a a n d

J o h n C . M i t c h e l l

D
ivide-and-conquer is an important paradigm in computer

science that allows complex software systems to be

built from interdependent components. However,

there are widely recognized difficulties associated with

developing divide-and-conquer paradigms for computer

security; we do not have principles of compositional security

that allow us to put secure components together to produce

secure systems. The following article illustrates some of the

problems and solutions we have explored in recent research on

compositional security, compares them to other approaches

explored in the research community, and describes important

remaining challenges.

properties, such that pre-

cisely defined operations

over systems and adversaries

preserve security properties. It

should explain known attacks,

predict previously unknown attacks,

and inform design of new systems.

The theory should be general—it should

apply to a wide range of systems, adver-

saries, and properties. Guided by these

desiderata, we initiated an investigation of

compositional security in the domain of security

protocols with the Protocol Composition Logic (PCL)

project [14, 15, 16]. Building on these results, we then

developed general secure composition principles

that transcend specific application domains (for ex-

ample, security protocols, access control systems, web

 The Next Wave | Vol. 19 No. 2 | 2012 | 31

FEATURE

platform) in the Logic of Secure Systems (LS2) proj-

ect [17]. These theories have been applied to explain

known attacks, predict previously unknown attacks,

and inform the design of practical protocols and

software systems [12, 4, 18, 3, 19, 20, 21].

In both projects, we addressed two basic

problems in compositional security: non-

destructive and additive composition.

Nondestructive composition

ensures that if two system compo-

nents are combined, then neither

degrades the security properties

of the other. This is particular-

ly complicated when system

components share state.

For example, if an alter-

native mode of operation

is added to a protocol,

then some party may

initiate a session in

one mode and simul-

taneously respond to

another session in

another mode, using

the same public key

(an example of shared

state) in both. Unless

the modes are de-

signed not to interfere,

there may be an attack

on the multimode

protocol that would not

arise if only one mode

were possible. In a simi-

lar example, new attacks

became possible when

trusted computing systems

were augmented with a new

hardware instruction that

could operate on protected reg-

isters (an example of shared state)

previously accessible only through a

prescribed protocol [12].

Additive composition supports a combina-

tion of system components in a way that accumulates

security properties. Combining a basic key exchange

protocol with an authentication mechanism to

produce a protocol for authenticated key exchange

provides one example of additive composition [15].

Systematically adding cryptographic operations to

basic authentication protocols to provide additional

properties such as identity protection provides anoth-

er example of additive composition [22].

Both additive and nondestructive compositions are

important in practice. If we want a system with the

positive security features of two components, A and B,

we need nondestructive composition conditions to be

sure that we do not lose security features we want, and

we need additive composition conditions to make sure

we get the advantages of A and B combined.

Before turning to a high-level presentation of tech-

nical aspects of nondestructive and additive composi-

tion in PCL and LS2, we present two concrete ex-

amples that illustrate how security properties fail to be

preserved under composition (that is, both examples

are about the failure of nondestructive composition).

We also compare our composition methods to three

related approaches—compositional reasoning for cor-

rectness properties of systems [23, 24], the universal

composability framework [25, 26], and a refinement

type system for compositional type-checking of secu-

rity protocols [27]. Finally, we describe directions for

future work.

2. Two examples

While these protocol examples are contrived, the

phenomena they illustrate are not: It is possible for

one component of a system to expose an interface to

the adversary that does not affect its own security but

compromises the security of other components. Later,

we will describe two general principles of composi-

tional security that could be used to design security

protocols and other kinds of secure software systems

while avoiding the kind of insecure interaction illus-

trated by these examples.

Example 1: Authentication failure. The following two

protocols use digital signatures. The first protocol

provides one-way authentication when used in isola-

tion; however, this property is not preserved when the

second protocol is run concurrently.

 Protocol 1.1. Alice generates a fresh random

number r and sends it to Bob. Upon receiving

such a message, Bob replies to the sender of the

message (as recorded in the message) with his

signature over the fresh random number and

32

Programming language methods for compositional security

the sender’s name—that is, if Bob receives the

message with the random number r from sender

A, then Bob replies with his signature over r and

A. This protocol guarantees a form of one-way

authentication: After sending the first message

to Bob and then receiving Bob’s second message,

Alice is guaranteed that Bob received the first

message that she sent to him and then sent the

second message and intended it for her.

 Protocol 1.2. Upon receiving any message m, Bob

signs it with his private signing key and sends it

out on the network.

When the two protocols are run concurrently,

protocol 1.1 no longer provides one-way authentica-

tion: Alice cannot be certain that Bob received her

first message and intended the signed message for her

as part of the execution of this protocol; it could very

well be that Bob produced the signature as part of

protocol 1.2 in response to an adversary M who inter-

cepted Alice’s message and used it to start a session of

protocol 1.2 with Bob.

Example 2: Secrecy failure. Using network protocols

as an illustration, here are two secure, unidirectional

protocols for communication between Alice and Bob.

Both involve public key cryptography, in which two

different keys are used for encryption and decryption,

and the encryption key may be distributed publicly.

 Protocol 2.1. In this protocol, for communication

from Alice to Bob, Alice sends a message to Bob

by encrypting it with Bob’s public encryption

key. As part of each message, in order to make

our example illustrate the general point, Alice

also reveals her secret decryption key, making

public-key encryption to Alice insecure.

 Protocol 2.2. This protocol is the same as the pre-

vious one (that is, protocol 2.1), but in reverse:

Bob communicates to Alice by encrypting mes-

sages using Alice’s public key and revealing his

own private decryption key.

Both protocol 2.1 and 2.2 are secure when used by

themselves: If Bob sends Alice a message encrypted

with Alice’s public key, then only Alice can decrypt

and read the message. However, it should be clear that

composing these two protocols to communicate be-

tween Alice and Bob in both directions is completely

insecure because when Alice sends Bob a message,

she leaks her private key, and when Bob communi-

cates to Alice, he leaks his private key. After at least

one message in each direction, both public keys have

been leaked and any eavesdropper on the network can

decrypt and read all the messages.

3. Two principles of secure composition

In the following, we describe two principles of se-

cure composition, and we use these principles to

explain the examples of insecure composition in the

previous section.

3. 1. Principle 1: Preserving invariants of

system components

The central idea behind this principle is that the

security property of a system component is preserved

under composition if every other component respects

invariants used in the proof of security of the com-

ponent in the face of attack. In example 1, the only

relevant invariant for the authentication property of

protocol 1.1 is of the following form: “If an honesta

principal signs a message of the form < r, A >, then he

must have previously received r in a message with A as

the identifier for the sender.” This invariant is not pre-

served by protocol 1.2, as demonstrated by the attack

described in the previous section, leading to a failure

of nondestructive composition.

To illustrate the generality of this principle, we

briefly discuss a published analysis of the widely de-

ployed Trusted Computing Group (TCG) technology

using this principle [12], and we discuss the conse-

quent discovery of a real incompatibility between an

existing standard protocol for attesting the integrity

of the software stack to a remote party and a newly

added hardware instruction. Machines with trusted

computing abilities include a special, tamper-proof

hardware called the Trusted Platform Module or

TPM, which contains protected append-only registers

to store measurements (that is, hashes) of programs

loaded into memory and a dedicated coprocessor

to sign the contents of the registers with a unique

hardware-protected key. The protocol in question,

called Static Root of Trust Measurement (SRTM),

uses this hardware to establish the integrity of the

software stack on a machine to a trusted remote third

a. A principal is honest if he does not deviate from the steps of the protocol.

 The Next Wave | Vol. 19 No. 2 | 2012 | 33

party. The protocol works by requiring each program

to store, in the protected registers, the hash of any

program it loads. The hash of the first program loaded

into memory, usually the boot loader, is stored in the

protected registers by the booting firmware, usually

the basic input/output system (BIOS). The integrity of

the software stack of a machine following this protocol

can be proved to a third party by asking the coproces-

sor to sign the contents of the protected registers with

the hardware-protected key, and sending the signed

hashes of loaded programs to the third party. The

third party can compare the hashes to known ones,

thus validating the integrity of the software stack.

Note that the SRTM protocol is correct only if soft-

ware that has not already been measured cannot ap-

pend to the protected registers. Indeed, this invariant

was true in the hardware prescribed by the initial TCG

standard and, hence, this protocol was secure then.

However, a new instruction, called latelaunch,

added to the standard in a later extension allows an

unmeasured program to be started with full access to

the TPM. This violates the necessary invariant- and

results in an actual attack on the SRTM protocol:

A program invoked with latelaunch may add

hashes of arbitrary programs to the protected registers

without actually loading them. Since the program is

not measured, the remote third party obtaining the

signed measurements will never detect its presence.

An analysis of the protocol using the method outlined

here discovered this incompatibility between the

SRTM protocol and the latelaunch instruction.

In the analysis, the TPM instruction set, including

latelaunch, were modeled as interfaces available

to programs. The invariant can be established for all

interfaces except latelaunch, thus leading to failure

of a proof of correctness of SRTM with latelaunch

and leading to discovery of the actual attack.

This composition principle is related to the form

of assume-guarantee reasoning initially proposed

by Jones for reasoning about correctness properties

of concurrent programs [23]. However, one differ-

ence is that, in contrast to Jones’ work, we consider

preservation of properties of system components

under composition in the presence of an active ad-

versary whose exact program (or invariants) is not

known. After sketching the technical approach in the

next sections, we will explain how we address this

additional complexity.

3.2. Principle 2: Secure rely-guarantee

reasoning

Inductive security properties (that is, properties which

hold at a point of time if and only if they have held

at all prior points of time) require a different form of

compositional reasoning that builds on prior work on

rely-guarantee reasoning for correctness properties

of programs [23, 24].

Suppose we wish to prove that property φ holds

at all times. First, we identify a set S = {T
1
,…, T

n
} of

trusted components relevant to the property and local

properties Ψ
T1

,…,Ψ
Tn

 of these components, satisfying

the following conditions:

(1) If φ holds at all time points strictly before any

given time point, then each of Ψ
T1

,…,Ψ
Tn

 holds

at the given time point.

(2) If φ does not hold at any time, then at least one

of Ψ
T1

,…,Ψ
Tn

 must have been violated strictly

before that time.

34

Programming language methods for compositional security

The rely-guarantee principle states that under these
conditions, if φ holds initially, then φ holds forever.

We return to example 2 to illustrate the application

of this principle. In order to prove the secrecy of the

encrypted message, it is necessary to prove that the

private decryption key is known only to the associated

party. If protocol 2.1 (or protocol 2.2) were to run in

isolation, the relevant decryption key would indeed

be known only to the associated party (Alice or Bob).

This can be proved using the rely-guarantee reasoning

technique described above and noting that the recipi-

ent of the encrypted message never sends out his or

her private decryption key and that the other party

cannot send it out (assuming that it has not already

been sent out). However, when the two protocols are

composed in parallel, the proof no longer works be-

cause the sender in one protocol is the recipient in the

other; thus, we can no longer prove that the recipient’s

private decryption key is not sent out on the network.

Indeed, the composition attack arises precisely be-

cause the recipient’s private decryption key is sent out

on the network.

Another application of the rely-guarantee technique
is in proofs of secrecy of symmetric keys generated in
network protocols. We explain one instance here—
proving that the so called authentication key (AKey)
generated during the Kerberos V protocol (a widely
used industry standard) becomes known only to three
protocol participants [17, 18]: the client authenticated
by the key, the Kerberos authentication server (KAS)
that generates the key, and the ticket granting server
(TGS) to whom the key authenticates the client. At
the center of this proof is the property that whenever
any of these three participants send out the AKey onto
the (unprotected) network, it is encrypted with other
secure keys. Proving this property requires induction
because, as part of the protocol, the client blindly for-
wards an incoming message to the TGS. Consequently,
the client’s outgoing message does not contain the un-
encrypted AKey because the incoming message does
not contain the unencrypted AKey in it. The latter fol-
lows from the inductive hypothesis that any network
adversary could not have had the unencrypted AKey

to send to the client.

Formally, the rely-guarantee framework is instanti-
ated by choosing φ to be the property that any mes-
sage sent out on the network does not contain the un-
encrypted AKey. The properties Ψ

T
, for components

T of the client, KAS, and the TGS model the require-
ment that the respective components do not send out
the AKey unencrypted. Then, the proof of condition
(2) of the rely-guarantee framework is trivial, and
condition (1) follows from an analysis of the programs
of the client, the KAS, and the TGS. The first of these,
as mentioned earlier, uses the assumption that φ holds
at all points in the past. Note that the three programs
are analyzed individually, even though the secrecy
property relies on the interactions between them, that
is, the proof is compositional.

4. Protocol Composition Logic

Protocol Composition Logic (PCL) [14, 15, 16] is a

formal logic for proving security properties of network

protocols that use public and symmetric key cryptog-

raphy. The system has several parts:

 A simple programming language for defining

protocols by writing programs for each role

of the protocol. For example, the secure sock-

ets layer (SSL) protocol can be modeled in this

language by writing two programs—one for the

client role and one for the server role of SSL.

Each program is a sequence of actions, such as

sending and receiving messages, decryption, and

digital signature verification. The operational

semantics of the programming language de-

fine how protocols execute concurrently with a

symbolic adversary (sometimes referred to as the

Dolev-Yao adversary) that controls the network

but cannot break the cryptographic primitives.

 A pre/postcondition logic for describing the

starting and ending security conditions for

protocol. For example, a precondition might

state that a symmetric key is shared by two

agents, and a postcondition might state that

a new key exchanged using the symmetric

key for encryption is only known to the same

two agents.

 Modal formulas, denoted θ[P]X

, for stating

that if a precondition θ holds initially, and a

protocol thread X completes the steps P, then

the postcondition will be true afterwards irre-

spective of concurrent actions by other agents

and the adversary. Typically, security proper-

ties of protocols are specified in PCL using such

modal formulas.

 The Next Wave | Vol. 19 No. 2 | 2012 | 35

FEATURE

A formal proof system for deriving true modal

formulas about protocols. The proof system

consists of axioms about individual protocol

actions and inference rules that yield assertions

about protocols composed of multiple steps.

One of the important ideas in PCL is that although

assertions are written only using the steps of the

protocol, the logic is sound in a strong sense: Each

provable assertion involving a sequence of actions

holds in any protocol run containing the given actions

and arbitrary additional actions by a malicious adver-

sary. This approach lets us prove security properties

of protocols under attack while reasoning only about

the actions of honest parties in the protocol, thus

significantly reducing the size of protocol proofs in

comparison to other proof methods, such as Paulson’s

Inductive Method [28].

Intuitively, additive combination is achieved using

modal formulas of the form θ[P]
A

. For example, the

precondition θ might assert that A knows B’s public

key, the actions P allow A to receive a signed message

and verify B’s signature, and the postcondition may

say that B sent the signed message that A received.

The importance of modal formulas with before-after

assertions is that we can combine assertions about

individual protocol steps to derive properties of a se-

quence of steps: If [P]
A
Ψ and Ψ[P']

A
θ, then [PP']

A
θ.

For example, an assertion assuming that keys have

been successfully distributed can be combined with

steps that do key distribution to prove properties of a

protocol that distributes keys and uses them.

We ensure one form of nondestructive combination

using invariance assertions, capturing the first compo-

sition principle described in Section 3. The central as-

sertion in our reasoning system, Γ [P]
A
Ψ, says that

in any protocol satisfying the invariant Γ, the before-

after assertion [P]
A
Ψ holds in any run (regardless of

any actions by any dishonest attacker). Typically, our

invariants are statements about principals that follow

the rules of a protocol, as are the final conclusions.

For example, an invariant may state that every honest

principal maintains secrecy of its keys, where honest

means simply that the principal only performs actions

that are given by the protocol. A conclusion in such a

protocol may be that if Bob is honest (so no one else

knows his key), then after Alice sends and receives

certain messages, Alice knows that she has communi-

cated with Bob. Nondestructive combination occurs

when two protocols are combined and neither violates

the invariants of the other.

PCL also supports a specialized form of secure

rely-guarantee reasoning about secrecy properties,

capturing the second composition principle in Section

3. In order to prove that the network is safe (that is, all

occurrences of the secret on the network appear under

encryption with a set of keys κ not known to the

adversary), the proof system requires us to prove that

assuming that the network is safe, all honest agents

only send out “safe” messages, that is, messages from

which the secret cannot be extracted without knowing

the keys in the set κ [18].

These composition principles have been applied to

prove properties of a number of industry standards

including SSL/TLS, IEEE 802.11i, and Kerberos V5.

5. Logic of Secure Systems

The Logic of Secure Systems (LS2) (initially presented

in [12]) builds on PCL to develop related composition

principles for secure systems that perform network

communication and operations on local shared

memory as well as on associated adversary models.

These principles have been applied to study industrial

trusted computing system designs. The study uncov-

ered an attack that arises from insecure composition

between two remote attestation protocols (see [12]

for details). A natural scientific question to ask is

whether one could build on these results to develop

general secure composition principles that transcend

specific application domains, such as network proto-

cols and trusted computing systems. Subsequent work

on LS2 [17], which we turn to next, answers exactly

this question.

Two goals drove the development of LS2. First, we
posit that a general theory of secure composition must
enable one to flexibly model and parametrically reason
about different classes of adversaries. To develop such
a theory, we view a trusted system in terms of the in-
terfaces its various components expose: Larger trusted
components are built by connecting interfaces in the
usual ways (client-server, call-return, message-passing,
etc.). The adversary is confined to some subset of the
interfaces, but its program is unspecified and can call
those interfaces in ways that are not known a priori.
Our focus on interface-confined adversaries thus
provides a generic way to model different classes of

36

Programming language methods for compositional security

adversaries in a compositional setting. For example,

in virtual machine monitor-based secure systems,

we model an adversarial guest operating system by

confining it to the interface exposed by the virtual

machine monitor. Similarly, adversary models for web

browsers, such as the gadget adversary (an attractive

vector for malware today that leverages properties

of Web 2.0 sites), can be modeled by confining the

adversary to the read and write interfaces for frames

guarded by the same-origin policy as well as by frame

navigation policies [7]. The network adversary model

considered in prior work on PCL and the adversary

against trusted computing systems considered in the

initial development of LS2 are also special cases of this

interface-confined adversary model. At a technical

level, interfaces are modeled as recursive functions in

an expressive programming language. Trusted com-

ponents and adversaries are also represented using

programs in the same programming language. Typi-

cally, we assume that the programs for the trusted

components (or their properties) are known. However,

an adversary is modeled by considering all possible

programs that can be constructed by combining calls

to the interfaces to which the adversary is confined.

Our second goal was to develop compositional rea-

soning principles for a wide range of classes of inter-

connected systems and associated interface-confined

adversaries that are described using a rich logic. The

approach taken by LS2 uses a logic of program specifi-

cations, employing temporal operators to express not

only the states and actions at the beginning and end of

a program, but also at points in between. This expres-

siveness is crucial because many security properties of

interest, such as integrity properties, are safety prop-

erties [29]. LS2 supports the two principles of secure

composition discussed in the previous section in the

presence of such interface-confined adversaries. The

first principle follows from a proof rule in the logic,

and the second principle follows from first-order rea-

soning in the logic. We refer the interested reader to

our technical paper for details [17].

6. Related work

We compare our approach to three related approach-

es—compositional reasoning for correctness proper-

ties of systems [23, 24], the Universal Composability

(UC) framework [25, 26], and a refinement type

system for compositional type-checking of security

protocols [27].

The secure composition principles we developed are

related to prior work on rely-guarantee reasoning for

correctness properties of programs [23, 24]. However,

the prior work was developed for a setting in which

all programs are known. In computer security, how-

ever, it is unreasonable to assume that the adversary’s

program is known a priori; rather, we model adversar-

ies as arbitrary programs that are confined to certain

system interfaces as explained earlier. We prove invari-

ants about trusted programs and system interfaces

that hold irrespective of concurrent actions by other

trusted programs and the adversary. This additional

generality, which is crucial for the secure composition

principles, is achieved at a technical level using novel

invariant rules. These rules allow us to conclude that

such invariants hold by proving assertions of the form

θ[P]
x
 over trusted programs or system interfaces;

note that because of the way the semantics of the

modal formula is defined, the invariants hold irrespec-

tive of concurrent actions by other trusted programs

and the adversary, although the assertion only refers

to actions of one thread X.

Recently, Bhargavan et al. developed a type system

to modularly check interfaces of security protocols,

implemented the system, and applied it to analysis of

secrecy properties of cryptographic protocols [27].

Their approach is based on refinement types (that is,

ordinary types qualified with logical assertions), which

can be used to specify program invariants and pre-

and postconditions. Programmers annotate various

points in the model with assumed and asserted facts.

The main safety theorem states that all programmer

defined assertions are implied by programmer as-

sumed facts in a well-typed program.

However, a semantic connection between the

program state and the logical formulas representing

assumed and asserted facts is missing. In contrast,

we prove that the inference systems of our logics of

programs (PCL and LS2) are sound with respect to

trace semantics of the programming language. Our

logic of programs may provide a semantic founda-

tion for the work of Bhargavan et al. and, dually, the

implementation in that work may provide a basis for

 The Next Wave | Vol. 19 No. 2 | 2012 | 37

FEATURE

mechanizing the formal system in our logics of pro-

grams. Bhargavan et al.’s programming model is more

expressive than ours because it allows higher-order

functions. We intend to add higher-order functions to

our framework in the near future.

While all the approaches previously discussed
involve proving safety properties of protocols and
systems modeled as programs, an alternative approach
to secure composition involves comparing the real
protocol (or system) whose security we are trying
to evaluate to an ideal functionality that is secure by
construction and prove that the two are equivalent
in a precise sense. Once the equivalence between the
real protocol and the ideal functionality is established,
the composition theorem guarantees that any larger
system that uses the real protocol is equivalent to the
system where the real protocol is replaced by the ideal

functionality.

This approach has been taken in the UC framework
for cryptographic protocols [25, 26] and is also related
to the notion of observational equivalence and simula-
tion relations studied in the programming languages
and verification literature [30, 31]. When possible,
this form of composition result is indeed very strong:
Composition is guaranteed under no assumptions
about the environment in which a component is used.
However, components that share state and rely on one
another to satisfy certain assumptions about how that
state is manipulated cannot be compositionally ana-
lyzed using this approach; the secure rely-guarantee
principle we develop is better suited for such analyses.
One example is the compositional security analysis of
the Kerberos protocol that proceeds from proofs of its

constituent programs [18].

7. Future work

There are several directions for further work on this
topic. First, automating the compositional reason-
ing principles we presented is an open problem.
Rely-guarantee reasoning principles have already
been automated for functional verification of realistic
systems. We expect that progress can be made on this
problem by building on these prior results. Second,
while sequential composition of secure systems is

an important step forward, a general treatment of

additive composition that considers other forms of

composition is still missing. Third, it is important to

extend the compositional reasoning principles pre-

sented here to support analysis of more refined models

that consider, for example, features of implementation

languages such as C. Finally, a quantitative theory

of compositional security that supports analysis of

systems built from components that are not perfectly

secure would be a significant result.

About the authors

Anupam Datta is an assistant research professor

at Carnegie Mellon University. Dr. Datta’s research

focuses on foundations of security and privacy. He

has made contributions toward advancing the scien-

tific understanding of security protocols, privacy in

organizational processes, and trustworthy software

systems. Dr. Datta has coauthored a book and over 30

publications in conferences and journals on these top-

ics. He serves on the Steering Committee of the IEEE

Computer Security Foundations Symposium (CSF),

and has served as general chair of CSF 2008 and as

program chair of the 2008 Formal and Computational

Cryptography Workshop and the 2009 Asian Comput-

ing Science Conference. Dr. Datta obtained MS and

PhD degrees from Stanford University and a BTech

from the Indian Institute of Technology, Kharagpur,

all in computer science.

John C. Mitchell is the Mary and Gordon Crary

Family Professor in the Stanford Computer Sci-

ence Department. His research in computer secu-

rity focuses on trust management, privacy, security

analysis of network protocols, and web security. He

has also worked on programming language analysis

and design, formal methods, and other applications

of mathematical logic to computer science. Professor

Mitchell is currently involved in the multiuniversity

Privacy, Obligations, and Rights in Technology of

Information Assessment (PORTIA) research project

to study privacy concerns in databases and informa-

tion processing systems, and the National Science

Foundation Team for Research in Ubiquitous Secure

Technology (TRUST) Center.

38

Programming language methods for compositional security

References

[1] Wing JM. A call to action: Look beyond the horizon.

IEEE Security & Privacy. 2003;1(6):62–67. DOI: 10.1109/

MSECP.2003.1253571

[2] Asokan N, Niemi V, Nyberg K. Man-in-the-middle in

tunnelled authentication protocols. In: Christianson B, Cris-

po B, Malcolm JA, Roe M, editors. Security Protocols 11th

International Workshop, Cambridge, UK, April 2-4, 2003,

Revised Selected Papers. Berlin (Germany): Springer-Verlag;

2005. p. 28–41. ISBN 13: 978-354-0-28389-8

[3] Kuhlman D, Moriarty R, Braskich T, Emeott S, Tripuni-

tara M. A correctness proof of a mesh security architecture.

In: Proceedings of the 21st IEEE Computer Security Founda-

tions Symposium; Jun 2008; Pittsburgh, MA. p. 315–330.

DOI: 10.1109/CSF.2008.23

[4] Meadows C, Pavlovic D. Deriving, attacking and

defending the GDOI protocol. In: Proceedings of the Ninth

European Symposium on Research in Computer Security;

Sep 2004; Sophia Antipolis, France. p. 53–72. Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1

12.3254&rep=rep1&type=pdf

[5] Mitchell JC, Shmatikov V, Stern U. Finite-state analysis

of SSL 3.0. In: Proceedings of the Seventh Conference on

USENIX Security Symposium; Jan 1998; San Antonio, TX. p.

16. Available at: http://www.usenix.org/publications/library/

proceedings/sec98/mitchell.html

[6] Barth A, Jackson C, Mitchell JC. Robust defenses

for cross-site request forgery. In: Proceedings of the

15th ACM Conference on Computer and Communica-

tions Security; Oct 2008; Alexandria, VA. p. 75–88. DOI:

10.1145/1455770.1455782

[7] Barth A, Jackson C, Mitchell JC. Securing frame com-

munication in browsers. In: Proceedings of the 17th USENIX

Security Symposium; Jul 2008; San Jose, CA. p. 17–30.

Available at: http://www.usenix.org/events/sec08/tech/

full_papers/barth/barth.pdf

[8] Chen S, Mao Z, Wang YM, Zhang M. Pretty-bad-proxy:

An overlooked adversary in browsers’ HTTPS deployments.

In: Proceedings of the 30th IEEE Symposium on Security

and Privacy; May 2009; Oakland, CA. p. 347–359. DOI:

10.1109/SP.2009.12

[9] Jackson C, Barth A. ForceHTTPS: Protecting high-

security web sites from network attacks. In: Proceedings

of the 17th International Conference on World Wide Web;

Apr 2008; Beijing, China. p. 525–534. Available at: http://

www2008.org/papers/pdf/p525-jacksonA.pdf

[10] Jackson C, Barth A, Bortz A, Shao W, Boneh D.

Protecting browsers from DNS rebinding attacks. In:

Proceedings of the 14th ACM Conference on Computer and

Communications Security; Oct 2007; Alexandria, VA. p.

421–431. DOI: 10.1145/1315245.1315298

[11] Cai X, Gui Y, Johnson R. Exploiting Unix file-system

races via algorithmic complexity attacks. In: Proceedings

of the 30th IEEE Symposium on Security and Privacy; May

2009; Oakland, CA; p. 27–41. DOI: 10.1109/SP.2009.10

[12] Datta A, Franklin J, Garg D, Kaynar D. A logic of

secure systems and its application to trusted computing. In:

Proceedings of the 30th IEEE Symposium on Security and Pri-

vacy; May 2009; Oakland, CA. p. 221–236. DOI: 10.1109/

SP.2009.16

[13] Tsafrir D, Hertz T, Wagner D, Da Silva D. Portably

solving file TOCTTOU races with hardness amplification.

In: Proceedings of the Sixth USENIX Conference on File

and Storage Technologies; Feb 2008; San Jose, CA. p. 1–18.

Available at: http://www.usenix.org/events/fast08/tech/

tsafrir.html

[14] Datta A, Derek A, Mitchell JC, Pavlovic D. A deriva-

tion system and compositional logic for security protocols.

Journal of Computer Security. 2005;13(3):423–482. Available

at: http://seclab.stanford.edu/pcl/papers/ddmp-jcs05.pdf

[15] Datta A, Derek A, Mitchell JC, Roy A. Pro-

tocol composition logic (PCL). Electronic Notes in

Theoretical Computer Science. 2007;172:311–358. DOI:

10.1016/j.entcs.2007.02.012

[16] Durgin N, Mitchell JC, Pavlovic D. A compositional

logic for proving security properties of protocols. Jour-

nal of Computer Security. 2003;11(4):677–721. Available

at: http://www-cs-students.stanford.edu/~nad/papers/

comp-jcs205.pdf

[17] Garg D, Franklin J, Kaynar DK, Datta A. Compo-

sitional system security with interface-confined adver-

saries. Electronic Notes in Theoretical Computer Science.

2010;265:49–71. DOI: 10.1016/j.entcs.2010.08.005

[18] Roy A, Datta A, Derek A, Mitchell JC, Seifert JP.

Secrecy analysis in protocol composition logic. In: Okada

M, Satoh I, editors. Advances in Computer Science – ASIAN

2006: Secure Software and Related Issues, 11th Asian Com-

puting Science Conference, Tokyo, Japan, December 6-8,

2006. Berlin (Germany): Springer-Verlag; 2007. p. 197–213.

[19] Butler KRB, McLaughlin SE, McDaniel PD. Kells:

A protection framework for portable data. In: Proceed-

ings of the 26th Annual Computer Security Applications

Conference; Dec 2010; Austin, TX. p. 231–240. DOI:

10.1145/1920261.1920296

[20] Kannan J, Maniatis P, Chun B. Secure data preserv-

ers for web services. In: Proceedings of the Second USENIX

Conference on Web Application Development; Jun 2011;

Portland, OR. p. 25–36. Available at: http://www.usenix.org/

events/webapps11/tech/final_files/Kannan.pdf

[21] He C, Sundararajan M, Datta A, Derek A, Mitchell JC.

A modular correctness proof of IEEE 802.11i and TLS. In:

Proceedings of the 12th ACM Conference on Computer

and Communications Security; Nov 2005; Alexandria, VA.

p. 2–15. DOI: 10.1145/1102120.1102124

[22] Datta A, Derek A, Mitchell JC, Pavlovic D. Abstrac-

tion and refinement in protocol derivation. In: Proceedings

of 17th IEEE Computer Security Foundations Workshop;

Jun 2004; Pacific Grove, CA. p. 30–45. DOI: 10.1109/

CSFW.2004.1310730

[23] Jones CB. Tentative steps toward a development

method for interfering programs. ACM Transactions on

Programming Languages and Systems. 1983;5(4):596–619.

DOI: 10.1145/69575.69577

[24] Misra J, Chandy KM. Proofs of networks of pro-

cesses. IEEE Transactions on Software Engineering.

1981;7(4):417–426. DOI: 10.1109/TSE.1981.230844

[25] Canetti R. Universally composable security: A new

paradigm for cryptographic protocols. In: Proceedings of

the 42nd IEEE Symposium on the Foundations of Computer

Science; Oct 2001; Las Vegas, NV. p. 136–145. DOI: 10.1109/

SFCS.2001.959888

[26] Pfitzmann B, Waidner M. A model for asynchronous

reactive systems and its application to secure message

transmission. In: IEEE Symposium on Security and Privacy;

May 2001; Oakland, CA. p. 184–200. DOI: 10.1109/

SECPRI.2001.924298

[27] Bhargavan K, Fournet C, Gordon AD. Modular verifi-

cation of security protocol code by typing. In: Proceedings of

the 37th ACM SIGACT-SIGPLAN Symposium on Principles

of Programming Languages; Jan 2010; Madrid, Spain.

p. 445–456. DOI: 10.1145/1706299.1706350

[28] Paulson L. Proving properties of security protocols by

induction. In: Proceedings of 10th IEEE Computer Security

Foundations Workshop; Jun 1997; Rockport, MA. p. 70–83.

DOI: 10.1109/CSFW.1997.596788

[29] Alpern B, Schneider FB. Recognizing safety and live-

ness. Distributed Computing. 1987;2(3):117–126. DOI:

10.1007/BF01782772

[30] Canetti R, Cheung L, Kaynar DK, Liskov M, Lynch

NA, Pereira O, Segala R. Time-bounded task-PIOAs: A

framework for analyzing security protocols. In: Proceed-

ings of the 20th International Symposium on Distributed

Computing; Sep 2006; Stockholm, Sweden. p. 238–253. DOI:

10.1007/11864219_17

[31] Kϋsters R, Datta A, Mitchell JC, Ramanathan A. On the

relationships between notions of simulation-based security.

Journal of Cryptology. 2008;21(4):492–546. DOI: 10.1007/

s00145-008-9019-9

40

W
hen running software applications and services, we rely on the underlying

execution platform: the hardware and the lower levels of the software stack.

The execution platform is susceptible to a wide range of threats, ranging from

accidental bugs, faults, and leaks to maliciously induced Trojan horses. The problem is

aggravated by growing system complexity and by increasingly pertinent outsourcing

and supply chain consideration. Traditional mechanisms, which painstakingly validate all

system components, are expensive and limited in applicability.

What if the platform assurance

problem is just too hard? Do we have

any hope of securely running software

when we cannot trust the underlying

hardware, hypervisor, kernel, libraries,

and compilers?

This article will discuss a potential

approach for doing just so: conducting

trustworthy computation on untrusted

execution platforms. The approach,

proof-carrying data (PCD), circumnavi-

gates the threat of faults and

leakage by reasoning solely

about properties of a computa-

tion’s output data, regardless

of the process that produced

it. In PCD, the system designer

prescribes the desired proper-

ties of the computation’s out-

puts. These properties are then

enforced using cryptographic

proofs attached to all data flow-

ing through the system and

verified at the system perimeter

as well as internal nodes.

 The Next Wave | Vol. 19 No. 2 | 2012 | 41

FEATURE

1. Introduction

Integrity of data, information flow control, and fault

isolation are three examples of security properties

of which attainment, in the general case and under

minimal assumptions, is a major open problem. Even

when particular solutions for specific cases are known,

they tend to rely on platform trust assumptions (for

example, the kernel is trusted, the central processing

unit is trusted), and even then they cannot cross trust

boundaries between mutually untrusting parties. For

example, in cloud computing, clients are typically

interested in both integrity [1] and confidentiality [2]

when they delegate their own computations to the

untrusted workers.

Minimal trust assumptions and very strong cer-

tification guarantees are sometimes almost a basic

requirement. For example, within the information

technology supply chain, faults can be devastating

to security [3] and hard to detect; moreover, hard-

ware and software components are often produced in

faraway lands from parts of uncertain origin where

it is hard to carry out quality assurance in case trust

is not available [4]. This all implies risks to the users

and organizations [5, 6, 7, 8].

2. Goals

In order to address the aforementioned problems, we

propose the following goal:

Goal. A compiler that, given a protocol for a

distributed computation and a security property

(in the form of a predicate to be verified at every

node of the computation), yields an augmented

protocol that enforces the security property.

We wish this compiler to respect the original

distributed computation (that is, the compiler should

preserve the computation’s communication graph, dy-

namics, and efficiency). This implies, for example, that

scalability is preserved: If the original computation can

be jointly conducted by numerous parties, then the

compiler produces a secure distributed computation

that has the same property.

3. Our approach

We propose a generic solution approach, proof-

carrying data (PCD), to solve the aforementioned

problems by defining appropriate checks to be per-

formed on each party’s computation and then letting

parties attach proofs of correctness to each message.

Every piece of data flowing through a distributed

computation is augmented by a short proof string

that certifies the data as compliant with some desired

property. These proofs can be propagated and ag-

gregated “on the fly,” as the computation proceeds.

These proofs may be between components of a single

platform or between components of mutually un-

trusting platforms, thereby extending trust to any

distributed computation.

But what “properties” do we consider? Certainly

we want to consider the property that every node

carried out its own computation without making any

mistakes. More generally, we consider properties that

can be expressed as a requirement that every step in

the computation satisfies some compliance predicate

C computable in polynomial time; we call this notion

C-compliance. Thus, each party receives inputs that

are augmented with proof strings, computes some

outputs, and augments each of the outputs with a

new proof string that will convince the next party (or

the verifier of the ultimate output) that the output is

consistent with a C-compliant computation. See figure

1 for a high-level diagram of this idea.

For example, C could simply require that each

party’s computation was carried out without errors.

Or, C could require that not only each party’s com-

putation was carried out without errors, but also that

the program run by each party carried a signature

valid under the system administrator’s public key; in

such a case, the local program supplied by each party

would be the combination of the program and the

signature. Or, C could alternatively require that each

party’s computation involved a binary produced by

Final

verifier

Accept

or

Reject

m
1 , π

1

m 2
, π 2

m
3

, π
3

m 4
, π 4

m
5 , π

5 m 6
, π 6

m
7 , π

7

FIGURE 1. A distributed computation in which each party sends

a message m
i
 that is augmented with a short proof π

i
. The final

verifier inspects the computation’s outputs in order to decide

whether they are “compliant” or not.

42

Proof-carrying data: Secure computation on untrusted platforms

a compiler prescribed by the system administrator,

which is known to perform certain tests on the code to

be compiled (for example, type safety, static analysis,

dynamic enforcement). Note that a party’s local pro-

gram could be a combination of code, human inputs,

and randomness.

To formalize the above, we define and construct

a PCD scheme: A cryptographic primitive that fully

encapsulates the proof system machinery and pro-

vides a simple but very general “interface” to be used

in applications.a

Our construction does require a minimal trusted

setup: Every party should have black-box access to

a simple signed-input-and-randomness functional-

ity, which signs every input it receives along with

some freshly-generated random bits. This is similar to

standard functionality of cryptographic signing tokens

and can also be implemented using Trusted Platform

Module chips or a trusted party.

3.1. Our results

We introduce the generic approach of PCD for secur-

ing distributed computations and describing the

cryptographic primitive of PCD schemes to capture

this approach:

Theorem (informal). PCD schemes

can be constructed under standard

cryptographic assumptions, given

signed-input-and-randomness tokens.

3.2. The construction and its practicality

We do not rely on the traditional notion of a proof; in-

stead, we rely on computationally sound proofs. These

are proofs that always exist for true theorems and can

be found efficiently given the appropriate witness. For

false theorems, however, we only have the guarantee

that no efficient procedure will be able to write a proof

that makes us accept with more than negligible prob-

ability. Nonetheless, computationally sound proofs

are just as good as traditional ones, for we are not

interested in being protected against infeasible attack

procedures, nor do we mind accepting a false theorem

with, say, 2-100 probability.

The advantage of settling for computationally sound

proofs is that they can be much shorter than the com-

putation to which they attest and can be verified much

more quickly than repeating the entire computation.

To this end, we use probabilistically checkable proofs

(PCPs) [11, 12], which originate in the field of com-

putational complexity and its cryptographic exten-

sions [9, 13, 14].

While our initial results establish theoretical foun-

dations for PCD and show their possibility in prin-

ciple, the aforementioned PCPs are computationally

heavy and are notorious for being efficient only in the

asymptotic sense, and they are not yet of practical rel-

evance. Motivated by the potential impact of a practi-

cal PCD scheme, we have thus taken on the challenge

of constructing a practical PCP system, in an ongoing

collaboration with Professor Eli Ben-Sasson and a

team of programmers at the Technion.

4. Related approaches

Cryptographic tools. Secure multiparty computation

[15, 16, 17] considers the problem of secure function

evaluation; our setting is not one function evaluation,

but ensuring a single invariant (that is, C-compli-

ance) through many interactions and computations

between parties.

Platforms, languages, and static analysis. Integ-

rity can be achieved by running on suitable fault-

tolerant systems. Confidentiality can be achieved

by platforms with suitable information flow control

mechanisms following [18, 19] (for example, at the

operating-system level [20, 21]). Various invariants

can be achieved by statically analyzing programs and

by programming language mechanisms such as type

systems following [22, 23]. The inherent limitation of

these approaches is that the output of such computa-

tion can be trusted only if one trusts the whole plat-

form that executed it; this renders them ineffective in

the setting of mutually untrusting distributed parties.

Run-time approaches. In proof-carrying code (PCC)

[24], the code producer augments the code with for-

mal, efficiently checkable proofs of the desired prop-

erties (typically, using the aforementioned language

or static analysis techniques); PCC and PCD are

a. PCD schemes generalize the “computationally-sound proofs” of Micali [9], which consider only the “one-hop” case of a single prover

and a single verifier and also generalize the “incrementally verifiable computation” of Valiant [10], which considers the case of an a-priori

fixed sequence of computations.

 The Next Wave | Vol. 19 No. 2 | 2012 | 43

FEATURE

complementary techniques, in the sense that PCD can

enforce properties expressed via PCC. Dynamic analy-

sis monitors the properties of a program’s execution

at run-time (for example, [25, 26, 27]). Our approach

can be interpreted as extending dynamic analysis to

the distributed setting, by allowing parties to (implic-

itly) monitor the program execution of all prior parties

without actually being present during the executions.

The Fabric system [28] is similar to PCD in motiva-

tion, but takes a very different approach: Fabric aims

to make maximal use of distributed-system given trust

constraints, while PCD creates new trust relations.

5. The road onward

We envision PCD as a framework for achieving secu-

rity properties in a nonconventional way that cir-

cumvents many difficulties with current approaches.

In PCD, faults and leakage are acknowledged as an

expected occurrence, and rendered inconsequential

by reasoning about properties of data that are inde-

pendent of the preceding computation. The system

designer prescribes the desired properties of the

computation’s output; proofs of these properties are at-

tached to the data flowing through the system and are

mutually verified by the system’s components.

We have already shown explicit constructions of

PCD, under standard cryptographic assumptions, in

the model where parties have black-box access to a

simple hardware token. The theoretical problem of

weakening this requirement, or formally proving that

it is (in some sense) necessary, remains open. In recent

work, we show how to resolve this problem in the case

of a single party’s computation [29].

As for practical realizations, since there is evidence

that the use of PCPs for achieving short proofs is

inherent [30], we are tackling head-on the challenge of

making PCPs practical. We are also studying devising

ways to express the security properties, to be enforced

by PCD, using practical programming languages such

as C++.

In light of these, as real-world practicality of PCD

becomes closer and closer, the task of compliance

engineering becomes an exciting direction. While PCD

provides a protocol compiler to ensure any compliance

predicate in a distributed computation, figuring out

what are useful compliance predicates in this or that

setting is a problem in its own right.

We already envision problem domains where we

believe enforcing compliance predicates will come

a long way toward securing distributed systems in a

strong sense:

 Multilevel security. PCD may be used for in-

formation flow control. For example, consider

enforcing multilevel security [31, Chap. 8.6] in

a room full of data-processing machines. We

want to publish outputs labeled “nonsecret,” but

are concerned that they may have been tainted

by “secret” information (for example, due to

bugs, via software side channel attacks [32] or,

perhaps, via literal eavesdropping [33, 34, 35]).

PCD then allows you to reduce the problem of

controlling information flow to the problem of

controlling the perimeter of the information

room by ensuring that every network packet

leaving the room is inspected by the PCD verifier

to establish it carries a valid proof.

 IT supply chain and hardware Trojans. Using

PCD, one can achieve fault isolation and ac-

countability at the level of system components

(for example, chips or software modules) by

having each component augment every output

with a proof that its computation, including all

history it relied on, was correct. Any fault in the

computation, malicious or otherwise, will then

be identified by the first nonfaulty subsequent

component. Note that even the PCD verifiers

themselves do not have to be trusted except for

the very last one.

 Distributed type safety. Language-based type-

safety mechanisms have tremendous expressive

power, but are targeted at the case where the

underlying execution platform can be trusted to

enforce type rules. Thus, they typically cannot

be applied across distributed systems consist-

ing of multiple mutually untrusting execution

platforms. This barrier can be surmounted by

using PCD to augment typed values passing

between systems with proofs for the correctness

of the type.

44

Proof-carrying data: Secure computation on untrusted platforms

Efforts to understand how to think about com-

pliance in concrete problem domains are likely to

uncover common problems and corresponding

design patterns [36], thus improving our overall abil-

ity to correctly phrase desired security properties as

compliance predicates.

We thus pose the following challenge: Given a

genie that grants every wish expressed as a compliance

predicate on distributed computations, what compli-

ance predicates would you wish for in order to achieve

the security properties your system needs?

Acknowledgments

This research was partially supported by the Check

Point Institute for Information Security, the Israeli

Centers of Research Excellence program (center No.

4/11), the European Community’s Seventh Frame-

work Programme grant 240258, the National Science

Foundation (NSF) grant NSF-CNS-0808907, and the

Air Force Research Laboratory (AFRL) grant FA8750-

08-1-0088. Views and conclusions contained here are

those of the authors and should not be interpreted as

necessarily representing the official policies or en-

dorsements, either express or implied, of AFRL, NSF,

the US government or any of its agencies.

About the authors

Alessandro Chiesa is a second-year doctoral student

in the Theory of Computation group in the Com-

puter Science and Artificial Intelligence Laboratory

(CSAIL) at Massachusetts Institute of Technology

(MIT). He is interested in cryptography, complexity

theory, quantum computation, mechanism design,

algorithms, and security. He can be reached at MIT

CSAIL, alexch@csail.mit.edu.

Eran Tromer is a faculty member at the School of

Computer Science at Tel Aviv University. His research

focus is information security, cryptography, and

algorithms. He is particularly interested in what hap-

pens when cryptographic systems meet the real world,

where computation is faulty and leaky. He can be

reached at Tel Aviv University, tromer@cs.tau.ac.il.

References

[1] Ferdowsi A. S3 data corruption? Amazon Web Ser-

vices (discussion forum). 2008 Jun 22. Available at:

https://forums.aws.amazon.com/thread.jspa?threadID=

22709&start=0&tstart=0

[2] Ristenpart T, Tromer E, Shacham H, Savage S. Hey, you,

get off of my cloud! Exploring information leakage in third-

party compute clouds. In: Proceedings of the 16th ACM

Conference on Computer and Communications Security; Nov

2009; Chicago, IL. p. 199–212. Available at: http://cseweb.

ucsd.edu/~hovav/dist/cloudsec.pdf

[3] Biham E, Shamir A. Differential fault analysis of secret

key cryptosystems. In: Kaliski BS Jr., editor. Advances in

Cryptology—CRYPTO ’97 (Proceedings of the 17th Annual

International Cryptology Conference; Aug 1997; Santa

Barbara, CA). LNCS, 1294. London (UK): Springer-Verlag;

1997. p. 513–525. DOI: 10.1007/BFb0052259

[4] Collins DR. Trust, a proposed plan for trusted integrated

circuits. Paper presented at a conference; Mar 2006; p.

276–277. Available at: http://oai.dtic.mil/oai/oai?verb=getR

ecord&metadataPrefix=html&identifier=ADA456459

[5] Agrawal D, Baktir S, Karakoyunlu D, Rohatgi P, Sunar

B. Trojan detection using IC fingerprinting. In: Proceedings

of the 2007 IEEE Symposium on Security and Privacy; May

2007; Oakland, CA. p. 296–310. DOI: 10.1109/SP.2007.36

[6] Biham E, Carmeli Y, Shamir A. Bug attacks. In: Wagner

D, editor. Advances in Cryptology—CRYPTO 2008 (Pro-

ceedings of the 28th Annual International Cryptology

Conference; Aug 2008; Santa Barbara, CA). LNCS, 5157.

Berlin (Germany): Springer-Verlag; 2008. p. 221–240. DOI:

10.1007/978-3-540-85174-5_13

[7] King ST, Tucek J, Cozzie A, Grier C, Jiang W, Zhou

Y. Designing and implementing malicious hardware. In:

Proceedings of the First USENIX Workshop on Large-Scale

Exploits and Emergent Threats; Apr 2008; San Francisco,

CA. p. 1–8. Available at: http://www.usenix.org/events/

leet08/tech/full_papers/king/king.pdf

[8] Roy JA, Koushanfar F, Markov IL. Circuit CAD tools as

a security threat. In: Proceedings of the First IEEE Inter-

national Workshop on Hardware-Oriented Security and

Trust; Jun 2008; Anaheim, CA. p. 65–66. DOI: 10.1109/

HST.2008.4559052

[9] Micali S. Computationally sound proofs. SIAM Journal

on Computing. 2000;30(4):1253–1298. DOI: 10.1137/

S0097539795284959

[10] Valiant P. Incrementally verifiable computation or

 The Next Wave | Vol. 19 No. 2 | 2012 | 45

FEATURE

proofs of knowledge imply time/space efficiency. In: Canetti

R, editor. Theory of Cryptography (Proceedings of the Fifth

Theory of Cryptography Conference; Mar 2008; New York,

NY). LNCS, 4948. Berlin (Germany): Springer-Verlag; 2008.

p. 1–18. DOI: 10.1007/978-3-540-78524-8_1

[11] Babai L, Fortnow L, Levin LA, Szegedy M. Check-

ing computations in polylogarithmic time. In: Proceed-

ings of the 23rd Annual ACM Symposium on Theory of

Computing; May 1991; New Orleans, LA. p. 21–32. DOI:

10.1145/103418.103428

[12] Ben-Sasson E, Sudan M. Simple PCPs with poly-log

rate and query complexity. In: Proceedings of the 37th An-

nual ACM Symposium on Theory of Computing; May 2005;

Baltimore, MD. p. 266–275. DOI: 10.1145/1060590.1060631

[13] Kilian J. A note on efficient zero-knowledge proofs and

arguments. In: Proceedings of the 24th Annual ACM Sym-

posium on Theory of Computing; May 1992; Victoria, BC,

Canada. p. 723–732. DOI: 10.1145/129712.129782

[14] Barak B, Goldreich O. Universal arguments and

their applications. In: Proceedings of the 17th IEEE An-

nual Conference on Computational Complexity; May 2002;

Montreal, Quebec , Canada. p. 194–203. DOI: 10.1109/

CCC.2002.1004355

[15] Goldreich O, Micali S, Wigderson A. How to play ANY

mental game. In: Proceedings of the 19th Annual ACM Sym-

posium on Theory of Computing; May 1987; New York, NY.

p. 218–229. DOI: 10.1145/28395.28420

[16] Ben-Or M, Goldwasser S, Wigderson A. Completeness

theorems for non-cryptographic fault-tolerant distributed

computation. In: Proceedings of the 20th Annual ACM Sym-

posium on Theory of Computing; May 1988; Chicago, IL. p.

1–10. DOI: 10.1145/62212.62213

[17] Chaum D, Crépeau C, Damgård I. Multiparty uncondi-

tionally secure protocols. In: Proceedings of the 20th Annual

ACM Symposium on Theory of Computing; May 1988;

Chicago, IL. p. 11–19. DOI: 10.1145/62212.62214

[18] Denning DE, Denning PJ. Certification of programs

for secure information flow. Communications of the ACM.

1977;20(7):504–513. DOI: 10.1145/359636.359712

[19] Myers AC, Liskov B. A decentralized model for

information flow control. In: Proceedings of the 16th

ACM SIGOPS Symposium on Operating Systems Prin-

ciples; Oct 1997; Saint-Malo, France. p. 129–142. DOI:

10.1145/268998.266669

[20] Krohn M, Yip A, Brodsky M, Cliffer N, Kaashoek MF,

Kohler E, Morris R. Information flow control for standard

OS abstractions. In: Proceedings of the 21st ACM SIGOPS

Symposium on Operating Systems Principles; Oct 2007; Ste-

venson, WA. p. 321–334. DOI: 10.1145/1294261.1294293

[21] Zeldovich N, Boyd-Wickizer S, Kohler E, Mazières D.

Making information flow explicit in HiStar. In: Proceedings

of the Seventh USENIX Symposium on Operating Systems

Design and Implementation; Nov 2006; Seattle, WA. p.

19–19. Available at: http://www.usenix.org/event/osdi06/

tech/full_papers/zeldovich/zeldovich.pdf

[22] Andrews GR, Reitman RP. An axiomatic approach to

information flow in programs. ACM Transactions on Pro-

gramming Languages and Systems. 1980;2(1):56–76. DOI:

10.1145/357084.357088

[23] Denning DE. A lattice model of secure information

flow. Communications of the ACM. 1976;19(5):236–243.

DOI: 10.1145/360051.360056

[24] Necula GC. Proof-carrying code. In: Proceedings of

the 24th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages; Jan 1997; Paris, France. p.

106–119. DOI: 10.1145/263699.263712

[25] Nethercote N, Seward J. Valgrind: A framework for

heavyweight dynamic binary instrumentation. In: Proceed-

ings of the 2007 ACM SIGPLAN Conference on Programming

Language Design and Implementation; Jun 2007; San Diego,

CA. p. 89–100. DOI: 10.1145/1250734.1250746

[26] Suh GE, Lee JW, Zhang D, Devadas S. Secure pro-

gram execution via dynamic information flow tracking.

In: Proceedings of the 11th International Conference on

Architectural Support for Programming Languages and

Operating Systems; Oct 2004; Boston, MA. p. 85–96. DOI:

10.1145/1024393.1024404

[27] Kiriansky V, Bruening D, Amarasinghe SP. Secure

execution via program shepherding. In: Proceedings of the

11th USENIX Security Symposium; Aug 2002; San Francisco,

CA. p. 191–206. Available at: http://www.usenix.org/pub-

lications/library/proceedings/sec02/full_papers/kiriansky/

kiriansky_html/index.html

[28] Liu J, George MD, Vikram K, Qi X, Waye L, Myers AC.

Fabric: A platform for secure distributed computation and

storage. In: Proceedings of the 22nd ACM SIGOPS Sympo-

sium on Operating Systems Principles; Oct 2009; Big Sky,

MT. p. 321–334. DOI: 10.1145/1629575.1629606

[29] Bitansky N, Canetti R, Chiesa A, Tromer E. From

extractable collision resistance to succinct non-interactive

arguments of knowledge, and back again. Cryptology ePrint

Archive. 2011;Report 2011/443. Available at: http://eprint.

iacr.org/2011/443

[30] Rothblum GN, Vadhan S. Are PCPs inherent in ef-

ficient arguments? In: Proceedings of the 24th IEEE Annual

Conference on Computational Complexity; Jul 2009; Paris,

France. p. 81–92. DOI: 10.1109/CCC.2009.40

[31] Anderson RJ. Security Engineering: A Guide to Building

Dependable Distributed Systems. 2nd ed. Indianapolis (IN):

Wiley Publishing; 2008. ISBN: 978-0-470-06852-6

[32] Brumley D, Boneh D. Remote timing attacks are

practical. Computer Networks: The International Jour-

nal of Computer and Telecommunications Networking.

2005;48(5):701–716.

[33] LeMay M, Tan J. Acoustic surveillance of physically

unmodified PCs. In: Proceedings of the 2006 International

Conference on Security and Management; Jun 2006; Las

Vegas, NV. p. 328–334. Available at: http://ww1.ucmss.com/

books/LFS/CSREA2006/SAM4311.pdf

[34] Asonov D, Agrawal R. Keyboard acoustic emanations.

In: Proceedings of the 2004 IEEE Symposium on Security and

Privacy; May 2004; Oakland, CA. p. 3–11. DOI: 10.1109/

SECPRI.2004.1301311

[35] Tromer E, Shamir A. Acoustic cryptanalysis: On nosy

people and noisy machines. Presentation at: Eurocrypt 2004

Rump Session; May 2004; Interlaken, Switzerland. Available

at: http://people.csail.mit.edu/tromer/acoustic

[36] Gamma E, Helm R, Johnson R, Vlissides J. Design

Patterns: Elements of Reusable Object-Oriented Software.

Boston (MA): Addison-Wesley Longman Publishing Co.,

Inc.; 1995. ISBN: 9780201633610

Proof-carrying data: Secure computation on untrusted platforms

 The Next Wave | Vol. 19 No. 2 | 2012 | 47

1. Introduction

A secure system must defend against all possible at-

tacks—including those unknown to the defender. But

defenders, having limited resources, typically develop

defenses only for attacks they know about. New kinds

of attacks are then likely to succeed. So our growing

dependence on networked computing systems puts at

risk individuals, commercial enterprises, the public

sector, and our military.

The obvious alternative is to build systems whose

security follows from first principles. Unfortunately,

we know little about those principles. We need a

science of cybersecurity (see box 1) that puts the con-

struction of secure systems onto a firm foundation

by giving developers a body of laws for predicting the

consequences of design and implementation choices.

The laws should

 transcend specific technologies and attacks, yet

still be applicable in real settings,

 introduce new models and abstractions, thereby

bringing pedagogical value besides predictive

power, and

 facilitate discovery of new defenses as well as de-

scribe non-obvious connections between attacks,

defenses, and policies, thus providing a better

understanding of the landscape.

The research needed to develop this science

of cybersecurity must go beyond the search for

vulnerabilities in deployed systems and beyond the de-

velopment of defenses for specific attacks. Yet, use of a

science of cybersecurity when implementing a system

should not be equated with implementing absolute

security or even with concluding that security requires

perfection in design and implementation. Rather, a

science of cybersecurity would provide—independent

of specific systems—a principled account for tech-

niques that work, including assumptions they require

and ways one set of assumptions can be transformed

or discharged by another. It would articulate and or-

ganize a set of abstractions, principles, and trade-offs

for building secure systems, given the realities of the

threats and of our cybersecurity needs.

BOX 1. What is a science?

The term science has evolved in meaning since Aristotle used it

to describe a body of knowledge. To many, it connotes knowl-

edge obtained by systematic experimentation, so they take that

process as the defining characteristic of a science. The natural

sciences satisfy this definition.

Experimentation helps in forming and then affirming

theories or laws that are intended to offer verifiable predictions

about man-made and natural phenomena. It is but a small step

from science as experimentation to science as laws that ac-

curately predict phenomena. The status of the natural sciences

remains unaffected by changing the definition of a science in

this way. But computer science now joins. It is the study of what

processes can be automated efficiently; laws about specification

(problems) and implementations (algorithms) are a comfortable

way to encapsulate such knowledge.

Blueprint for a science

of cybersecurity |
F r e d B . S c h n e i d e r

48

The field of cryptography comes close to exem-

plifying the kind of science base we seek. The focus

in cryptography is on understanding the design and

limitations of algorithms and protocols to compute

certain kinds of results (for example, confidential or

tamperproof or attributed) in the presence of certain

kinds of adversaries who have access to some, but not

all, information involved in the computation. Cryp-

tography, however, is but one of many cybersecurity

building blocks. A science of cybersecurity would have

to encompass richer kinds of specifications, comput-

ing environments, and adversaries. Peter Neumann [1]

summarized the situation well when he opined about

implementing cybersecurity, “If you think cryptog-

raphy is the answer to your problem, then you don’t

know what your problem is.”

An analogy with medicine can be instructive for

contemplating benefits we might expect from a sci-

ence of cybersecurity. Some health problems are best

handled in a reactive manner. We know what to do

when somebody breaks a finger, and each year we

create a new influenza vaccine in anticipation of the

flu season to come. But only after making significant

investments in basic medical sciences are we start-

ing to understand the mechanisms by which cancers

grow, and a cure seems to require that kind of deep

understanding. Moreover, nobody believes disease will

someday be a “solved problem.” We make enormous

strides in medical research, yet new threats emerge

and old defenses (for example, antibiotics) lose their

effectiveness. Like good health, cybersecurity is never

going to be a “solved problem.” Attacks coevolve with

defenses and in ways to disrupt each new task that is

entrusted to our networked systems. As with medical

problems, some attacks are best addressed in a reactive

way, while others are not. But our success in develop-

ing all defenses will benefit considerably from having

laws that constitute a science of cybersecurity.

This article gives one perspective on the shape of

that science and its laws. Subjects that might be char-

acterized in laws are discussed in section 2. Then, sec-

tion 3 illustrates by giving concrete examples of laws.

The relationship that a science of cybersecurity would

have with existing branches of computer science is

explored in section 4.

If you think

cryptography is the

answer to your problem,

then you don’t know

what your problem is.

-PETER NEUMANN

 The Next Wave | Vol. 19 No. 2 | 2012 | 49

FEATURE

2. Laws about what?

In the natural sciences, quantities found in nature are

related by laws: E = mc2, PV = nRT, etc. Continuous

mathematics is used to specify these laws. Continuous

mathematics, however, is not intrinsic to the notion

of a scientific law—predictive power is. Indeed, laws

that govern digital computations are often most con-

veniently expressed using discrete mathematics and

logical formulas. Laws for a science of cybersecurity

are likely to follow suit because these, too, concern

digital computation.

But what should be the subject matter of these laws?

To be deemed secure, a system should, despite attacks,

satisfy some prescribed policy that specifies what the

system must do (for example, deliver service) and

what it must not do (for example, leak secrets). And

defenses are the means we employ to prevent a system

from being compromised by attacks. This account

suggests we strive to develop laws that relate attacks,

defenses, and policies.

For generality, we should prefer laws that relate

classes of attacks, classes of defenses, and classes of

policies, where the classification exposes essential

characteristics. Then we can look forward to hav-

ing laws like “Defenses in class enforce policies in

class despite attacks from class A” or “By compos-

ing defenses from class ' and class ", a defense is

constructed that resists the same attacks as defenses

from class .” Appropriate classes, then, are crucial for

a science of cybersecurity to be relevant.

2.1. Classes of attacks

A system’s interfaces define the sole means by which an

environment can change or sense the effects of system

execution. Some interfaces have clear embodiment

to hardware: the keyboard and mouse for inputs, a

graphic display or printer for outputs, and a network

channel for both inputs and outputs. Other hardware

interfaces and methods of input/output will be less

apparent, and some are quite obscure. For example,

Halderman et al. [2] show how lowering the operating

temperature of a memory board facilitates capture of

secret cryptographic keys through what they term a

cold boot attack. The temperature of the environment

is, in effect, an input to a generally overlooked hard-

ware interface. Most familiar are interfaces created

by software. The operating system interface often

provides ways for programs to communicate overtly

through system calls and shared memory or covertly

through various side channels (such as battery level or

execution timings).

Since (by definition) interfaces provide the only

means for influencing and sensing system execution,

interfaces necessarily constitute the sole avenues for

conducting attacks against a system. The set of in-

terfaces and the specific operations involved is thus

one obvious basis for defining classes of attacks. For

example, we might distinguish attacks (such as SQL-

injections) that exploit overly powerful interfaces

from attacks (such as buffer overflows) that exploit

insufficiently conservative implementations. Another

basis for defining classes of attacks is to characterize

the information or effort required for conducting the

attack. With some cryptosystems, for instance, effi-

cient techniques exist for discovering a decryption key

if samples of ciphertext with corresponding plaintext

are available for that key, but these techniques do not

work when only ciphertext is available.

A given input might cause some policies to be

violated but not others. So whether an input consti-

tutes an attack on a given system could depend on the

policy that system is expected to enforce. This depen-

dence suggests that classes of attacks could be defined

in terms of what policies they compromise. The defini-

tion of denial-of-service attacks, for instance, equates

a class of attacks with system availability policies.

For attacks on communications channels, cryptog-

raphers introduce classifications based on the compu-

tational power or information available to the attacker.

For example, Dolev-Yao attackers are limited to read-

ing, sending, deleting, or modifying fields in messages

being sent as part of some protocol execution [3]. (The

altered traffic confuses the protocol participants, and

they unwittingly undertake some action the attacker

desires.) But it is not obvious how to generalize these

attack classes to systems that implement more com-

plex semantics than message delivery and that provide

50

Blueprint for a science of cybersecurity

operations beyond reading, sending, deleting, or

modifying messages.

Finally, the role of people in a system can be a basis

for defining classes of attacks. Security mechanisms

that are inconvenient will be ignored or circumvented

by users; security mechanisms that are difficult to

understand will be misused (with vulnerabilities intro-

duced as a result). Distinct classes of attacks can thus

be classified according to how or when the human

user is fooled into empowering an adversary. Phishing

attacks, which enable theft of passwords and ultimate-

ly facilitate identity theft, are one such class of attacks.

2.2. Classes of policies

Traditionally, the cybersecurity community

has formulated policies in terms of three kinds

of requirements:

 Confidentiality refers to which principals are al-

lowed to learn what information.

 Integrity refers to what changes to the system

(stored information and resource usage) and to

its environment (outputs) are allowed.

 Availability refers to when must inputs be read

or outputs produced.

This classification, as it now stands, is likely to be

problematic as a basis for the laws that form a science

of cybersecurity.

One problem is the lack of widespread agree-

ment on mathematical definitions for confidentiality,

integrity, and availability. A second problem is that

the three kinds of requirements are not orthogonal.

For example, secret data can be protected simply by

corrupting it so that the resulting value no longer

accurately conveys the true secret value, thus trading

integrity for confidentiality.a As a second example, any

confidentiality property can be satisfied by enforcing

a weak enough availability property, because a system

that does nothing cannot be accessed by attackers to

learn secret information.

Contrast this state of affairs with trace properties,

where safety (“no ‘bad thing’ happens”) and liveness

(“some ‘good thing’ happens”) are orthogonal classes.

(Formal definitions of trace properties, safety, and

liveness are given in box 2 for those readers who are

interested.) Moreover, there is added value when re-

quirements are formulated in terms of safety and live-

ness, because safety and liveness are each connected to

a proof method. Trace properties, though, are not ex-

pressive enough for specifying all confidentiality and

integrity policies. The class of hyperproperties [5], a

generalization of trace properties, is. And hyperprop-

erties include safety and liveness classes that enjoy the

same kind of orthogonal decomposition that exists

for trace properties. So hyperproperties are a promis-

ing candidate for use in a science of cybersecurity.

BOX 2. Trace properties, safety, and liveness

A specification for a sequential program would characterize for

each input whether the program terminates and what outputs it

produces. This characterization of execution as a relation is inad-

equate for concurrent programs. Lamport [6] introduced safety

and liveness to describe the more expressive class of specifica-

tions that are needed for this setting. Safety asserts that no “bad

thing” happens during execution and liveness asserts that some

“good thing” happens.

A trace is a (possibly infinite) sequence of states; a trace prop-

erty is a set of traces, where each trace in isolation satisfies some

characteristic predicate associated with that trace property.

Examples include partial correctness (the first state satisfies the

input specification, and any terminal state satisfies the output

specification) and mutual exclusion (in each state, the program

for at most one process designates an instruction in a critical

section). Not all sets of traces define trace properties. Informa-

tion flow, which stipulates a correlation between the values

of the two variables across all traces, is an example. This set of

traces does not have a characteristic predicate that depends

only on each individual trace, so the set is not a trace property.

FIGURE 1. Phishing attacks, which enable theft of passwords

and ultimately facilitate identity theft, can be classified ac-

cording to how the human user is fooled into empowering

the adversary.

a. Clarkson and Schneider [4] use information theory to derive a law that characterizes the trade-off between confidentiality and integrity

for database-privacy mechanisms.

 The Next Wave | Vol. 19 No. 2 | 2012 | 51

FEATURE

Every trace property is either safety, liveness, or the con-

junction of two trace properties—one that is safety and one

that is liveness [7]. In addition, an invariance argument suffices

for proving that a program satisfies a trace property that is

safety; a variant function is needed for proving a trace property

that is liveness [8]. Thus, the safety-liveness classification for

trace properties comes with proof methods beyond offering

formal definitions.

Any classification of policies is likely to be associ-

ated with some kind of system model and, in particu-

lar, with the interfaces the model defines (hence the

operations available to adversaries). For example, we

might model a system in terms of the set of possible

indivisible state transitions that it performs while

operating, or we might model a system as a black

box that reads information streams from some chan-

nels and outputs on others. Sets of indivisible state

transitions are a useful model for expressing laws

about classes of policies enforced by various operating

system mechanisms (for example, reference monitors

versus code rewriting) which themselves are con-

cerned with allowed and disallowed changes to system

state; stream models are often used for quantifying

information leakage or corruption in output streams.

We should expect that a science of cybersecurity will

not be built around a single model or around a single

classification of policies.

2.3. Classes of defenses

A large and varied collection of different defenses can

be found in the cybersecurity literature.

Program analysis and rewriting form one natural

class characterized by expending the effort for deploy-

ing the defense (mostly) prior to execution. This class

of defenses, called language-based security, can be fur-

ther subdivided according to whether rewriting occurs

(it might not occur with type-checking, for example)

and according to the work required by the analysis

and/or the rewriting. The undecidability of certain

analysis questions and the high computation costs

of answering others is sometimes a basis for further

distinguishing conservative defenses—those analysis

methods that can reject as being insecure programs

that actually are secure, and those rewriting methods

that add unnecessary checks.

Run-time defenses have, as their foundation, only a

few basic mechanisms:

 Isolation. Execution of one program is somehow

prevented from accessing interfaces that are as-

sociated with the execution of others. Examples

include physically isolated hardware, virtual

machines, and processes (which, by definition,

have isolated memory segments).

 Monitoring. A reference monitor is guaranteed to

receive control whenever any operation in some

specified set is invoked; it further has the capac-

ity to block subsequent execution, which it does

to prevent an operation from proceeding when

that execution would not comply with what-

ever policy is being enforced. Examples include

memory mapping hardware, processors having

modes that disable certain instructions, operat-

ing system kernels, and firewalls.

 Obfuscation. Code or data is transmitted or

stored in a form that can be understood only

with knowledge of a secret. That secret is kept

from the attacker, who then is unable to abuse,

understand, or alter in a meaningful way the

content being protected. Examples include data

encryption, digital signatures, and program

transformations that increase the work factor

needed to craft attacks.

Obviously, a classification of run-time defenses could

be derived from this taxonomy of mechanisms.

Another way to view defenses is in terms of trust

relocation. For example, by running an application

FIGURE 2. A firewall is an example of a reference monitor.

52

Blueprint for a science of cybersecurity

under control of a reference monitor, we relocate trust

in that application to trust in the reference monitor.

This trust-relocation view of defenses invites discovery

of general laws that govern how trust in one compo-

nent can be replaced by trust in another.

We know that it is always possible for trust in an

analyzer to be relocated to a proof checker—sim-

ply have an analyzer that concludes P also generate

a proof of P. Moreover, this specific means of trust

relocation is attractive because proof checkers can be

simple, hence easy to trust; whereas, analyzers can

be quite large and complicated. This suggests a re-

lated question: Is it ever possible to add defenses and

transform one system into another, where the latter

requires weaker assumptions about components be-

ing trusted? Perhaps trust is analogous to entropy in

thermodynamics—something that can be reversed

only at some cost (where “cost” corresponds to the

strength of the assumptions that must be made)? Such

questions are fundamental to the design of secure

systems, and today’s designers have no theory to help

with answers. A science of cybersecurity could provide

that foundation.

3. Laws already on the books

Attacks coevolve with defenses, so a system that

yesterday was secure might no longer be secure

tomorrow. You can then wonder whether yesterday’s

science of cybersecurity would be made irrelevant by

new attacks and new defenses. This depends on the

laws, but if the classes of attacks, defenses, and poli-

cies are wisely constructed and sufficiently general,

then laws about them should be both interesting and

long-lived. Examples of extant laws can provide some

confirmation, and two (developed by the author) are

discussed below.

3.1. Law: Policies and reference monitors

A developer who contemplates building or modifying

a system will have in mind some class of policies that

must be enforced. Laws that characterize what poli-

cies are enforced by given classes of defenses would be

helpful here. Such laws have been derived for vari-

ous defenses. Next, we discuss a law [9] concerning

reference monitors.

The policy enforced by a reference monitor is the

set of traces that correspond to executions in which

the reference monitor does not block any operation.

This set is a trace property, because whether the refer-

ence monitor blocks an operation in a trace depends

only on the contents of that trace (specifically, the pre-

ceding operations in that trace). Moreover, this trace

property is safety; the set of finite sequences that end

in an operation the reference monitor blocks consti-

tutes the “bad thing.” We conclude:

Law. All reference monitors enforce trace

properties that are safety.

This law, for example, implies that a reference mon-

itor cannot enforce an information flow policy, since

(as discussed in box 2) information flow is not a trace

property. However, the law does not preclude using a

reference monitor to enforce a policy that is stronger

and, by being stronger, implies that the information

flow policy also will hold. But a stronger policy will

deem insecure some executions the information flow

policy does not. So such a reference monitor would

block some executions that would be allowed by a

defense that exactly enforces information flow. The

system designer is thus alerted to a trade-off—employ-

ing a reference monitor for information flow policies

brings overly conservative enforcement.

The above law also suggests a new kind of run-time

defense mechanism [10]. For every trace property ψ

that is safety, there exists an automaton m
ψ
 that accepts

the set of traces in ψ [8].

Automaton m
ψ
 is a reference monitor for ψ because,

by definition, it rejects traces that violate ψ. So if code

M
ψ
 that simulates m

ψ
 is invoked before every instruc-

tion in some given program S, then the result will be

a new program that behaves just like S except it halts

rather than executing an instruction that violates

policy ψ. This is depicted in figure 3, where invoca-

tion M
ψ
(x) simulates the transition that automaton

m
ψ
 makes for input symbol x and repeatedly returns

OK until automaton m
ψ
 would reject the sequence of

inputs it has processed. Thus, the statement

if M
ψ
(“S

1
”) ≠ OK then halt (1)

in figure 3 immediately prior to a program statement

S
i
 causes execution to terminate if next executing

 The Next Wave | Vol. 19 No. 2 | 2012 | 53

FEATURE

b. There is also experimental evidence [11] that distinct versions built by independent teams nevertheless share vulnerabilities.

S
i
 would violate the policy defined by automaton

m
ψ
—that is, if executing S

i
 would cause policy ψ to

be violated.

S
1

if M
ψ
(“S

1
”) ≠ OK then halt

S
2

S
1

S
3

if M
ψ
(“S

2
”) ≠ OK then halt

S
4

S
2

… …

original inlined reference monitor

FIGURE 3. Inlined reference monitor example

Such inlined reference monitors can be more effi-

cient at run-time than traditional reference monitors,

because a context switch is not required each time an

inlined reference monitor is invoked. However, an

inlined reference monitor must be installed separately

in each program whose execution is being monitored;

whereas, a traditional reference monitor can be writ-

ten and installed once and for all. The per-program

installation does mean that inlined reference monitors

can enforce different policies on different programs,

an awkward functionality to support with a single

traditional reference monitor. And per-program in-

stallation also means that code (1) inserted to simulate

m
ψ
 can be specialized and simplified, thereby allow-

ing unnecessary checks to be eliminated for inlined

reference monitors.

3.2. Law: Attacks and obfuscators

We define a set of programs to be diverse if all imple-

ment the same functionality but differ in their imple-

mentation details. Diverse programs are less prone

to having vulnerabilities in common, because attacks

often depend on memory layout and/or instruction

sequence specifics. But building multiple distinct ver-

sions of a program is expensive.b So system implemen-

tors have turned to mechanical means for creating sets

comprising diverse versions of a given program.

For mechanically generated diversity to work as a

defense, not only must implementations differ (so they

have few vulnerabilities in common), but the differ-

ences must be kept secret from attackers. For example,

buffer overflow attacks are generally written relative to

some specific run-time stack layout. Alter this layout

by rearranging the relative locations of variables as

well as the return address on the stack, and an input

designed to perpetrate an attack for the original stack

layout is unlikely to succeed. But if the new stack

layout were known by the adversary, then crafting an

attack again becomes straightforward.

Programs to accomplish such transformations have

been called obfuscators. An obfuscator τ takes two in-

puts—a program S and a secret key K—and produces

a morph, which is a program τ(S, K) whose semantics

is equivalent to S but whose implementation differs

from S and from morphs generated with other keys.

K specifies which exact transformations are applied in

producing morph τ(S, K). Note that since S and τ are

assumed to be publicly known, knowledge of K would

enable an attacker to learn implementation details for

successfully attacking morph τ(S, K).

Different classes of transformations are more or

less effective in defending against the various different

classes of attacks. This correspondence is important

when designing a set of defenses for a given threat

model, but knowing the specific correspondences is

not the same as knowing the overall power of mechan-

ically generated diversity as a defense. That defensive

power for programs written in a C-like language has

been partially characterized in a set of laws [12]. Each

Obfuscator Law establishes, for a specific (common)

type system T
i
 and obfuscator τ

i
 pair, what is the rela-

tionship between two sets of attacks—those blocked

when type system T
i
 is enforced versus those that

cause execution of a morph τ
i
 (S, K) to abort for some

secret key K.

The Obfuscator Laws do not completely quantify

the difference between the effectiveness of type-check-

ing and obfuscation. But the laws are noteworthy for

a science of cybersecurity because they circumvent

the difficult problem of reasoning about attacks not

yet invented. Laws about classes of known attacks risk

irrelevance as new attacks are discovered. By formulat-

ing the Obfuscator Laws in terms of a relation between

sets of attacks, the need to identify or enumerate

individual attacks is avoided. To wit, the class of at-

tacks that type-checking defends against is not known

and not given, yet the power of obfuscation to defend

54

Blueprint for a science of cybersecurity

against an attack can now be meaningfully conveyed

relative to the power of type-checking.

4. The science in context

A science of cybersecurity would build on knowledge

from several existing areas of computer science. The

connections to formal methods, fault-tolerance, and

experimental computer science are nuanced; they are

discussed below. However, cryptography, information

theory, and game theory are also likely to be valuable

sources of abstractions and laws. Finally, the physical

sciences surely have a role to play—not only in matters

of physical security but also for understanding un-

conventional interfaces to real devices that attackers

might exploit (as exemplified by the cold boot attacks

mentioned in section 2.1).

Formal methods. Attacks are possible only because

a system we deploy has flaws in its implementation,

design, specification, or requirements. Eliminate the

flaws and we eliminate the need to deploy defenses.

But even when the systems on which we rely aren’t

being attacked, we should want confidence that they

will function correctly. The presence of flaws under-

mines that confidence. So cybersecurity is not the only

compelling reason to eliminate flaws.

The focus of formal methods research is on meth-

ods for gaining confidence in a system by using

rigorous reasoning, including programming logics

and model checkers.c This work has been remarkably

successful with small systems or small specifications. It

is used by companies like Microsoft to validate device

drivers and Intel to validate chip designs. It is also

the engine behind strong type-checking in modern

programming languages (for example, Java and C#)

and various code-analysis tools used in security audits.

Further developments in formal methods could serve

a science of cybersecurity well. However, to date, work

in formal methods has been based on trace properties

or something with equivalent expressive power. This

foundation allows mathematically elegant character-

izations for whether a program satisfies a specification

and for justifying stepwise refinement of programs.

But trace properties are not adequately expressive for

specifying all confidentiality, integrity, and availabil-

ity policies, and stepwise refinement is not sound for

these richer policies. (A mathematical justification of

this limitation is provided in box 3 for the interested

reader.) So the foundations of today’s formal meth-

ods would have to be changed to something with the

expressiveness of hyperproperties—no small feat.

BOX 3. Satisfies and refinement

A program S can be modeled as a trace property Σ
S
 containing

all sequences of states that could arise from executing S, and

a specific execution of S satisfies a trace property P if the trace

modeling that execution is in P. Thus, S satisfies P if and only if

Σ
S
 P holds.

We say that a program S' refines S, denoted S' S, when S'

resolves choices left unspecified by S. For example, a program

that increments x by 1 refines a program that merely specifies

that x be increased. A refinement S' of S thus exhibits a subset of

the executions for S: S' S holds if and only if Σ
S'
 Σ

S
 holds.

Notice that “satisfies” is closed under refinement. If S' refines

S and S satisfies P, then S' satisfies P. Also, if we construct S' by

performing a series of refinements S' S
1

, S
1
 S

2
, . . . , S

n
 S and

S satisfies P then we are guaranteed that S' will satisfy P too. So

programs can be constructed by stepwise refinement.

With richer classes of policies, “satisfies” is unfortunately not

closed under refinement. As an example, consider two pro-

grams. Program S
x=y

 is modeled by trace property Σ
x=y

 contain-

ing all traces in which x = y holds in all states; program S* is

modeled by Σ
S*

 containing all sequences of states. We have that

Σ
x=y

 Σ
S*

 holds, so by definition S
x=y

 S*. However, program S*

enforces the confidentiality policy that no information flows

between x and y, whereas (refinement) S
x=y

 does not. Satisfies for

the confidentiality policy is not closed under refinement, and

stepwise refinement is not sound for deriving programs that

satisfy this policy.

Byzantine fault-tolerance. A system is considered

fault-tolerant if it will continue operating correctly

even though some of its components exhibit faulty

behavior. Fault-tolerance is usually defined relative

to a fault model that defines assumptions about what

components can become faulty and what kinds of

behaviors faulty components might exhibit. In the

Byzantine fault model [13], faulty components are per-

mitted to collude and to perform arbitrary state transi-

tions. A real system is unlikely to experience such

hostile behavior from its faulty components, but any

faulty behavior that might actually be experienced is,

by definition, allowed with the Byzantine fault model.

So by building a system that works for the Byzantine

c. Other areas of software engineering are concerned with gaining confidence in a system through the use of experimentation (for ex-

ample, testing) or management (for example, strictures on development processes).

 The Next Wave | Vol. 19 No. 2 | 2012 | 55

FEATURE

fault model, we ensure that the system can tolerate

all behaviors that in practice could be exhibited by its

faulty components.

The basic recipe for implementing such Byzantine

fault-tolerance is well understood. We assume that the

output of every component is a function of the preced-

ing sequence of inputs. Each component that might

fail is replaced by 2t + 1 replicas, where these replicas

all receive the same sequence of inputs. Provided that

t or fewer replicas are faulty, then the majority of the

2t + 1 will be correct. These correct replicas will gener-

ate identical correct outputs, so the majority output

from all replicas is unaffected by the behaviors of

faulty components.

A faulty component in the Byzantine fault model

is indistinguishable from a component that has been

compromised and is under control of an attacker. We

might thus conclude that if a Byzantine fault-tolerant

system can tolerate t component failures, then it also

could resist as many as t attacks—we could get se-

curity by implementing Byzantine fault-tolerance.

Unfortunately, the argument oversimplifies, and the

conclusion is unsound:

 Replication, if anything, creates more opportuni-

ties for attackers to learn confidential informa-

tion. So enforcement of confidentiality is not

improved by the replication required for imple-

menting Byzantine fault-tolerance. And storing

encrypted data—even when a different key is

used for each replica—does not solve the prob-

lem if replicas actually must themselves be able

to decrypt and process the data they store.

 Physically separated components connected only

by narrow bandwidth channels are generally

observed to exhibit uncorrelated failures. But

physically separated replicas still will share many

of the same vulnerabilities (because they will use

the same code) and, therefore, will not exhibit

independence to attacks. If a single attack might

cause any number of components to exhibit

Byzantine behavior, then little is gained by toler-

ating t Byzantine components.

What should be clear, though, is that mechanically

generated diversity creates a kind of independence

that can be a bridge from Byzantine fault tolerance to

attack tolerance. The Obfuscation Laws discussed in

section 3.2 are a first step in this direction.

Experimental computer science. The code for a

typical operating system can fit on a disk, and all of the

protocols and interconnections that comprise the In-

ternet are known. Yet the most efficient way to under-

stand the emergent behavior of the Internet is not to

study the documentation and program code—it is to

apply stimuli and make measurements in a controlled

way. Computer systems are frequently too complex

to admit predictions about their behaviors. So just as

experimentation is useful in the natural sciences, we

should expect to find experimentation an integral part

of computer science.

Even though we might prefer to derive our cyberse-

curity laws by logical deduction from axioms, the va-

lidity of those axioms will not always be self-evident.

We often will work with axioms that embody approxi-

mations or describe models, as is done in the natural

sciences. (Newton’s laws of motion, for example, ig-

nore friction and relativistic effects.) Experimentation

is the way to gain confidence in the accuracy of our

approximations and models. And just as experimenta-

tion in the natural sciences is supported by laborato-

ries, experimentation for a science of cybersecurity

will require test beds where controlled experiments

can be run.

Experimentation in computer science is somewhat

distinct from what is called “experimental computer

science” though. Computer scientists validate their

ideas about new (hardware or software) system de-

signs by building prototypes. This activity establishes

that hidden assumptions about reality are not being

overlooked. Performance measurements then demon-

strate feasibility and scalability, which are otherwise

difficult to predict. And for artifacts that will be used

by people (for example, programming languages and

systems), a prototype may be the only way to learn

whether key functionality is missing and what novel

functionality is useful.

Since a science of cybersecurity should lead to new

ideas about how to build systems and defenses, the

validation of those proposals could require building

prototypes. This activity is not the same as engineering

a secure system. Prototypes are built in support of a

56

Blueprint for a science of cybersecurity

science of cybersecurity expressly to allow validation

of assumptions and observation of emergent behav-

iors. So, a science of cybersecurity will involve some

amount of experimental computer science as well as

some amount of experimentation.

5. Concluding remarks

The development of a science of cybersecurity could

take decades. The sooner we get started, the sooner we

will have the basis for a principled set of solutions to

the cybersecurity challenge before us. Recent new fed-

eral funding initiatives in this direction are a key step.

It’s now time for the research community to engage.

Acknowledgments

An opportunity to deliver the keynote at a work-

shop organized by the National Science Foundation

(NSF), NSA, and the Intelligence Advanced Research

Projects Activity on Science of Security in Fall 2008

was the impetus for me to start thinking about what

shape a science of cybersecurity might take. The

feedback from the participants at that workshop as

well as discussions with the other speakers at a sum-

mer 2010 Jasons meeting on this subject was quite

helpful. My colleagues in the NSF Team for Research

in Ubiquitous Secure Technology (TRUST) Science

and Technology Center have been a valuable source

of feedback, as have Michael Clarkson and Riccardo

Pucella. I am grateful to Carl Landwehr, Brad Martin,

Bob Meushaw, Greg Morrisett, and Pat Muoio for

comments on an earlier draft of this paper.

Funding

This research is supported in part by NSF grants

0430161, 0964409, and CCF-0424422 (TRUST), Of-

fice of Naval Research grants N00014-01-1-0968 and

N00014-09-1-0652, and a grant from Microsoft. The

views and conclusions contained herein are those of

the author and should not be interpreted as necessar-

ily representing the official policies or endorsements,

either expressed or implied, of these organizations or

the US Government.

About the author

Fred B. Schneider joined the Cornell University

faculty in 1978, where he is now the Samuel B. Eckert

Professor of Computer Science. He also is the chief

scientist of the NSF TRUST Science and Technol-

ogy Center, and he has been professor at large at the

University of Tromso since 1996. He received a BS

from Cornell University (1975) and a PhD from Stony

Brook University (1978).

Schneider’s research concerns trustworthy systems,

most recently focusing on computer security. His early

work was in formal methods and fault-tolerant distrib-

uted systems. He is author of the graduate textbook

On Concurrent Programming, coauthor (with David

Gries) of the undergraduate text A Logical Approach

to Discrete Math, and the editor of Trust in Cyberspace,

which reports findings from the US National Research

Council’s study that Schneider chaired on information

systems trustworthiness.

A fellow of the American Association for the

Advancement of Science, the Association for Com-

puting Machinery, and the Institute of Electrical and

Electronics Engineers, Schneider was granted a DSc

honoris causa by the University of Newcastle-upon-

Tyne in 2003. He was awarded membership in Norges

Tekniske Vitenskapsakademi (the Norwegian Acad-

emy of Technological Sciences) in 2010 and the US

National Academy of Engineering in 2011. His survey

paper on state machine replication received a Special

Interest Group on Operating Systems (SIGOPS) Hall

of Fame Award.

Schneider serves on the Computing Research As-

sociation’s board of directors and is a council member

of the Computing Community Consortium, which

catalyzes research initiatives in the computer sciences.

He is also a member of the Defense Science Board and

the National Institute for Standards and Technology

Information Security and Privacy Advisory Board.

A frequent consultant to industry, Schneider co-

chairs Microsoft’s Trustworthy Computing Academic

Advisory Board.

Dr. Schneider can be reached at the Department

of Computer Science at Cornell University in Ithaca,

New York 14853.

 The Next Wave | Vol. 19 No. 2 | 2012 | 57

References

[1] Kolata G. The key vanishes: Scientist outlines unbreak-

able code. New York Times. 2001 Feb 20. Available at: http://

www.nytimes.com/2001/02/20/science/the-key-vanishes-

scientist-outlines-unbreakable-code.html

[2] Halderman JA, Schoen SD, Heninger N, Clarkson W,

Paul W, Calandrino JA, Feldman AJ, Appelbaum J, Felten,

EW. Lest we remember: Cold boot attacks on encryption

keys. In: Proceedings of the 17th USENIX Security Sympo-

sium; July 2008; p. 45–60. Available at: http://www.usenix.

org/events/sec08/tech/full_papers/halderman/halderman.

pdf

[3] Dolev D, Yao AC. On the security of public key

protocols. IEEE Transactions on Information Theory.

1983;29(2):198–208. DOI: 10.1109/TIT.1983.1056650

[4] Clarkson M, Schneider FB. Quantification of integrity.

In: Proceedings of the 23rd IEEE Computer Security Founda-

tions Symposium; Jul 2010; Edinburgh, UK, p. 28–43. DOI:

10.1109/CSF.2010.10

[5] Clarkson M, Schneider FB. Hyperproperties. Journal of

Computer Security. 2010;18(6):1157–1210.

[6] Lamport L. Proving the correctness of multiprocess

programs. IEEE Transactions on Software Engineering.

1977;3(2):125–143. DOI: 10.1109/TSE.1977.229904

[7] Alpern B, Schneider FB. Defining liveness. Infor-

mation Processing Letters. 1985;21(4):181–185. DOI:

10.1016/0020-0190(85)90056-0

[8] Alpern B, Schneider FB. Recognizing safety and liveness.

Distributed Computing. 1987;2(3):117–126. DOI: 10.1007/

BF01782772

[9] Schneider, FB. Enforceable security policies. ACM

Transactions on Information and System Security.

2000;3(1):30–50. DOI: 10.1145/353323.353382

[10] Erlingsson U, Schneider, FB. IRM enforcement of Java

stack inspection. In: Proceedings of the 2000 IEEE Sympo-

sium on Security and Privacy; May 2000; Oakland, CA; p.

246–255. DOI: 10.1109/SECPRI.2000.848461

[11] Knight JC, Leveson NG. An experimental evalua-

tion of the assumption of independence in multiversion

programming. IEEE Transactions on Software Engineering.

1986;12(1):96–109.

[12] Pucella R, Schneider FB. Independence from ob-

fuscation: A semantic framework for diversity. Journal of

Computer Security. 2010;18(5):701–749. DOI: 10.3233/

JCS-2009-0379

[13] Lamport L, Shostak R, Pease M. The Byzantine generals

problem. ACM Transactions on Programming Languages.

1982;4(3):382–401. DOI: 10.1145/357172.357176

58

United States

17.55%

3

United Kingdom

38.54%

1

Netherlands

18.33%

2

France

2.66%

6

Norway

3.72%

5

Canada

0.44%

14

Brazil

0.27%

17

Italy

0.14%

21

Luxembourg

0.07%

25

GLOBE AT A GLANCE
Sources of malware
Malware, short for “malicious software,” includes computer viruses, worms, and Trojan

horses, and can spread using various methods, including worms sent through email and

instant messages, Trojan horses dropped from websites, and virus-infected files downloaded

from peer-to-peer connections.a This map shows the top 25 geographical sources of

malware from August of 2011 through October of 2011. Data was provided by Symantec.

 The Next Wave | Vol. 19 No. 2 | 2012 | 59

Sweden

6.57%

4

Hong Kong

2.60%

7

Australia

2.35%

8

India

1.95%

9

Japan

0.51%

13

Germany

0.66%

10

Austria

0.61%

11

Malaysia

0.55%

12

Switzerland

0.40%

15

Singapore

0.34%

16

United Arab Emirates

0.21%

18

China

0.16%

19

South Africa

0.16%

20

Denmark

0.12%

22

Republic of Korea

0.12%

23

Vietnam

0.10%

24

GLOBE

Percentage of Malware Sources

Lower Higher
a. http://us.norton.com/security_response/malware.jsp

The “McAfee threats report: Second quarter 2011”

found the following malware trends:b

 Malware has increased 22 percent from 2010

to 2011.

 By the end of 2011, McAfee Labs expects to

have 75 million samples of malware.

 Fake antivirus software continues to grow

and has even begun to climb aboard a new

platform—the Mac.

 For-profit mobile malware has increased,

including simple short message service (SMS)-

sending Trojans and complex Trojans that use

exploits to compromise smartphones.

 Android is becoming the third-most targeted

platform for mobile malware.

 Rootkits, also known as “stealth malware,” are

growing in popularity. A rootkit is code that

hides malware from operating systems and

security software.

Cybercrime

60

The “Norton by Symantec cybercrime report 2011” revealed the following statistics based on surveys

conducted between February 6, 2011 and March 14, 2011 of 19,636 individuals (including children) from

24 countries:a

a. The full report can be accessed at www.symantec.com/content/en/us/home_homeoffice/html/cybercrimereport/

b. The full report can be accessed at www.mcafee.com/us/resources/reports/rp-quarterly-threat-q2-2011

The Georgia Institute of Technology’s Cyber

Security Summit on October 11, 2011 resulted in

the “Emerging cyber threats report 2012.”

d The key points

include the following:

Mobile threats

 Mobile applications rely increasingly on the brows-

er, presenting unique challenges to security in terms

of usability and scale.

 Expect compound threats targeting mobile devices

to use SMS, email and the mobile Web browser to

launch an attack, then silently record and steal data.

 While USB flash drives have long been recognized

for their ability to spread malware, mobile phones

are becoming a new vector that could introduce

attacks on otherwise-protected systems.

 Encapsulation and encryption for sensitive portions

of a mobile device can strengthen security.

Botnets

 Botnet controllers build massive information pro-

files on their compromised users and sell the data to

the highest bidder.

 Advanced persistent adversaries query botnet op-

erators in search of already compromised machines

belonging to their attack targets.

The IBM X-Force’s “2011 Mid-year trend and risk

report” evidences that mobile malware is on the rise.c

Their report highlights the following points:

 The first half of 2011 saw an increased level of

malware activity targeting the latest generation of

smart devices, and the increased number of vulner-

ability disclosures and exploit releases targeting

mobile platforms seen in 2010 continues into 2011,

showing no signs of slowing down.

 Mobile devices are quickly becoming a malware

platform of choice. This malware increase is based

on premium SMS services that can charge users, a

rapidly increasing rate of user adoption, and un-

patched vulnerabilities on the devices.

 Two popular methods of malware distribution mod-

els are to create infected versions of existing market

software and to publish software that claims to be a

crack, patch, or cheat for some other software.

 Besides sending SMS messages, Android malware

has been observed collecting personal data from

the phone and sending it back to a central server.

This information could be used in phishing attacks

or for identity theft. We have also seen Android mal-

ware that has the ability to be remotely controlled

by a remote command and control server—just like

a bot that infects a Windows desktop machine.

 Enterprise security management of mobile

endpoint devices will struggle to handle massive

expansion. One solution may be the convergence

of endpoint security configuration management to

incorporate all these new devices.

 Bad guys will borrow techniques from Black Hat

Search Engine Optimization to deceive current

botnet defenses like dynamic reputation systems.

Information security

 Security researchers are currently debating whether

personalization online could become a form of

censorship.

 Attackers are performing search engine optimi-

zation to help their malicious sites rank highly in

search results.

 The trend in compromised certificate authorities

exposes numerous weaknesses in the overall trust

model for the Internet.

Advanced persistent threats

 Advanced persistent threats will adapt to security

measures until malicious objectives are achieved.

 Human error, lack of user education, and weak

passwords are still major vulnerabilities.

 Cloud computing and computer hardware may

present new avenues of attack, with all malware

moving down the stack.

 Large, flat networks with perimeter defenses at the

Internet ingress/egress point break down quickly in

the face of advanced persistent threats.

EXPERTS

 The Next Wave | Vol. 19 No. 2 | 2012 | 61

c. The full report can be accessed at www-935.ibm.com/services/us/iss/xforce/trendreports/

d. The full report can be accessed at www.gtisc.gatech.edu/doc/emerging_cyber_threats_report2012

62

New forensics tool exposes

online activity

Stanford University researchers, led by Elie

Bursztein, have developed software that bypasses

the encryption on a personal computer’s hard drive

to reveal the websites a user has visited and whether

he/she has any data stored in the cloud. Other than

Microsoft, Bursztein and his team are the only ones

to discover how to decrypt the files. Their free, open-

source software—Offline Windows Analysis and

Data Extraction (OWADE)—runs on a Windows

operating system and was introduced at the Black

Hat 2011 security conference in August. OWADE

can enable, for example, a law enforcement agent to

reconstruct a suspect’s online activity by extracting

sensitive data stored by Windows, the browsers, and

instant messaging software from the computer’s hard

drive. For more information, visit www.newscientist.

com/article/mg21128285.300-new-forensics-tool-

can-expose-all-your-online-activity.html. The white

paper can be downloaded from elie.im/talks/beyond-

files-recovery-OWADE-cloud-based-forensic.

Combating next-generation

computer viruses

Dr. Kevin Hamlen of the University of Texas

at Dallas’ Cyber Security Research Center has

discovered a new method to predict the actions

of computer viruses. Dr. Hamlen’s research uses

advanced algorithms based on programming-

language research to predict and interrupt the

actions of malware programs in the microseconds

before those programs begin to execute and mutate.

His method builds upon existing computing

capabilities and features already programmed

into most central processing unit chips

currently used in various popular

devices, such as laptops. This

research could give way to new,

proactive antivirus programs.

For more information, visit

www.afcea.org/signal/

articles/templates/

Signal_Article_Template.

asp?articleid=2754&

zoneid=329.

Applying a new mathematical framework to cybersecurity

A team of researchers from the Stevens Institute of Technology and the

City University of New York, led by Dr. Antonio Nicolosi, is applying a new

mathematical paradigm to cryptography to secure the Internet. Dr. Nicolosi’s

team was awarded a grant from the National Science Foundation to support

the development of new cryptographic tools and protocols and to promote

collaboration between the cryptography and group-theory research

communities. The team is applying recent developments in combinatorial

group therapy (CGT)—a mathematical framework sensitive to the order of

operations in an equation—to cybersecurity. Cybersecurity depends upon

the quantifiable hardness of a small number of mathematical equations

available in cryptographic methodologies; because CGT is sensitive to the

order of operations, it is an effective method to generate new quantifiable

mathematical equations that can be used to enhance cybersecurity.

Dr. Nicolosi believes that CGT could also improve authentication protocol efficiency. Both undergraduate and

graduate students will be participating in building the systems used to test the equations. For more information, visit

www.stevens.edu/news/content/applying-new-mathematics-robust-cryptography-and-safer-internet.

 The Next Wave | Vol. 19 No. 2 | 2012 | 63

POINTERS

Measuring the effects of a

Wi-Fi attack

Dr. Wenye Wang and a team of researchers at North

Carolina State University have developed a method

to measure the effects of different types of wireless-

fidelity (Wi-Fi) attacks on a network; this method

will be helpful in developing new cybersecurity

technologies. The researchers examined two

Wi-Fi attack models—a persistent attack and an

intermittent attack—and compared how these

attacks are affected by different conditions, such as

the number of users. They developed a metric called

an order gain, which measures the probability of an

attacker having access to a Wi-Fi network versus

the probability of a legitimate user having access to

the same network. For example, if a user has an 80

percent chance of accessing a network, and other

users have the remaining 20 percent, the order gain

is four. This metric is useful in determining which

attacks cause the most disruption. The researchers

suggested that system administrators focus their

countermeasures on persistent attacks that target

networks with large numbers of users because this

yields the largest order gain. For more information,

visit news.ncsu.edu/releases/wmswangordergain/.

Enhanced security for sensitive data in cloud computing

A team of researchers from North Carolina State

University (NCSU) and IBM have developed a new

technique to better protect sensitive data in cloud

computing while preserving the system’s performance.

Cloud computing uses hypervisors—programs that

create a virtual workspace, or cloud, in which different

operating systems can run in isolation from one another.

In cloud computing, a common concern is that attackers

could take advantage of vulnerabilities in the hypervisor

to steal or corrupt sensitive data from other users in the

cloud. The new technique, Strongly Isolated Computing

Environment (SICE), addresses this concern by isolating

sensitive information and workload from the rest of

the functions performed by the hypervisor. Dr. Peng Ning, professor of computer science at NCSU and one of the

researchers on the project, says, “…our approach relies on a software foundation called the Trusted Computing

Base, or TCB, that has approximately 300 lines of code, meaning that only these 300 lines of code need to be trusted

in order to ensure the isolation offered by our approach. Previous techniques have exposed thousands of lines of

code to potential attacks. We have a smaller attack surface to protect.” Additionally, testing indicated that the SICE

framework used only about three percent of the system’s performance on multicore processors that do not require

direct network access. For more information, visit news.ncsu.edu/releases/wmsningsice/.

An app that

logs the

keystrokes

on your

smartphone

Hao Chen and

Liang Cai of the

University of California, Davis, have created an

application that records what you type on your

Android smartphone. Also called keylogging,

criminals can use this method to steal your

passwords, logins, and other private information. The

application uses the smartphone’s motion sensors to

detect vibrations that result from tapping the screen,

and it doesn’t have to be visible on the screen to

work. Chen and Cai say that the application correctly

guesses over 70 percent of keystrokes on a virtual

numerical keypad like those used in calculator

applications. They expect the accuracy to be even

higher on tablet devices due to tablets’ larger size

and resulting movement from tapping the screen.

For more information, visit www.newscientist.com/

article/mg21128255.200-smartphone-jiggles-reveal-

your-private-data.html.

64

Automated tool defeats CAPTCHA on popular websites

Stanford University researchers Elie Bursztein, Matthieu Martin,

and John C. Mitchel created an automated tool, Decaptcha,

that deciphers text-based antispam tests used by many popular

websites. Completely Automated Public Turing test to tell

Computers and Humans Apart (CAPTCHA) is a security

mechanism used by many websites to block spam bots from

registering for an account or posting a comment; it consists

of a challenge, such as typing distorted text, that only humans

are supposed to be able to solve. Decaptcha uses algorithms to

clean up image background noise and to break text strings into

individual characters for easier recognition. The researchers ran

the tool against 15 popular websites and found that it was able to

beat Visa’s Authorize.net payment gateway 66 percent of the time,

Blizzard (i.e., World of Warcraft, Starcraft II, and Battle.net) 70

percent of the time, eBay 43 percent of the time, and Wikipedia

25 percent of the time. Of the tested websites, Decaptcha could

not break CAPTCHAs on Google or reCAPTCHA. (See table 1

for more results.) To download the paper describing this research,

“Text-based CAPTCHA strengths and weaknesses,” visit elie.im/

publication/text-based-Captcha-strengths-and-weaknesses.

TABLE 1. Results of Decaptcha testing

Website Decaptcha’s Solving Rate

Megaupload 93%

CAPTCHA.net 73%

NIH 72%

Blizzard 70%

Authorize.net 66%

eBay 43%

Reddit 42%

Slashdot 35%

Wikipedia 25%

Digg 20%

CNN 16%

Baidu 5%

Skyrock 2%

Google 0%

reCAPTCHA 0%

Secure cloud computing

service for US researchers

On November 2, 2011, Indiana

University (IU) and Penguin Computing

announced a partnership to offer US

researchers access to a secure cloud

computing service. The service remains

secure because it is run by a group

of computers owned by Penguin and

housed in IU’s secure state-of-the-art

data center. In addition to IU, initial

users of the service include the University

of Virginia, the University of California,

Berkeley, and the University of Michigan.

The service will next be available for

purchase to researchers at other US institutions

of higher education and federally funded

research centers. For more information, visit

ovpitnews.iu.edu/news/page/normal/20208.html.

Vulnerabilities

found in top Google

Chrome extensions

Security researchers Adrienne Porter Felt, Nicholas

Carlini, and Prateek Saxena at the University of Califor-

nia, Berkeley, conducted a review of 100 Google Chrome

extensions, including the 50 most popular ones, and found

that 27 percent of them contain one or more JavaScript injec-

tion vulnerabilities. This vulnerability can allow an attacker,

via the web or an unsecure Wi-Fi hotspot, to take complete

control of an extension and gain access to a user’s private

data. The researchers also reported that seven of the vulner-

able extensions were used by 300,000 people or more.

They sent vulnerability warnings to all the relevant

developers. For more information, visit www.

informationweek.com/news/security/

vulnerabilities/231602411.

 The Next Wave | Vol. 19 No. 2 | 2012 | 65

POINTERS

Internet privacy tools are difficult for most users

Researchers from the Carnegie Mellon CyLab Usable

Privacy and Security Laboratory conducted a usability

study of nine Internet privacy tools and found that they

were confusing and ineffective for most nontechnical us-

ers. The researchers evaluated the use of privacy settings

in two popular browsers, Internet Explorer 9 and Mozil-

la Firefox 5, as well as three tools that set opt-out cookies

to prevent websites from displaying advertisements, and

four tools that block certain sites from tracking user

activity. The major findings include the following:

 Users can’t distinguish between trackers. Users

are unfamiliar with companies that track their

behavior, so tools that ask them to set opt-out or

blocking preferences on a per-company basis are

ineffective. Most users just set the same preferences for every company on a list.

Inappropriate defaults. The default settings of privacy tools and opt-out sites are inappropriate for users;

they generally do not block tracking. A user must manually adjust the settings of these tools to activate their

capability to block tracking.

 Communication problems. The tools provide instructions and guidance that are either too simplistic to

inform a user’s decision, or too technical to be understood.

 Need for feedback. Many of the tools do not provide feedback to let users know that the tool is

actually working.

 Users want protections that don’t break things. Users had difficulty determining when the tool they were

using caused parts of websites to stop working. Subscribing to a Tracking Protection List (TPL) that blocks

most trackers except those necessary for sites to function can solve this problem, but participants were

unaware of the need to select a TPL or didn’t know how to choose one.

 Confusing interfaces. The tools suffered from major usability flaws. For example, some users mistook

registration pages for opt-out pages, and some users did not realize they needed to subscribe to certain

features of the tools.

To download the technical report describing this research, “Why Johnny can’t opt out: A usability evaluation of tools

to limit online behavioral advertising,” visit www.cylab.cmu.edu/research/techreports/2011/tr_cylab11017.html.

“Split-manufacturing” microprocessors to protect intellectual property

The Intelligence Advanced Research Project Agency (IARPA) is working toward developing a “split-manufacturing”

process for microprocessor chips to ensure their design is secure and protected. In split-manufacturing, chip

fabrication is split into two processes: front-end-of-line (FEOL) and back-end-of-line (BOEL). The FEOL process

involves the fabrication of transistor layers in offshore foundries, and the BOEL process involves the fabrication

of metallizations in trusted US facilities. According to IARPA, those working on the FEOL process will not have

access to information about the design intention of the chips. This split process is intended to prevent malicious

circuitry as well as protect the intellectual property of the chip design. Sandia National Laboratories will coordinate

all FEOL and BEOL processes, and the University of Southern California Information Sciences Institute will

carry out the fabrication runs. For more information, visit www.informationweek.com/news/government/

enterprise-architecture/231902147.

FSC

logo
iN053748

