Covert Channels and
Simple Timed Mix-firewalls

RICHARD E. NEWMAN
VIPAN R. NALLA

CISE Department
University of Florida
Gainesville, FL

IRA S. MOSKOWITZ

Center for High Assurance Computer Systems
Information Technology Division

July 6, 2004

Approved for public release; distribution is unlimited.
Covert Channels and Simple Timed Mix-firewalls

Richard E. Newman,* Vipan R. Nalla,* and Ira S. Moskowitz

Naval Research Laboratory, Code 5543
4555 Overlook Avenue, SW
Washington, DC 20375-5320

Office of Naval Research
800 North Quincy Street
Arlington, VA 22217

Approved for public release; distribution is unlimited.

*CISE Department, University of Florida, Gainesville, FL 32611-6120

Traditional methods for evaluating the amount of anonymity afforded by various Mix configurations have depended on either measuring the size of the set of possible senders of a particular message (anonymity set size), or by measuring the entropy associated with the probability distribution of the messages possible senders. This report explores further in detail an alternative way of assessing the anonymity of a Mix system by considering the capacity of a covert channel from a sender behind the Mix to an observer of the Mix's output.

Initial work considered a simple model where an observer (Eve) was restricted to counting the number of messages leaving a Mix configured as a firewall guarding the enclave with one malicious sender (Alice) and some other naive senders (Clueless, s). Here, we consider the case where Eve can distinguish between multiple destinations, and the senders can select to which destination their message (if any) is sent each clock tick.

Covert channel; Anonymity; Traffic analysis

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
<th>19b. TELEPHONE NUMBER (include area code)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT Unclassified</td>
<td>b. ABSTRACT Unclassified</td>
<td>c. THIS PAGE Unclassified</td>
<td>UL 30</td>
<td>Ira S. Moskowitz</td>
</tr>
</tbody>
</table>
CONTENTS

1 INTRODUCTION .. 1

2 EXIT MIX-FIREWALL MODEL .. 2

3 CAPACITY ANALYSES OF THE EXIT MIX-FIREWALL MODEL ... 3
 3.1 One Receiver \((M = 1) \) ... 4
 3.2 Some Special Cases for Two Receivers \((M = 2) \) .. 5
 3.3 Some Special Cases for Three Receivers \((M = 3) \) ... 10
 3.4 Some Generalized Cases ... 13

4 DISCUSSION OF RESULTS ... 19

5 COMMENTS AND GENERALIZATIONS .. 25

6 CONCLUSIONS AND FUTURE WORK ... 26

7 ACKNOWLEDGEMENTS ... 27

REFERENCES ... 27
Covert Channels and Simple Timed Mix-firewalls*

Richard E. Newman¹, Vipan R. Nalla¹, and Ira S. Moskowitz²

¹ CISE Department
University of Florida
Gainesville, FL 32611-6120
{nemo, vreddy}@cise.ufl.edu

² Center for High Assurance Computer Systems, Code 5540
Naval Research Laboratory
Washington, DC 20375
moskowitz@itd.nrl.navy.mil

Abstract. Traditional methods for evaluating the amount of anonymity afforded by various Mix configurations have depended on either measuring the size of the set of possible senders of a particular message (the anonymity set size), or by measuring the entropy associated with the probability distribution of the messages possible senders. This report explores further in detail an alternative way of assessing the anonymity of a Mix system by considering the capacity of a covert channel from a sender behind the Mix to an observer of the Mix’s output.

Initial work considered a simple model [5], where an observer (Eve) was restricted to counting the number of messages leaving a Mix configured as a firewall guarding an enclave with one malicious sender (Alice) and some other naive senders (Clueless’s). Here, we consider the case where Eve can distinguish between multiple destinations, and the senders can select to which destination their message (if any) is sent each clock tick.

1 Introduction

In [5] the idea of measuring the lack of perfect anonymity (quasi-anonymity) via a covert channel was initiated. This idea was formalized in [6]. Our concern in this report is to identify, to analyze in detail, and to calculate the capacity of, the covert channels that arise from the use of a Mix [1, 8] as an exit firewall from a private enclave (as briefly addressed in [5, Sec. 4].) In general, we refer to a covert channel that arises, due to a state of quasi-anonymity, as a quasi-anonymous channel [6]. The quasi-anonymous channel also serves the dual role of being a measure of the lack of perfect anonymity. Note that [2] uses a similar model for statistical attacks in which Eve correlates senders’ actions with observed output.

¹ This is an extended version of [7]. Research supported by the Office of Naval Research.
2 Exit Mix-firewall Model

There are $N + 1$ senders in a private enclave. Messages pass one way from the private enclave to a set of M receivers. The private enclave is behind a firewall that also functions as a timed Mix [8] that fires every tick, t, hence we call it a simple, timed Mix-firewall. For the sake of simplicity we will refer to a simple, timed Mix-firewall as a Mix-firewall in this report. One of the $N + 1$ senders, called Alice, is malicious. The other N clueless senders, Clueless$_i$, $i = 1, \ldots, N$, are benign. Each sender may send at most one message per unit time t to the set of receivers. All messages from the private enclave to the set of receivers pass through public lines that are subject to eavesdropping by an eavesdropper called Eve. The only action that Eve can take is to count the number of messages per t going from the Mix-firewall to each receiver, since the messages are otherwise indistinguishable. Eve knows that there are $N+1$ possible senders. The N clueless senders act in an independent and identical manner (i.i.d.) according to a fixed distribution $C_i, i = 1, \ldots, N$. Alice, by sending or not sending a message each t to at most one receiver, affects Eve's message counts. This is how Alice covertly communicates with Eve via a quasi-anonymous channel [6].

![Diagram](image)

Fig. 1. Exit Mix-firewall model with N clueless senders and M distinguishable receivers

Alice acts independently (through ignorance of the clueless senders) when deciding to send a message; we call this the ignorance assumption. Alice has the same distribution each t. Between Alice and the N clueless senders, there are $N+1$ possible senders per t, and there are $M+1$ possible actions per sender (since each sender may or may not transmit, and if it does transmit, it transmits to exactly one of the M receivers).

We consider Alice to be the input to the quasi-anonymous channel, which is a proper communications channel [9]. Alice can send to one of the M receivers or not send a message. Thus, we represent the inputs to the quasi-anonymous channel by the $M+1$ input symbols $0, 1, \ldots, M$, where $i = 0$ represents Alice not sending a message, and $i \in \{1, \ldots, M\}$ represents Alice sending a message to the ith receiver R_i. However, note that the "receiver" in the quasi-anonymous
channel is Eve. Eve receives the output symbols $e_j, j = 1, \ldots, K$. Eve receives e_1 if no sender sends a message. Each other output symbol in the quasi-anonymous channel corresponds, up to being indistinguishable by Eve, to a way that the $N + 1$ senders can send or not send, at most one message each, out of the private enclave, provided at least one sender does send a message.

For the sake of simplicity we introduce a dummy receiver R_0 (not shown above). If a sender does not send a message we consider that to be a “message” to R_0. For $N + 1$ senders and M receivers, the output symbol e_j observed by Eve is an $M + 1$ vector $(a^j_0, a^j_1, \ldots, a^j_M)$, where a^j_i is how many messages the Mix-firewall sends to R_i. Of course it follows for all j that $\sum_{i=0}^{M} a^j_i = N + 1$.

The quasi-anonymous channel that we have been describing is a discrete memoryless channel (DMC). We define the channel matrix M as an $(M + 1) \times K$ matrix, where $M[i, j]$ represents the conditional probability that Eve observes the output symbol e_j given that Alice input i. We model the clueless senders according to the i.i.d. C_t for each period of possible action t:

$$P(\text{Clueless, doesn't send a message}) = p$$

$$P(\text{Clueless, sends a message to any } R_j, j > 0) = \frac{q}{M} = \frac{1 - p}{M}$$

where in keeping with previous papers, $q = 1 - p$ is the probability that Clueless sends a message to any one of the M receivers. From above, when Clueless does send a message, the destination is uniformly distributed over the receivers R_1, \ldots, R_M. We call this the semi-uniformity assumption. Again, keep in mind that each clueless sender has the same distribution each t, but they all act independently of each other.

We model Alice according to the following distribution each t:

$$P(Alice \text{ sends a message to } R_t) = x_t$$

Of course, this tells us that

$$x_0 = P(Alice \text{ doesn't send a message}) = 1 - \sum_{t=1}^{M} x_t.$$

We let A represent the distribution for Alice’s input behavior, and we denote by E the distribution of the output symbols that Eve receives. Thus, the channel matrix M along with the distribution A totally determine the quasi-anonymous channel. This is because the elements of M take the distributions C_t into account, and M and A let one determine the distribution E describing the outputs that Eve receives, $P(\text{Eve receives } e_j)$.

Now that we have our set-up behind our exit Mix-firewall model, we may now go on to analyze various cases in detail.

3 Capacity Analyses of the Exit Mix-firewall Model

The mathematics of the problem gets quite complex. Therefore, we start with some simple special cases before attempting to analyze the problem in general.
The mutual information between A and E is given by
\[I(A, E) = H(A) - H(A|E) = H(E) - H(E|A) = I(E, A). \]

The capacity of the quasi-anonymous channel is given by [9]
\[C = \max_A I(A, E), \]

where the maximization is over the different possible values that the x_i may take (of course, the x_i are still constrained to represent a probability distribution). Recall $M[i, j] = P(E = e_j|A = i)$, where $M[i, j]$ is the entry in the i^{th} row and j^{th} column of the channel matrix, M. To distinguish the various channel matrices, we will adopt the notation that $M_{N,M}$ is the channel matrix for N clueless senders and M receivers.

3.1 One Receiver ($M = 1$)

Case 1 — No clueless senders and one receiver ($N = 0, M = 1$)

Alice is the only sender, and there is only one receiver R_1. Alice sends either 0 (by not sending a message) or 1 (by sending a message). Eve receives either $e_1 = (1, 0)$ (Alice did nothing) or $e_2 = (0, 1)$ (Alice sent a message to the receiver). Since there is no noise (there are no clueless senders) the channel matrix $M_{0,1}$ is the 2×2 identity matrix and it trivially follows that $P(E = e_1) = x_0$, and that $P(E = e_2) = x_1$.

\[
M_{0,1} = \begin{pmatrix}
 e_1 & e_2 \\
 0 & 1 \\
 1 & 0 \\
\end{pmatrix}
\]

Since $x_0 = 1-x_1$, we see that\(^3\) $H(E) = -x_0 \log x_0 - (1-x_0) \log(1-x_0)$. The channel matrix is an identity matrix, so the conditional probability distribution $P(E|A)$ is made up of zeroes and ones, therefore $H(E|A)$ is identically zero. Hence, the capacity is the maximum over x_0 of $H(E)$, which is easily seen to be unity\(^4\) (and occurs when $x_0 = 1/2$). Of course, we could have obtained this capacity\(^5\) without appealing to mutual information since we can noiselessly send one bit per tick, but we wish to study the non-trivial cases and use this as a starting point.

Case 2 — N clueless senders and one receiver ($M = 1$)

This case reduces to the indistinguishable receivers case with N senders analyzed in [5] with both an exit Mix-firewall that we have been discussing and an entry

\(^3\) All logarithms are base 2.
\(^4\) The units of capacity are bits per tick t, but we will take the units as being understood for the rest of the report. Recall that all symbols take one t to pass through the channel.
\(^5\) This uses Shannon's [9] asymptotic definition of capacity, which is equivalent for noiseless channels (in units of bits per symbol).
Mix-firewall (with the receivers behind the latter). Alice can either send or not
send a message, so the input alphabet again has two symbols. Eve observes
\(N + 2 \) possible output symbols. That is, Eve sees \(e_1 = (N + 1, 0) \), \(e_2 = (N, 1) \),
\(e_3 = (N - 1, 2) \), \(\cdots \), \(e_{N+2} = (0, N + 1) \). A detailed discussion of this case
be found in [5].

3.2 Some Special Cases for Two Receivers \((M = 2)\)

There are two possible receivers. Alice can signal Eve with an alphabet of three
symbols: 1 or 2, if Alice transmits to \(R_1 \) or \(R_2 \), respectively, or the symbol 0 for
not sending a message. Let us analyze the channel matrices and the entropies
for different cases of senders.

The symbol \(e_j \) that Eve receives is an 3-tuple of the form \((a_0^j, a_1^j, a_2^j) \), where
\(a_i^j \) is the number of messages received by \(i^{th} \) receiver.\(^6\) As before, the index \(i = 0 \)
relates to Alice not sending any message. The elements of the 3-tuple must sum
to the total number of senders, \(N + 1 \),

\[
\sum_{i=0}^{2} a_i^j = N + 1.
\]

Case 3 — No clueless senders and two receivers \((N = 0, M = 2)\)

Alice is the only sender and can send messages to two possible receivers. The
channel matrix is trivial and there is no anonymity in the channel.

\[
M_{0,2} = \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 0 & 1
\end{pmatrix}
\]

The subscript 0.2 represents one sender (Alice alone) and two receivers. The \(3 \times 3 \)
channel matrix \(M_{0,2}[i,j] \) represents the conditional probability of Eve receiving
the symbol \(e_j \), when Alice sends to the receiver \(R_i \) \((A = i)\). ‘0’ stands for not
sending a message.

The mutual information \(I \) is given by the entropy \(H(E) \) describing Eve

\[
I(E, A) = H(E) = -x_1 \log x_1 - x_2 \log x_2 - (1 - x_1 - x_2) \log(1 - x_1 - x_2).
\]

The capacity of this noiseless covert channel is \(\log 3 \approx 1.58 \) (at \(x_i = 1/3, i = 0, 1, 2 \)). For \(M = 2 \) this is the largest capacity, which we note corresponds to
zero anonymity.

Case 4 — \(N = 1 \) clueless sender and \(M = 2 \) receivers

\(^6\) Recall that the \(a_i^j \)'s of the output symbol are not directly related to \(A \), which denotes
the distribution of Alice.
The following row vector describes the probabilities of the possible output symbols when only one clueless sender is involved.

\[
\begin{pmatrix}
(1, 0, 0) & (0, 1, 0) & (0, 0, 1) \\
p & q/2 & q/2
\end{pmatrix}
\]

The message-set matrix given below shows how the various output symbols can be formed. The rows correspond to Alice's actions, and the columns, correspond to the actions of Clueless. Row and column labels are added elementwise to form the matrix entry, which is the output symbol corresponding to the channel state.

\[
\begin{pmatrix}
(1, 0, 0) & (0, 1, 0) & (0, 0, 1) \\
(1, 0, 0) & (2, 0, 0) & (1, 0, 1) \\
(0, 1, 0) & (1, 1, 0) & (0, 1, 1) \\
(0, 0, 1) & (1, 0, 1) & (0, 0, 2)
\end{pmatrix}
\]

The set of distinct symbols formed in the matrix cells constitutes the set of output symbols Eve may receive. In this case, there are three repetitions in the message-set matrix, so Eve may receive 9 - 3 = 6 symbols.

Let us consider the channel matrix.

\[
M_{1.2} = \begin{pmatrix}
(2, 0, 0) & (1, 1, 0) & (1, 0, 1) & (0, 2, 0) & (0, 1, 1) & (0, 0, 2) \\
0 & p & q/2 & q/2 & 0 & 0 \\
1 & 0 & p & 0 & q/2 & q/2 \\
2 & 0 & 0 & p & 0 & q/2 & q/2
\end{pmatrix}
\]

The \(3 \times 6\) channel matrix \(M_{1.2}[i, j]\) represents the conditional probability of Eve receiving the symbol \(e_j\) when Alice sends to \(R_i\). As noted, the dummy receiver \(R_0\) corresponds to Alice not sending to any receiver (however this is still a transmission to Eve via the quasi-anonymous channel).
Given the above channel matrix we have:

\[H(E) = -\{px_0 \log(px_0) \]
\[+[qx_0/2 + px_1] \log[qx_0/2 + px_1] \]
\[+[qx_0/2 + px_2] \log[qx_0/2 + px_2] \]
\[+[qx_1/2] \log[qx_1/2 + qx_2/2] \log[qx_1/2 + qx_2/2] \]
\[+[qx_2/2] \log[qx_2/2] \} . \]

The conditional entropy is given by

\[H(E|A) = -\sum_{i=0}^{2} \left[p(x_i) \sum_{j=1}^{6} p(e_j|x_i) \log p(e_j|x_i) \right] = h_2(p) , \]

where \(h_2(p) \) denotes the function

\[h_2(p) = -\frac{(1-p)}{2} \log((1-p)/2) - \frac{(1-p)}{2} \log((1-p)/2) - p \log p \]
\[= -(1-p) \log((1-p)/2) - p \log p . \]

The mutual information between Alice and Eve is given by

\[I(A, E) = H(E) - H(E|A) , \]

\[\text{Fig. 3. Capacity for } N = 1 \text{ clueless sender and } M = 2 \text{ receivers} \]
and the channel capacity is given by
\[
C = \max_A I(A, E) \\
= \max_{x_1, x_2} -px_0 \log(px_0) \\
+ [qx_0/2 + px_1] \log[qx_0/2 + px_1] \\
+ [qx_0/2 + px_2] \log[qx_0/2 + px_2] \\
+ [qx_1/2] \log[qx_1/2] + [qx_2/2] \log[qx_2/2] \\
+ [qx_2/2] \log[qx_2/2] - h_2(p).
\]

Note that the maximization is over \(x_1\) and \(x_2\), since \(x_0\) is determined by these two probabilities (holds for any \(N\)). This equation is very difficult to solve analytically and requires numerical techniques. Figure 3 shows the capacity for this case with the curve \(N = 1\). From the plot the minimum capacity is approximately 0.92, when \(p = 1/3\). This is less than 1.58, which is the corresponding value for \(N = 0\) case.

Case 5 — \(N = 2\) clueless senders and \(M = 2\) receivers

![Diagram](image)

Fig. 4. Case 5: system with \(N = 2\) clueless senders and \(M = 2\) receivers

The row vector describing the output symbols and their probabilities with only the two clueless senders only is given by

\[
\begin{pmatrix}
(2,0,0) & (1,1,0) & (1,0,1) & (0,2,0) & (0,1,1) & (0,0,2) \\
p^2 & pq & pq & q^2/4 & q^2/2 & q^2/4
\end{pmatrix}
\]

The symbol \((2,0,0)\) has probability \(p^2\) because both clueless do not send a message. The symbol \((1,1,0)\) has probability \(2p(q/2)\) because either Clueless\(_1\) does not send a message and Clueless\(_2\) sends a message to \(R_1\) or visa versa. The other values behave similarly. The message set matrix, which has the contributions from the clueless as the column index and the contributions from Alice as the
row index, is as follows.

\[
\begin{pmatrix}
(2, 0, 0) & (1, 1, 0) & (1, 0, 1) & (0, 2, 0) & (0, 1, 1) & (0, 0, 2) \\
(1, 0, 0) & (3, 0, 0) & (2, 1, 0) & (2, 0, 1) & (1, 2, 0) & (1, 1, 1) & (1, 0, 2) \\
(0, 1, 0) & (2, 1, 0) & (1, 2, 0) & (1, 1, 1) & (0, 3, 0) & (0, 2, 1) & (0, 1, 2) \\
(0, 0, 1) & (2, 0, 1) & (1, 1, 1) & (1, 0, 2) & (0, 2, 1) & (0, 1, 2) & (0, 0, 3)
\end{pmatrix}
\]

By inspection of the matrix, we notice that the output symbols with more repetitions will have higher probability of being seen by Eve, when compared to others. That is, output symbol \((1, 1, 1)\) will have a greater probability of being observed than \((3, 0, 0)\) or \((0, 3, 0)\). The probability of observing a symbol also depends on the probability distribution of the transmitter over the receivers (i.e., the value of \(q\)). There are eight repetitions in the message-set matrix, so the number of total possible symbols Eve may receive is 18 - 8 = 10 symbols. The channel matrix \(M_{2, 2}\) is given below.

\[
M_{2, 2} = 1 \begin{pmatrix}
\psi^3 & \psi^2 & \psi & \psi^2/4 & \psi^2/2 & \psi^2/4 & 0 & 0 & 0 & 0 \\
0 & \psi & \psi^2 & \psi^3 & \psi^2 & \psi^2 & \psi^2/4 & 0 & 0 & 0 \\
0 & 0 & \psi & \psi^2 & \psi^3 & \psi^2 & \psi^2/4 & \psi^2/4 & \psi^2/2 & 0 \\
0 & 0 & 0 & \psi & \psi^2 & \psi^3 & \psi^2 & \psi^2 & \psi^2 & \psi^2/4 \\
0 & 0 & 0 & \psi & \psi^2 & \psi^3 & \psi^2 & \psi^2 & \psi^2 & \psi^2/4 \\
0 & 0 & 0 & \psi & \psi^2 & \psi^3 & \psi^2 & \psi^2 & \psi^2 & \psi^2/4 \\
0 & 0 & 0 & \psi & \psi^2 & \psi^3 & \psi^2 & \psi^2 & \psi^2 & \psi^2/4 \\
0 & 0 & 0 & \psi & \psi^2 & \psi^3 & \psi^2 & \psi^2 & \psi^2 & \psi^2/4 \\
0 & 0 & 0 & \psi & \psi^2 & \psi^3 & \psi^2 & \psi^2 & \psi^2 & \psi^2/4 \\
0 & 0 & 0 & \psi & \psi^2 & \psi^3 & \psi^2 & \psi^2 & \psi^2 & \psi^2/4
\end{pmatrix}
\]

The \(3 \times 10\) channel matrix \(M_{2, 2}[i, j]\) represents the conditional probability of Eve receiving \(e_j\) when Alice sends a message to receiver \(R_i\).

Fig. 5. Capacity for \(N = 2\) clueless senders and \(M = 2\) receivers

Figure 5 shows the capacity for this case \(N = 2\). Again, the minimum capacity is found at \(p = 1/3 = 1/(M + 1)\). From the plot the minimum capacity is approximately 0.62, when \(p = 1/3\).
3.3 Some Special Cases for Three Receivers ($M = 3$)

Case 6 — system with $N = 1$ clueless senders and $M = 3$ receivers

Alice or Clueless can send to three possible receivers or refrain from sending (denoted by "0"). The probabilities of the various output symbols from the one clueless sender are given below.

\[
\begin{pmatrix}
1, 0, 0, 0 & 0, 1, 0, 0 & 0, 0, 1, 0 & 0, 0, 0, 1 \\
p & q/3 & q/3 & q/3
\end{pmatrix}
\]

![Diagram](image)

Fig. 6. Case 6: system with $N = 1$ clueless senders and $M = 3$ receivers

Now let us examine the number of possible message set symbols obtained if we merge the individual message sets of Alice and Clueless.

\[
\begin{pmatrix}
1, 0, 0, 0 & 0, 1, 0, 0 & 0, 0, 1, 0 & 0, 0, 0, 1 \\
1, 0, 0, 0 & 2, 0, 0, 0 & 1, 0, 1, 0 & 1, 0, 0, 1 \\
0, 1, 0, 0 & 1, 1, 0, 0 & 0, 2, 0, 0 & 0, 1, 1, 0 \\
0, 0, 1, 0 & 1, 0, 1, 0 & 0, 1, 1, 0 & 0, 0, 2, 0 \\
0, 0, 0, 1 & 1, 0, 0, 1 & 0, 1, 0, 1 & 0, 0, 1, 1
\end{pmatrix}
\]

As we can see from the above message-matrix, there are six repetitions in the message sets formed, so Eve may receive $16 - 6 = 10$ different symbols.

The channel matrix $M_{1,3}$ is given below.

\[
\begin{pmatrix}
2, 0, 0, 0 & 1, 1, 0, 0 & 1, 0, 1, 0 & 0, 2, 0, 0 & 0, 1, 1, 0 & 0, 2, 0, 0 & 0, 0, 1, 1 & 0, 0, 0, 2 \\
0 & p & q/3 & q/3
\end{pmatrix}
\]

The 4×10 channel matrix $M_{1,3}[i,j]$ represents the conditional probability of Eve receiving e_j when Alice sends a message to receiver R_i.

10
Figure 7. Capacity for $N = 1$ clueless sender and $M = 3$ receivers

Figure 7 shows the capacity for this case of $N = 1$. The minimum capacity is found at $p = 1/4 = 1/(M + 1)$. From the plot the minimum capacity is approximately 1.25, when $p = 1/4$.

Case 7: system with $N = 2$ clueless senders and $M = 3$ receivers

The row vector describing how the clueless users influence the output symbols is given below.

\[
\begin{pmatrix}
(2, 0, 0, 0) & (1, 1, 0, 0) & (1, 0, 1, 0) & (1, 0, 0, 1) & (0, 2, 0, 0) & (0, 1, 1, 0) & (0, 1, 0, 1) & (0, 0, 2, 0) & (0, 0, 1, 1) & (0, 0, 0, 2) \\
(p^2) & 2pq/3 & 2pq/3 & 2pq/3 & q^2/9 & 2q^2/9 & 2q^2/9 & q^2/9 & 2q^2/9 & q^2/9
\end{pmatrix}
\]

Now let us examine the size of the set of output symbols obtained if we merge the individual message sets of Alice and the two clueless senders:

\[
\begin{pmatrix}
(2, 0, 0, 0) & (1, 1, 0, 0) & (1, 0, 1, 0) & (1, 0, 0, 1) & (0, 2, 0, 0) & (0, 1, 1, 0) & (0, 1, 0, 1) & (0, 0, 2, 0) & (0, 0, 1, 1) & (0, 0, 0, 2) \\
(1, 0, 0, 0) & (3, 0, 0, 0) & (2, 1, 0, 0) & (2, 0, 1, 0) & (2, 0, 0, 1) & (1, 2, 0, 0) & (1, 1, 1, 0) & (1, 1, 0, 1) & (1, 0, 2, 0) & (1, 0, 1, 1) \\
(0, 1, 0, 0) & (2, 1, 0, 0) & (2, 1, 0, 0) & (1, 2, 0, 0) & (1, 1, 0, 1) & (0, 5, 0, 0) & (0, 2, 1, 0) & (0, 2, 0, 1) & (0, 1, 2, 0) & (0, 1, 1, 1) \\
(0, 0, 1, 0) & (2, 0, 1, 0) & (1, 1, 1, 0) & (1, 0, 2, 0) & (1, 0, 1, 1) & (0, 2, 1, 0) & (0, 1, 2, 0) & (0, 1, 1, 1) & (0, 0, 2, 0) & (0, 0, 1, 2) \\
(0, 0, 0, 1) & (2, 0, 0, 1) & (1, 1, 0, 1) & (1, 0, 1, 1) & (1, 0, 0, 2) & (0, 2, 0, 1) & (0, 1, 1, 1) & (0, 1, 0, 1) & (0, 0, 2, 1) & (0, 0, 1, 2) \\
(0, 0, 0, 0) & (0, 0, 0, 1) & (0, 0, 0, 2) & (0, 0, 0, 3)
\end{pmatrix}
\]

As we can see, there are 20 repetitions in the symbols formed. Hence, the total symbols seen by Eve become $= 40 - 20 = 20$ symbols.

If we look through the columns $(1, 1, 0, 0), (0, 1, 1, 0)$ and $(1, 0, 1, 0)$, we can find the element $(1, 1, 1, 0)$ common to all the three columns. There are two more similar cases for a common element in three columns. From this, we conclude that the message sets with even distribution of messages seem to have a single element common to many of the them, whereas those with skewed distribution seem to be unique. This is expected, as the ways to distribute over several receivers is multiple, while there is only one way for all senders to send to the same receiver.
The channel matrix (split into two) is given below.

\[
\begin{pmatrix}
(3, 0, 0, 0) & (2, 1, 0, 0) & (2, 0, 1, 0) & (2, 0, 0, 1) & (1, 2, 0, 0) & (1, 0, 2, 0) & (1, 0, 0, 2) & (1, 1, 1, 0) & (1, 1, 0, 1) & (1, 0, 1, 1) \\
0 & p^2 & 2pq/3 & 2pq/3 & 2pq/3 & q^2/9 & q^2/9 & q^2/9 & 2q^2/9 & 2q^2/9 & 2q^2/9 \\
1 & 0 & p^2 & 0 & 0 & 2pq/3 & 0 & 2pq/3 & 2pq/3 & 0 & 0 \\
2 & 0 & 0 & p^2 & 0 & 0 & 2pq/3 & 0 & 2pq/3 & 0 & 0 \\
3 & 0 & 0 & 0 & p^2 & 0 & 2pq/3 & 0 & 2pq/3 & 2pq/3 & 2pq/3 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
(0, 3, 0, 0) & (0, 2, 1, 0) & (0, 2, 0, 1) & (0, 1, 2, 0) & (0, 1, 0, 2) & (0, 1, 1, 1) & (0, 0, 3, 0) & (0, 0, 2, 1) & (0, 0, 1, 2) & (0, 0, 0, 3) \\
0 & q^2/9 & 2q^2/9 & q^2/9 & q^2/9 & q^2/9 & 2q^2/9 & 2q^2/9 & 2q^2/9 & 2q^2/9 \\
1 & 0 & q^2/9 & 0 & 2q^2/9 & q^2/9 & 2q^2/9 & 2q^2/9 & 2q^2/9 & 2q^2/9 \\
2 & 0 & 0 & q^2/9 & 0 & 2q^2/9 & q^2/9 & 2q^2/9 & 2q^2/9 & 2q^2/9 \\
3 & 0 & 0 & 0 & q^2/9 & 0 & 2q^2/9 & q^2/9 & 2q^2/9 & q^2/9 \\
\end{pmatrix}
\]

The 4 × 20 channel matrix \(M_{2,3}[i, j] \) represents the conditional probability of Eve receiving \(e_j \) when Alice sends a message to receiver \(R_i \). The generalized formula for the matrix elements is given by

\[
m(0, j) = \begin{cases}
\frac{2}{(a_0^j - 1)}a_1^j a_2^j a_3^j p^{a_0^j - 1}(q/3)^3 - a_0^j & \text{for } a_0^j = 1, 2, 3 \\
0 & \text{for } a_0^j = 0
\end{cases}
\]

\[
m(1, j) = \begin{cases}
\frac{2}{a_0^j (a_0^j - 1)}a_1^j a_2^j a_3^j p^{a_0^j}(q/3)^2 - a_0^j & \text{for } a_0^j = 1, 2, 3 \\
0 & \text{for } a_0^j = 0
\end{cases}
\]

\[
m(2, j) = \begin{cases}
\frac{2}{a_0^j [a_0^j - 1]a_1^j a_2^j a_3^j} p^{a_0^j}(q/3)^2 - a_0^j & \text{for } a_0^j = 1, 2, 3 \\
0 & \text{for } a_0^j = 0
\end{cases}
\]

![Fig. 8. Capacity for N = 2 clueless senders and M = 3 receivers](image)

The channel matrix is given by

\[
m(0, j) = \begin{cases}
\frac{2}{(a_0^j - 1)}a_1^j a_2^j a_3^j p^{a_0^j - 1}(q/3)^3 - a_0^j & \text{for } a_0^j = 1, 2, 3 \\
0 & \text{for } a_0^j = 0
\end{cases}
\]

\[
m(1, j) = \begin{cases}
\frac{2}{a_0^j (a_0^j - 1)}a_1^j a_2^j a_3^j p^{a_0^j}(q/3)^2 - a_0^j & \text{for } a_0^j = 1, 2, 3 \\
0 & \text{for } a_0^j = 0
\end{cases}
\]

\[
m(2, j) = \begin{cases}
\frac{2}{a_0^j [a_0^j - 1]a_1^j a_2^j a_3^j} p^{a_0^j}(q/3)^2 - a_0^j & \text{for } a_0^j = 1, 2, 3 \\
0 & \text{for } a_0^j = 0
\end{cases}
\]
\[m(3, j) = \begin{cases} \frac{2}{a_3^2 \log_2 \frac{1}{a_3^2 - 1}} p_{s_3}^2 (q/3)^{2-a_3^2} & \text{for } a_3^2 = 1, 2, 3 \\ 0 & \text{for } a_3^2 = 0 \end{cases} \]

Figure 8 shows the capacity for this case in the curve when \(N = 2 \). The minimum capacity is found at \(p = 1/4 = 1/(M+1) \). From the plot the minimum capacity is approximately 0.89, when \(p = 1/4 \), which is less than the lowest capacity for the \(N = 1 \) case.

3.4 Some Generalized Cases

Case 8: \(N = 1 \) Clueless and \(M \) receivers

Fig. 9. Case 7: system with \(N = 2 \) clueless senders and \(M = 3 \) receivers

Fig. 10. Case 8: system with \(N = 1 \) clueless sender and \(M \) receivers

13
We generalize the scenario to one clueless transmitter and M receivers. The probability describing the actions of only the one clueless sender is given below.

\[
\begin{pmatrix}
(1, 0, 0, 0, \ldots, 0) & (0, 1, 0, 0, \ldots, 0) & (0, 0, 1, 0, \ldots, 0) & (0, 0, 0, 1, \ldots, 0) & \cdots & (0, 0, 0, 0, \ldots, 1) \\
\frac{p}{p} & \frac{q}{q^M} & \frac{q}{q^M} & \frac{q}{q^M} & \cdots & \frac{q}{q^M}
\end{pmatrix}
\]

The message set matrix is given below.

\[
\begin{pmatrix}
(1, 0, 0, 0, \ldots, 0) & (1, 0, 0, 0, \ldots, 0) & (0, 0, 1, 0, \ldots, 0) & (0, 0, 0, 1, \ldots, 0) & \cdots & (0, 0, 0, 0, \ldots, 1) \\
(2, 0, 0, 0, \ldots, 0) & (1, 0, 0, 0, \ldots, 0) & (1, 0, 1, 0, \ldots, 0) & (1, 0, 0, 1, \ldots, 0) & \cdots & (1, 0, 0, 0, \ldots, 1) \\
(0, 1, 0, 0, \ldots, 0) & (1, 1, 0, 0, \ldots, 0) & (0, 2, 0, 0, \ldots, 0) & (0, 1, 1, 0, \ldots, 0) & (0, 1, 0, 1, \ldots, 0) & \cdots & (0, 1, 0, 0, \ldots, 1) \\
(0, 0, 0, 1, \ldots, 0) & (1, 0, 0, 1, \ldots, 0) & (0, 1, 0, 1, \ldots, 0) & (0, 0, 1, 1, \ldots, 0) & \cdots & (0, 0, 0, 1, \ldots, 1) \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
(0, 0, 0, 0, \ldots, 1, 1) & (0, 1, 0, 0, \ldots, 1) & (0, 0, 1, 0, \ldots, 1) & (0, 0, 0, 1, \ldots, 1) & \cdots & (0, 0, 0, 0, \ldots, 2)
\end{pmatrix}
\]

The number of output symbols that may be seen by Eve is identical to the total possible distinct pairs in the message-set matrix shown above. There are two indistinguishable transmissions (including null transmissions) and they are sent into $M + 1$ distinct receivers (urns) (this also includes the null transmission, which by convention goes to R_0, not shown in the figure). Combinatorics tells us then that there are $\binom{M+2}{2}$ distinct combinations (symbols) that Eve may receive.

The channel matrix is given below.

\[
\begin{pmatrix}
0 & 0 & \frac{q}{q^M} & \frac{q}{q^M} & \cdots & \frac{q}{q^M} & 0 & 0 \\
0 & 0 & \frac{q}{q^M} & \frac{q}{q^M} & \cdots & \frac{q}{q^M} & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & \frac{q}{q^M} & \frac{q}{q^M}
\end{pmatrix}
\]

The $(M + 1) \times \binom{M+2}{2}$ channel matrix $M_1, M[i, j]$ represents the conditional probability of Eve receiving e_j when Alice sends a message to receiver R_i.

The probability distribution among the elements of the channel matrix can be calculated by the formula below.

\[
m_{i,j} = \begin{cases}
 p^{\alpha_i^j} (q/M)^{N - \alpha_i^j} : & \alpha_i^j \neq 0 \text{ } \forall \text{ } i = 1, 2, 3, \cdots, M \text{ and } j = 1, 2, 3, \cdots, \binom{M+2}{2} \\
 0 : & \alpha_i^j = 0
\end{cases}
\]

\[
m_{0,j} = \begin{cases}
 p^{(\alpha_0^j - 1)} (q/M)^{N - \alpha_0^j + 1} : & \alpha_0^j \neq 0 \text{ } \forall \text{ } j = 0, 1, 2, \cdots, \binom{M+2}{2} \\
 0 : & \alpha_0^j = 0
\end{cases}
\]

The conclusions and more generalizations related to this case are discussed in the results section.

Case 9: N clueless senders and $M = 2$ receivers

In this case, we generalize the problem to N clueless transmitters for the two receivers case. The total number of message set symbols seen by Eve, if only
the clueless are transmitting, can be calculated as the number of combinations in which \(N \) transmitters can send (or not send) a message times the number of combinations in which the messages sent can be distributed into two receivers. If \(k \) out of \(N \) transmitters send a message, then the \(k \) messages sent can be divided into two receivers in \(k+1 \) possible combinations \(((k, 0), (k-1, 1), \ldots, (0, k))\).

message set size \(= 1 + 2 + 3 + 4 + \cdots + (N + 2) \)
\[
= \sum_{i=0}^{N+2} i \\
= (N + 2)(N + 3)/2
\]

![Diagram](image)

Fig. 11. Case 9: system with \(N \) clueless senders and \(M = 2 \) receivers

The probability of each channel state with clueless only is as follows.

\[
\begin{align*}
& (N, 0, 0) \quad (N - 1, 1, 0) \quad (N - 1, 0, 1) \quad (N - 2, 2, 0) \quad (N - 2, 1, 1) \quad (N - 2, 0, 2) \quad \ldots \quad (0, 0, N) \\
& (p^N, N p^{N-1} p/2, N p^{N-1} q/2, N (N - 1) p^{N - 2} q^2/8, N (N - 1) p^{N - 2} q^2/8, N (N - 1) p^{N - 2} q^2/8, \ldots, (q/2)^N)
\end{align*}
\]

Now let us merge the individual message sets of Alice and the \(N \) clueless transmitters to determine the number of symbols received by Eve.

\[
\begin{align*}
& (N, 0, 0) \quad (N - 1, 1, 0) \quad (N - 1, 0, 1) \quad (N - 2, 2, 0) \quad (N - 2, 1, 1) \quad (N - 2, 0, 2) \quad \ldots \quad (0, 0, N) \\
& (1, 0, 0) \quad (N + 1, 0, 0) \quad (N, 1, 0) \quad (N, 0, 1) \quad (N - 1, 2, 0) \quad (N - 1, 1, 1) \quad (N - 1, 0, 2) \quad \ldots \quad (1, 0, N) \\
& (0, 1, 0) \quad (N, 1, 0) \quad (N - 1, 2, 0) \quad (N - 1, 1, 1) \quad (N - 2, 3, 0) \quad (N - 2, 2, 1) \quad (N - 2, 1, 2) \quad \ldots \quad (0, 1, N) \\
& (0, 0, 1) \quad (N, 0, 1) \quad (N - 1, 1, 1) \quad (N - 1, 0, 2) \quad (N - 2, 2, 1) \quad (N - 2, 1, 2) \quad (N - 2, 0, 3) \quad \ldots \quad (0, 0, N + 1)
\end{align*}
\]

As observed before, the message set \((N/3 + 1, N/3, N/3)\) is the most uniform message distribution. Hence, it has maximum number of repetitions in the message set matrix and will have a greater probability of being observed than \((N + 1, 0, 0)\) or \((0, 1, N)\).
The channel matrix $M_{N,2}$ is given below.

$$
\begin{bmatrix}
(N + 1, 0, 0) & (N, 1, 0) & (N, 0, 1) & (N - 1, 2, 0) & (N - 1, 1, 1) & (N - 1, 0, 2) & \ldots & (0, 0, N + 1) \\
0 & \frac{N}{p^N} & \frac{N - 1}{p^{N-1}} & \frac{N}{p^{N-1}} & \frac{N}{p^{N-2}} & \frac{N}{p^{N-2}} & \frac{N}{p^{N-3}} & \frac{N}{p^{N-3}} & \ldots & 0 \\
1 & 0 & \frac{N}{p^N} & \frac{N - 1}{p^{N-1}} & \frac{N}{p^{N-1}} & \frac{N}{p^{N-2}} & \frac{N}{p^{N-2}} & \frac{N}{p^{N-3}} & \frac{N}{p^{N-3}} & \ldots & 0 \\
2 & 0 & 0 & \frac{N}{p^N} & \frac{N - 1}{p^{N-1}} & \frac{N}{p^{N-1}} & \frac{N}{p^{N-2}} & \frac{N}{p^{N-2}} & \frac{N}{p^{N-3}} & \frac{N}{p^{N-3}} & \ldots & (q/2)^N \\
\end{bmatrix}
$$

The $3 \times ((N + 2)(N + 3)/2)$ channel matrix $M_{N,2}[i,j]$ represents the conditional probability of Eve receiving e_j when Alice sends a message to receiver R_i. The probability distribution in the channel matrix can be imagined as nesting of two binomial distributions: First, between messages sent and received; second, the distribution of messages sent to the two receivers. So, given the vector (a_0^i, a_1^i, a_2^i), the element of the channel matrix can be generalized by the formula below.

$$
m_{0,j} = \binom{N}{a_0^i-1} p^{(a_0^i-1)} \text{(prob. distribution of } (N - (a_0^i - 1)) \text{ messages to } R_1 \text{ and } R_2)$$

$$
= \frac{N}{a_0^i-1} p^{(a_0^i-1)} \left(\frac{N - (a_0^i - 1)}{a_0^i} \right) \left(\frac{q}{2} \right)^{a_0^i} \left(\frac{q}{2} \right)^{a_1^i} \left(\frac{q}{2} \right)^{a_2^i}
$$

$$
= \frac{N}{a_0^i-1} p^{(a_0^i-1)} \left(\frac{N - (a_0^i - 1)}{a_0^i} \right) \left(\frac{q}{2} \right)^{N-(a_0^i-1)}
$$

$$
m_{1,j} = \binom{N}{a_1^i} p^{a_1^i} \left(\frac{N - a_0^i}{a_1^i} \right) \left(\frac{q}{2} \right)^{N-a_0^i}
$$

$$
m_{2,j} = \binom{N}{a_2^i} p^{a_2^i} \left(\frac{N - a_0^i}{a_2^i} \right) \left(\frac{q}{2} \right)^{N-a_0^i}
$$

Note that a_0^i does not explicitly appear but is implicitly in the above since $(a_0^i + a_1^i + a_2^i) - 1 = N$, this relationship will be seen to be important in the following general case (where we use a generalized combinatorial formula). The conclusions and more generalizations related to this case are discussed in the results section.

Case 10 — N clueless senders and M receivers
We now generalize the problem to N clueless senders and M receivers (refer again to Figure 1). There are $N+1$ indistinguishable transmissions (including null transmissions) and they are sent into $M+1$ distinct receivers (turns) (this also includes the null transmission, which by convention goes to R_0, not shown in the figure). Combinatorics tells us then that there are $K = \binom{N+M+1}{N+1}$ possible symbols e_j.

The rows of our channel matrix correspond to the actions of Alice. The ith row of $M_{N,M}$ describes the conditional probabilities $p(e_j|x_i)$ (For simplicity we will not always explicitly note that $j = 1, \ldots, \binom{N+M+1}{N+1}$.) By convention e_1
always corresponds to every sender not sending a message (which is equivalent to all senders sending to \(R_0 \)). Therefore \(e_j \) is the \(M+1 \) tuple \((N+1,0,\ldots,0) \). Given our simplifying semi-uniformity assumption for the clueless senders' distribution, this term must be handled differently.

The first row of the channel matrix is made up of the terms \(M_{N,M}[0,j] \). Here, Alice is not sending any message (i.e., she is "sending" to \(R_0 \)), so Alice contributes one to the term \(a_0^j \) in the \(M+1 \) tuple \((a_0^j, a_1^j, a_2^j, \ldots, a_M^j) \) associated with \(e_j \). In fact, this tuple is the "long hand" representation of \(e_j \). Therefore the contributions to the \(M+1 \) tuple \((a_0^j - 1, a_1^j, a_2^j, \ldots, a_M^j) \) describe what the \(N \) clueless senders are doing. That is, \(a_0^j - 1 \) clueless senders are not sending a message, \(a_1^j \) clueless senders are sending to \(R_1 \), etc. Hence, the multinomial coefficient \(\binom{N}{a_0^j-1, a_1^j, \ldots, a_M^j} \) tells us how many ways this may occur.\(^7\) For each such occurrence we see that the transmissions to \(R_0 \) affect the probability by \(p^{a_0^j-1} \), and the transmissions to \(R_i \), \(i > 0 \), due to the semi-uniformity assumption, contribute \((q/M)^{a_i^j} \). Since the actions are independent, the probabilities multiply, and since \(a_0^j - 1 + a_1^j + \cdots + a_M^j = N \), we have a probability term of \(p^{a_0^j-1}(q/M)^N^{1-a_0^j} \). Multiplying that term by the total number of ways of arriving at that arrangement we have that:

\[
M_{N,M}[0,j] = \binom{N}{a_0^j-1, a_1^j, \ldots, a_M^j} p^{a_0^j-1}(q/M)^{N+1-a_0^j}.
\]

The other rows of the channel matrix are \(M_{N,M}[i,j] \), \(i > 0 \). For row \(i > 0 \), we have a combinatorial term \(\binom{N}{a_0^i, a_1^i, \ldots, a_0^i-1, a_1^i+1, \ldots, a_M^i} \) for the \(N \) clueless senders, \(a_0^i \) of which are sending to \(R_0 \) and \(N - a_0^i \) of which are sending to the \(R_i \), \(i > 0 \). Therefore, we see that under the uniformity assumption,

\[
M_{N,M}[i,j] = \binom{N}{a_0^i, a_1^i, \ldots, a_0^i-1, a_1^i+1, \ldots, a_M^i} p^{a_0^i}(q/M)^{N-a_0^i}, i > 0.
\]

We show the plots of the mutual information when the clueless senders act (as assumed throughout the report) in a semi-uniform manner and when Alice also sends in a semi-uniform manner (i.e., \(x_i = (1 - x_0)/M \), \(i = 1, 2, \ldots, M \)). We conjecture based upon our intuition, but do not prove, that Alice having a semi-uniform distribution of destinations \(R_1, \ldots, R_M \) when the clueless senders act in a semi-uniform manner maximizes mutual information (achieves capacity). This has been supported by all of our numeric computations for capacity. With this conjecture, we can reduce the degrees of freedom for Alice from \(M \) to 1 (her distribution \(A \) is described entirely by \(x_0 \)), which allows greater experimental and analytical exploration.

The channel matrix greatly simplifies when both the clueless senders and Alice act in a totally uniform manner. That is, when \(x_0 = 1/(M+1) \), then \(x_i = (1 - x_0)/M = 1/(M+1) \) for all \(x_i \), and \(p = 1/(M+1) \). We have

\[
M_{N,M}[0,j] = \binom{N}{a_0^j - 1, a_1^j, \ldots, a_M^j} p^{a_0^j-1}(q/M)^{N+1-a_0^j},
\]

\(^7\) The multinomial coefficient is taken to be zero, if any of the "bottom" entries are negative.
which simplifies to

\[M_{N,M}[0,j] = \left(a_0^j, a_1^j, \ldots, a_{j-1}^j, a_j^j - 1, a_{j+1}^j, \ldots, a_M^j \right) \left(\frac{1}{M+1} \right)^N. \]

(Note this form for \(i = 0 \) is due to the total uniformity of the \(C_i \)s.) We also have

\[M_{N,M}[i,j] = \left(a_0^j, a_1^j, \ldots, a_{i-1}^j, a_i^j - 1, a_{i+1}^j, \ldots, a_M^j \right) p^d_i \left(\frac{q}{M} \right)^{N-a_i^j}, \quad i > 0, \]

which simplifies to

\[M_{N,M}[i,j] = \left(a_0^j, a_1^j, \ldots, a_{i-1}^j, a_i^j - 1, a_{i+1}^j, \ldots, a_M^j \right) \left(\frac{1}{M+1} \right)^N, \quad i > 0. \]

<table>
<thead>
<tr>
<th>(M \rightarrow)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N \downarrow)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.3113</td>
<td>1.5849</td>
<td>2.0000</td>
<td>2.3219</td>
<td>2.5850</td>
<td>2.8074</td>
<td>3.0000</td>
<td>3.1699</td>
<td>3.2192</td>
<td>3.4594</td>
</tr>
<tr>
<td>1</td>
<td>0.2193</td>
<td>0.9172</td>
<td>1.2500</td>
<td>1.5219</td>
<td>1.7515</td>
<td>1.9502</td>
<td>2.1250</td>
<td>2.2811</td>
<td>2.4219</td>
<td>2.5503</td>
</tr>
<tr>
<td>2</td>
<td>0.1675</td>
<td>0.6204</td>
<td>0.8891</td>
<td>1.1204</td>
<td>1.3218</td>
<td>1.4996</td>
<td>1.6586</td>
<td>1.8021</td>
<td>1.9328</td>
<td>2.0529</td>
</tr>
<tr>
<td>3</td>
<td>0.1351</td>
<td>0.4555</td>
<td>0.6760</td>
<td>0.8423</td>
<td>1.0515</td>
<td>1.2112</td>
<td>1.3560</td>
<td>1.4882</td>
<td>1.6097</td>
<td>1.7221</td>
</tr>
<tr>
<td>4</td>
<td>0.1133</td>
<td>0.3537</td>
<td>0.5371</td>
<td>0.7080</td>
<td>0.8649</td>
<td>1.0090</td>
<td>1.1410</td>
<td>1.2630</td>
<td>1.3761</td>
<td>1.4813</td>
</tr>
<tr>
<td>5</td>
<td>0.0976</td>
<td>0.2864</td>
<td>0.4408</td>
<td>0.5893</td>
<td>0.7288</td>
<td>0.8588</td>
<td>0.9798</td>
<td>1.0925</td>
<td>1.1978</td>
<td>1.2965</td>
</tr>
<tr>
<td>6</td>
<td>0.0857</td>
<td>0.2392</td>
<td>0.3710</td>
<td>0.5010</td>
<td>0.6255</td>
<td>0.7434</td>
<td>0.8544</td>
<td>0.9587</td>
<td>1.0570</td>
<td>1.1496</td>
</tr>
<tr>
<td>7</td>
<td>0.0765</td>
<td>0.2048</td>
<td>0.3187</td>
<td>0.4334</td>
<td>0.5450</td>
<td>0.6522</td>
<td>0.7542</td>
<td>0.8510</td>
<td>0.9428</td>
<td>1.0298</td>
</tr>
<tr>
<td>8</td>
<td>0.0691</td>
<td>0.1789</td>
<td>0.2785</td>
<td>0.3803</td>
<td>0.4809</td>
<td>0.5786</td>
<td>0.6726</td>
<td>0.7626</td>
<td>0.8484</td>
<td>0.9303</td>
</tr>
<tr>
<td>9</td>
<td>0.0630</td>
<td>0.1587</td>
<td>0.2467</td>
<td>0.3377</td>
<td>0.4288</td>
<td>0.5183</td>
<td>0.6051</td>
<td>0.6888</td>
<td>0.7692</td>
<td>0.8463</td>
</tr>
</tbody>
</table>

Table 1. \(C(1/(M+1)) = \) lower capacity bounds for all \(p, N = 0, \ldots, 9, \) and \(M = 1, \ldots, 10 \)

To determine the distribution \(E \) describing Eve we need to sum over the columns of the channel matrix and use the total uniformity of \(A \).

\[P(E = e_j) = \sum_i P(E = e_j | A = i) P(A = i), \quad i = 0, \ldots, M. \]

This gives us

\[P(E = e_j) = \left(\frac{1}{M+1} \right)^N \sum_{i=0}^{M} \left(a_0^j, \ldots, a_{i-1}^j, a_i^j - 1, a_{i+1}^j, \ldots, a_M^j \right) = \left(\frac{1}{M+1} \right)^N \left(a_0^j, \ldots, a_M^j \right). \]

From this we can compute the entropy \(H(E) \) without too much trouble:

\[H(E) = \left(\frac{1}{M+1} \right)^N \sum_j \left(a_0^j, \ldots, a_M^j \right) \left(N \log(M+1) - \log \left(a_0^j, \ldots, a_M^j \right) \right). \]
However, the conditional entropy is more complicated, but is expressible. Therefore, we wrote Matlab code to calculate the mutual information, which is conjectured to achieve capacity, when both the clueless senders act in a semi-uniform manner and Alice acts in a totally uniform manner. Local exploration of nearby points all yield lower mutual information values.

Table 1 tabulates the results of numerical calculations of capacities for different combinations of values of N and M using Matlab. We conjecture that when Alice acts in a totally uniform manner (that is every Alice probability is $1/(M+1)$) that capacity is achieved when the p values are the same, and this capacity is the lower bound for all capacities. The table gives capacity with p fixed at $1/(M+1)$, which we determined numerically to be less than the capacity for other values of p.

4 Discussion of Results

![Graph showing capacity for different N values](image)

Fig. 12. Capacity for $N = 1$ to 4 clueless senders and $M = 2$ receivers

Figure 12 shows the capacity as a function of p with $M = 2$ receivers, for $N = 1, 2, 3, 4$ clueless senders. In all cases, the minimum capacity is realized at $p = 1/3$, and the capacity at $p = 1$ is $\log 3$. As N increases, the capacity decreases, with the most marked effects at $p = 1/3$.

In Figure 12, the capacity (of course under the semi-uniformity assumption for C_i which is in force throughout the report) was determined numerically for
any choice of A. However, for the remaining plots, we applied the semi-uniformity conjecture (that Alice is better off behaving semi-uniformly if that is what the clueless senders do).

Thus, z_0 is the only free variable for Alice’s distribution in what follows.

Figure 13 shows the capacity as a function of p with $M = 3$ receivers, for $N = 1, 2, 4$ clueless senders. As expected, in all cases, the minimum capacity is realized at $p = 1/4$, and the capacity at $p = 1$ is $\log 4 = 2$. As N increases, the capacity decreases, with the most marked effects at $p = 1/4$. The minimum capacity is greater when compared to corresponding value in the $M = 2$ case (refer to plot 12).

The mutual information as a function of z_0 is shown in Figure 14 for $M = 2$ receivers and $N = 1$ clueless sender for $p = 0.25, 0.33, 0.5, 0.67$. Here, note that the curve with $p = 0.33$ has the smallest maximum value (capacity), and that the value of z_0 at which that maximum occurs is $z_0 = 0.33$. The z_0 value that maximizes the mutual information (i.e., for which capacity is reached) for the other curves is not 0.33, but the mutual information at $z_0 = 0.33$ is not much less than the capacity for any of the curves.

Figure 15 shows the mutual information curves for various values of z_0 as a function of p, with $N = 2$ clueless senders and $M = 2$ receivers. Similarly, Figure 16 shows the mutual information curves for various values of z_0 as a function of p, with $N = 2$ clueless senders and $M = 3$ receivers.

In the figure 15, note that the curve for $z_0 = 1/(M + 1) = 1/3$ has the largest minimum mutual information, and also has the greatest mutual information at
Fig. 14. Mutual information vs. x_0 for $N = 1$ clueless sender and $M = 2$ receivers, for $p = 0.25, 0.33, 0.5, 0.67$

Fig. 15. Mutual information vs. p for $N = 2$ clueless senders and $M = 2$ receivers
the point where \(p = 1 \), i.e., when there is no noise since Clueless is not sending any messages. The capacity for various values of \(p \) is, in essence, the curve that is the maximum at each \(p \) over all of the \(x_0 \) curves, and the lower bound on capacity occurs at \(p = 1/3 = 1/(M+1) \).

Also observe that the \(x_0 = 0.33 \) curve has the highest value for \(p = .33 \), but for other values of \(p \), other values of \(x_0 \) have higher mutual information (i.e., Alice has a strategy better than using \(x_0 = 0.33 \)). However, the mutual information when \(x_0 = 0.33 \) is never much less than the capacity at any value of \(p \), so in the absence of information about the behavior of the clueless senders, a good strategy for Alice is to just use \(x_0 = 1/(M+1) \). These observations are illustrated and expanded in the next two figures. Note the differences in concavity between Figure 14 and Figure 15. We will discuss concavity again later in the report.

Figure 17 shows the optimal value for \(x_0 \), i.e., the one that maximizes mutual information and hence, achieves channel capacity, for \(N = 1, 2, 3, 4 \) clueless senders and \(M = 3 \) receivers as a function of \(p \). A similar graph in [5] for \(M = 1 \) receiver is symmetric about \(x_0 = 0.5 \), but for \(M > 1 \) the symmetry is multidimensional, and the graph projected to the \((p, x_0)\)-plane where the destinations are uniformly distributed is not symmetric. However, note that the optimum choice of \(x_0 \) is \(1/(M+1) \) both at \(p = 1/(M+1) \) and at \(p = 1 \), that is, when the clueless senders either create maximum noise or when they do not transmit at all (no noise). As \(N \) increases, the optimum \(x_0 \) for other values of \(p \) is further from \(1/(M+1) \). Also observe that Alice's best strategy is to do the opposite of what the clueless senders do, up to a point. If they are less likely to send messages \((p > 1/(M+1)) \), then Alice should be more likely to send messages \((x_0 < 1/(M+1)) \), whereas if Clueless is more likely to send
Fig. 17. Value of x_0 that maximizes mutual information for $N = 1, 2, 3, 4$ clueless senders and $M = 3$ receivers as a function of p messages ($p < 1/(M + 1)$), then Alice should be less likely to send messages ($x_0 > 1/(M + 1)$).

Figure 18 shows the degree to which the choice of $x_0 = 1/(M + 1)$ can be suboptimal, for $N = 1, 2, 3, 4$ clueless senders and $M = 3$ receivers. The plot shows the mutual information for the given p and $x_0 = 1/(M + 1)$, normalized by dividing by the capacity (maximum mutual information) at that same p. Hence, it shows the degree to which a choice of $x_0 = 1/(M + 1)$ fails to achieve the maximum mutual information. For $N = 2$, it is never worse than 0.94 (numerically), but for $N = 4$, its minimum is 0.88. The relationship of suboptimality for other choices of M and N, or for other distributions, is not known.

In Figure 19, we show the lower bound on capacity of the channel as a function of p for $N = 1$ clueless sender and various values of M receivers. Numerical results show that this lower bound increases for all p as M increases, and the lower bound on the capacity for a given M occurs at $p = 1/(M + 1)$, which is indicated by the dotted lines in the figure.

For Figure 20, we take the capacity at $p = 1/(M + 1)$, which we found numerically to minimize the capacity of the covert channel, and plot this lower bound for capacity for many values of N and M. We retain the assumption that $x_i = (1 - x_0)/(M + 1)$ for $i = 1, 2, ..., M$, that is, given the semi-uniform distribution of transmissions to the receivers by the clueless senders, it is best for Alice to do likewise. Along the surface where $N = 0$, we have the noiseless channel, and the capacity is $\log(M + 1)$, which is also the upper bound for capacity for all N and M. The values along the surface when $M = 1$ give us the same values we derived in [5].

23
Fig. 18. Normalized mutual information when $x_0 = 1/4$ for $N = 1, 2, 3, 4$ clueless senders and $M = 3$ receivers

Fig. 19. Capacity for $N = 1$ clueless sender and $M = 1$ to 5 receivers
Fig. 20. Capacity for \(N = 0 \) to 9 clueless senders and \(M = 1 \) to 10.

5 Comments and Generalizations

We first note that the maximum capacity of this (covert) quasi-anonymous channel is \(\log(M + 1) \) for \(M \) distinguishable receivers, and is achievable only if there are no other senders (\(N = 0 \)), or equivalently, if none of them ever send (\(p = 1 \)), i.e., when the channel is noiseless.

Here are some of the observations from the different cases considered, under the semi-uniform assumption for the clueless senders and the semi-uniform conjecture for Alice, followed by some generalizations.

1. The capacity \(C(p, N, M) \), as a function of the probability \(p \) that a clueless sender remains silent, with \(N \) clueless senders and \(M \) receivers, is strictly bounded below by \(C(\frac{1}{M+1}, N, M) \), and is achieved with \(x_0 = 1/(M + 1) \).
2. The lower bound for capacity for a given number \(M \) of receivers decreases as the number \(N \) of clueless senders increases,
\[
C(\frac{1}{M+1}, N, M) > C(\frac{1}{M+1}, N + 1, M).
\]
3. The lower bound for capacity for a given number \(N \) of clueless senders increases as the number \(M \) of distinguishable receivers increases,
\[
C(\frac{1}{M+2}, N, M + 1) > C(\frac{1}{M+1}, N, M).
\]

These observations are intuitive, but we have not shown them to be true numerically in the general case (we did for the case that \(M = 1 \) in [5]). It is interesting to note that increasing the number of distinguishable receivers increases the covert channel capacity, which in some sense decreases the (sender) anonymity in the system (Alice has more room in which to express herself). This is a bit contrary to the intuitive view of anonymity in Mix networks, where more receivers tends to provide "greater anonymity." In this light, we note that
Danezis and Serjantov investigated the effects of multiple receivers in statistical attacks on anonymity networks [3]. They found that Alice having multiple receivers greatly lowered a statistical attacker's certainty of Alice's receiver set.

While the graphs and numerical tests support that the “worst” thing the clueless senders can do is to send (or not) with uniform probability distribution over the R_i, $i = 0, 1, 2, ..., M$, we have not proven this mathematically. Nor have we proven that, under these conditions, the best Alice can do is to send (or not) to each receiver R_i with uniform probability, $x_i = 1/(M + 1)$ for $i = 0, 1, 2, ..., M$, although the numerical computations support this. The proof in [5] of these conjectures for the case where $M = 1$ relied, in part, on the symmetry about $x_0 = 0.5$, which is not the case when $M > 1$, so another approach must be used. However, we should still be able to use the concavity/convexity results from [5]. Note that our conjecture that the best that Alice can do is to send in a semi-uniform manner, and the results illustrated in Figure 8, seem to be an extension of the interesting results of [4].

6 Conclusions and Future Work

This report has taken a step towards tying the notion of capacity of a quasi-anonymous channel associated with an anonymity network to the amount of anonymity that the network provides. It explores the particular situation of a simple type of timed Mix (it fires every tick) that also acts as an exit firewall. Cases for varying numbers of distinguishable receivers and varying numbers of senders were considered, resulting in the observations that more senders (not surprisingly) decreases the covert channel capacity, while more receivers increases it. The latter observation is intuitive to communication engineers, but may not have occurred to many in the anonymity community, since the focus there is often on sender anonymity.

As the entropy H of the probability distribution associated with a message output from a Mix gives the effective size, 2^H, of the anonymity set, we wonder if the capacity of the residual quasi-anonymous channel in an anonymity system provides some measure of the effective size of the anonymity set for the system as a whole. That is, using the covert channel capacity as a standard yardstick, can we take the capacity of the covert channel for the observed transmission characteristics of clueless senders, equate it with the capacity for a (possibly smaller) set of clueless senders with maximum entropy (i.e., who introduce the maximum amount of noise into the channel for Alice), and use the size of this latter set as the effective number of clueless senders in the system. This is illustrated in Figure 12, with the vertical dashed line showing that $N = 4$ clueless senders that remain silent with probability $p = 0.87$ are in some sense equivalent to one clueless sender that sends with $p = 0.33$.

The case in which the Mix itself injects dummy messages into the stream randomly is not distinguishable from having an additional clueless sender. However, if the Mix predicates its injection of dummy messages upon the activity of the senders, then it can affect the channel matrix greatly, to the point of eliminating
the covert channel entirely. We are also interested in the degree to which the Mix can reduce the covert channel capacity (increase anonymity) with a limited ability to inject dummy messages.

In future work we will analyze the situation where we have different (and more realistic) distributions for the clueless senders. We are also interested in different kinds of exit point Mix-firewalls, such as threshold Mixes, timed Mixes (where the time quantum is long enough to allow more than one message per sender to be sent before the Mix fires), timed-pool Mixes, and systems of Mixes.

7 Acknowledgements

We thank the reviewers of PET2004 and Andrei Serjantov for their helpful comments on the shorter conference version [7] of this report.

References