Intelligence Community Public Key Infrastructure (IC PKI)
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE
 2002

2. REPORT TYPE

3. DATES COVERED
 00-00-2002 to 00-00-2002

4. TITLE AND SUBTITLE
 Intelligence Community Public Key Infrastructure (IC PKI)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 MITRE Corporation, 202 Burlington Road, Bedford, MA, 01730-1420

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
 The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

 a. REPORT
 unclassified

 b. ABSTRACT
 unclassified

 c. THIS PAGE
 unclassified

17. LIMITATION OF ABSTRACT

18. NUMBER OF PAGES
 19

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Outline

- The US Intelligence Community
- Why is PKI needed on CLASSIFIED networks?
- What is in an IC PKI Certificate?
- Current IC PKI Status
- Notional IC PKI Topology
- MITRE IC PKI/FSD Laboratory
- Certificate Validation
- IC PKI Requirements and Issues
- Conclusion
The US Intelligence Community

Ref: CIA website http://www.cia.gov/ic/contents.html
Why is PKI Needed on CLASSIFIED Networks?

- The ability to establish more secure areas on CLASSIFIED networks is essential to wider release and dissemination of data to the end users
 - Data dissemination that needs to be tracked and controlled
 - Data restricted to those with a “need to know”
 - Compartmented data (beyond the level of the network)
 - Originator-controlled data
 - Data restricted to those on a “by name” access control list
Why is PKI Needed on CLASSIFIED Networks? (cont)

● PKI-enabled applications can include:
 - Secure messaging applications
 ● Who sent me that message?
 - Secure Web access and Communities of Interest (COIs)
 ● How do I keep other people from viewing this data?
 - Release authorities and disclosure procedures
 ● How do I know I can release this information?
 - Mobile Code and object signing
 ● Who authored this applet and can it be trusted?
 - Virtual Private Networks (VPN)
 ● How can I have a (more) secure connection?
 - Collaborative toolkits
 ● Can we establish a (more) secure VTC?
In addition, agencies are allowed to use the IC PKI certificate for internal purposes

- Approval documents
- Electronic workflow applications
- Restricted access directories and documents
- Financial forms
IC Communities of Interest

<table>
<thead>
<tr>
<th>Network Access Control Level</th>
<th>Description</th>
<th>Access Control Mechanism</th>
<th>Server Management</th>
<th>Certificate</th>
<th>Technical Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General Access</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Information available to all network users</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Controlled Access (Simple I & A)</td>
<td>Access may be controlled by non-certificate based controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Authenticated (Certificate based I&A)</td>
<td>Valid Community certificate required</td>
<td></td>
<td>Community</td>
<td>SSL</td>
</tr>
<tr>
<td>4</td>
<td>Restricted Membership - Distributed Control</td>
<td>COI access decision is managed according to rules approved by data owners and the decision process may be centralized or decentralized</td>
<td>Per data owner's consent</td>
<td>Community</td>
<td>SSL</td>
</tr>
<tr>
<td>5</td>
<td>Restricted Membership - Data Owner Controlled</td>
<td>COI access decision is managed by the data owner</td>
<td>Data Owner</td>
<td>Community</td>
<td>SSL</td>
</tr>
<tr>
<td>6</td>
<td>Restricted Membership - Self-Protecting Data</td>
<td>COI access decision is managed by the data owner</td>
<td>Data Owner</td>
<td></td>
<td>Self-Protecting Data -- Data are encrypted in transit and at-rest and are only accessible by authorized user</td>
</tr>
</tbody>
</table>
What is in an IC PKI Certificate?

Signature Certificate (required elements)

<table>
<thead>
<tr>
<th>Basic Certificate</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>V3(2)</td>
</tr>
<tr>
<td>Identified which version of X.509 standard is being used</td>
<td></td>
</tr>
<tr>
<td>Serial Number</td>
<td>Unique integer</td>
</tr>
<tr>
<td>Identifies certificate</td>
<td></td>
</tr>
<tr>
<td>Issuer Signature Algorithm</td>
<td>sha1WithRSAEncryption</td>
</tr>
<tr>
<td>Specified signature algorithm for CA key</td>
<td></td>
</tr>
<tr>
<td>Issuer Distinguished Name</td>
<td></td>
</tr>
<tr>
<td>Country Code C US</td>
<td>US</td>
</tr>
<tr>
<td>Country of certificate issuance</td>
<td></td>
</tr>
<tr>
<td>Organization O U.S. Government</td>
<td></td>
</tr>
<tr>
<td>Per federal PKI guidelines</td>
<td></td>
</tr>
<tr>
<td>Organizational Unit 1 OU1 DCI</td>
<td></td>
</tr>
<tr>
<td>Cabinet-level organization</td>
<td></td>
</tr>
<tr>
<td>Organizational Unit 2 OU2 CIA</td>
<td></td>
</tr>
<tr>
<td>Agency</td>
<td></td>
</tr>
<tr>
<td>Common Name CN CIA-IC-PKI</td>
<td></td>
</tr>
<tr>
<td>Name of agency certificate authority</td>
<td></td>
</tr>
<tr>
<td>Validity Period 012400ZMAY00-012400ZMAY03</td>
<td>User certificates are valid for up to three years</td>
</tr>
<tr>
<td>Subject Distinguished Name</td>
<td></td>
</tr>
<tr>
<td>Country Code C US</td>
<td>US</td>
</tr>
<tr>
<td>Country of certificate issuance</td>
<td></td>
</tr>
<tr>
<td>Organization O U.S. Government</td>
<td></td>
</tr>
<tr>
<td>Per federal PKI guidelines</td>
<td></td>
</tr>
<tr>
<td>Organizational Unit 1 OU1 DCI</td>
<td></td>
</tr>
<tr>
<td>Cabinet-level organization</td>
<td></td>
</tr>
<tr>
<td>Organizational Unit 2 OU2 CIA</td>
<td></td>
</tr>
<tr>
<td>Agency</td>
<td></td>
</tr>
<tr>
<td>Common Name CN MacGarrigle.Ellen.F.1234UYTF</td>
<td></td>
</tr>
<tr>
<td>Unique name within an agency (at agency discretion)</td>
<td></td>
</tr>
<tr>
<td>Subject Public Key Information 1024 RSA key modulus, RSA encryption</td>
<td>Information needed to process user's public key</td>
</tr>
<tr>
<td>Issuer’s Signature sha1WithRSAEncryption</td>
<td>Actual issuer key signature</td>
</tr>
</tbody>
</table>
What is in an IC PKI Certificate (cont)?

Signature Certificate (required elements)

<table>
<thead>
<tr>
<th>Extensions</th>
<th>Key Usage</th>
<th>Certificate policies</th>
<th>Subject Alternative Name</th>
<th>Subject Directory Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>email signing certificate: digitalSignature set non-repudiation set keyEncipherment not set</td>
<td>id-US-level3 ::={id-certificate-policy 7}</td>
<td>macgari@cia</td>
<td>Nationality=US EmployeeType=Contractor</td>
</tr>
<tr>
<td></td>
<td>Permits use for authentication and non-repudiation only when used with newer S/MIME clients</td>
<td></td>
<td></td>
<td>Citizenship of user Employment status of user</td>
</tr>
</tbody>
</table>

“That many legacy S/MIME clients do not enforce functional separation so both the digitalSignature and keyEncipherment flags may be set in some certificates. Since newer S/MIME clients that enforce functional separation are beginning to become available, the IC PKI shall require one S/MIME certificate with the digital signature and non-repudiation bits set and a second certificate with the key encipherment bit set for those clients.” (IC PKI Certificate Policy)

Note: fields in red italics mean required but “non-critical” fields.
Notional IC CA PKI Topology

Root

IC PKI root

CAs

FY00 NSA
FY01 CIA
FY01 Common Services (IMO)
FY02 DIA
FY02 NRO

User base

Non-DoD Intelligence Agencies
NIMA
Other customers if needed
DoD Intelligence Agencies
Backup root

Notional IC CA PKI Topology

Root

IC PKI root

CAs

FY00 NSA
FY01 CIA
FY01 Common Services (IMO)
FY02 DIA
FY02 NRO

User base

Non-DoD Intelligence Agencies
NIMA
Other customers if needed
DoD Intelligence Agencies
Backup root
PKI/FSD Lab Configuration

- Root CA: Netscape CMS 4.1; Luna CA3; RSA 2048
- Servers: Internal Directory Server
- Users: Certs, CRL
- CA: Netscape CMS v4.2; RSA 2048
- CRL: RSA Keon 5.7; RSA 2048
- Server: DMS DCL 2.41 (X.500)
- CA: Baltimore UniCert 3.6.1; RSA 2048
- CRL: RSA Keon 5.7; RSA 2048
- Server: DMS DCL 2.2g (DMS) (X.500)
- CA: Netscape CMS v4.2; RSA 2048
- CRL: RSA Keon 5.7; RSA 2048
- Server: DMS DCL 2.41 (X.500)
- Firewalls: Gauntlet, Netranger
- Routers: Cisco
- CIRA: IMO/CS, NRO, NSA, DIA
- Internal Directory Server
- Users: Certs, CRL
Current IC PKI Status

- Overarching Policy signed October 1999
- IC standup effort currently underway
 - Root: Interim Authority to Operate (IATO) on 24Jul00, final ATO issued 08Aug00
 - NSA: Interim Approval to Test (IATT) Aug00, IATO Sep00
 - CIA: IATT Apr01, ATO Jun01
 - Common Services (IMO) (incl NIMA): IATT Jun01, IATO Sep01, ATO Dec01
 - DIA: IATT August 2001, IATO October 2001, planned ATO Feb02
 - NRO: Planned IATT Mar02(?), planned ATO May02(?)
To ensure certificate validity, certificates must be verified
- Applications may check expiration dates but other checks are not automatic
- Certificates may be revoked for the following reasons:
 ● identifying information or attributes in the end entity’s certificate changes before the certificate expires;
 ● the certificate subject can be shown to have violated the CP or the CPS of the CA who issued the certificate;
 ● fraudulent use or suspected compromise; or
 ● the user or other authorized party (as defined in the CA’s CPS) asks for his/her certificate to be revoked
- Two approaches are supported today:
 ● Certificate Revocation Lists (CRLs)
 ● Online Certificate Status Processing (OCSP)
Certificate Revocation Lists (CRLs)
- A list of revoked certificates issued by an IC PKI CA
- Each CA issues their own CRL
- CRLs are periodically issued to reflect revoked certificates
 - CRLs work on a “push/pull” basis (an issuing CA periodically “pushes” the information out; other CAs periodically “pull” this information in)
 - IC PKI CP mandates a new CRL every 28 days
 Nonroutine revocations are issued within six hours
- CRL retrieval is based on organizational need/processes
 - Community applications that understand CRLs must retrieve a CRL at least every 72 hours
- CRLs need a central distribution point or points
Certificate Validation (cont)

- **Online Certificate Status Processing (OCSP)**
 - OCSP means that a CA automatically attempts to validate a certificate each time the certificate is used
 - Each CA must maintain an OCSP lookup point wherein the relevant information is located
 - OCSP works in real time but must as a minimum meet the same mandated deadlines as CRLs (28 days/6 hours)
 - **OCSP options**
 - A CA may “push” the CRL to the OCSP responder
 - A CA may “push” the CRL to the FSD and the responder “pulls” it from there
 - Some CAs have built-in responders that automatically “pull” the needed data from the issuing CA
 - Few applications currently use OCSP
IC PKI Requirements and Issues

- Lack of common IC directory
 - Extensive installed base precludes single common directory
 - Federated approaches make directory-based functionality more complex and may impose more processing overhead
 - Directory is not yet operational even though IC PKI has reached IOC

- Desire to avoid separate operations and maintenance infrastructure
 - Most O&M costs for PKI are labor-related (registration and revocation are manpower-intensive)
 - IC PKI structure mirrors DoD structures as much as possible to allow reuse of already-planned support organizations and procedures
IC PKI Requirements and Issues (cont)

- Absolute need for key escrow
 - Required for counterintelligence purposes
- Auditing and Malicious Code Detection Policies
 - Should an encrypted message be logged and scanned at the gateway?
- Foreign (allied) national access
 - US users of foreign allied networks have a need to access US resources
- PKI deployment and training issues
 - We need good user training materials
IC PKI Requirements and Issues (cont)

- We have a real requirement for “group” certificates with individual audit capability
 - Ease of operations makes it imperative that some messages be sent and received from common addresses and accounts
 - A virus warning would be “signed and sent” from an agency CIRT desk to prove its authenticity; a user would not have to identify John Doe as being the watch officer
 - A watch officer comes on duty to relieve another watch officer and wants to be able to read all emails sent and received from the position during that duty day
 - A question arises about a warning sent by a duty officer position six months ago; who was the individual who sent that official message?
Conclusion

- IC PKI is on schedule to complete infrastructure deployment this year

- In 2002 IC PKI is moving toward
 - PKI enablement of applications
 - Updating original hardware and software configurations
 - User training and education
 - Interim directory deployment
 - Vendor interoperability issues