X9.82 Part 3
Number Theoretic DRBGs

Don B. Johnson
NIST RNG Workshop
July 20, 2004
WHY?

- Asymmetric key operations are about 100 times slower than symmetric key or hash operations.
- Why have 2 DRBGs based on hard problems in number theory?
- Certainly not expected to be chosen for performance reasons!
Some Possible Reasons

- Do not need lots of random bits, but want the potentially **increased assurance**
- Already using an asymmetric key algorithm and want to limit the number of algorithms that IF broken will break my system
- Have an asymmetric algorithm accelerator in the design already
Performance Versus Assurance

- As performance is not likely THE reason an NT DRBG is included in a product
- Make the problem needing to be broken as **hard as possible**, within reason
- This increases the assurance that the DRBG will not be broken in the future, up to its security level
Quick Elliptic Curve Review

- An elliptic curve is a \textit{cubic equation} in 2 variables X and Y which are elements of a field. If the field is finite, then the elliptic curve is finite.
- Point addition is defined to form a group.
- ECDLP Hard problem: given $P = nG$, find n where G is generator of EC group and G has order of 160 bits or more.
Elliptic Curve $y^2 = x^3 + ax + b$

Addition

$y - y_1 = \lambda (x - x_1)$

$\lambda = \frac{y_2 - y_1}{x_2 - x_1} = \text{slope}$

(x_1, y_1)

λ

y_2, x_2

y_1, x_1

y_3, x_3

(x_2, y_2)
Toy Example: The Field \mathbb{Z}_{23}

- The field \mathbb{Z}_{23} has **23 elements** from 0 to 22
- The “+” operation is addition modulo 23
- The “*” operation is multiplication mod 23
- As 23 is a prime this is a field (acts like rational numbers except it is finite)
The Group \mathbb{Z}_{23}^*

- \mathbb{Z}_{23}^* consists of the 22 elements of \mathbb{Z}_{23} excluding 0

\[
\begin{align*}
5^0 &= 1 & 5^8 &= 16 & 5^{16} &= 3 \\
5^1 &= 5 & 5^9 &= 11 & 5^{17} &= 15 \\
5^2 &= 2 & 5^{10} &= 9 & 5^{18} &= 6 \\
5^3 &= 10 & 5^{11} &= 22 & 5^{19} &= 7 \\
5^4 &= 4 & 5^{12} &= 18 & 5^{20} &= 12 \\
5^5 &= 20 & 5^{13} &= 21 & 5^{21} &= 14 \\
5^6 &= 8 & 5^{14} &= 13 & \text{And return} \\
5^7 &= 17 & 5^{15} &= 19 & 5^{22} &= 1
\end{align*}
\]

- The element 5 is called a generator
- The “group operation” is modular multiplication
Solutions to $y^2 = x^3 + x + 1$ Over \mathbb{Z}_{23}

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0, 1)$</td>
<td>$(6, 4)$</td>
<td>$(12, 19)$</td>
</tr>
<tr>
<td>$(0, 22)$</td>
<td>$(6, 19)$</td>
<td>$(13, 7)$</td>
</tr>
<tr>
<td>$(1, 7)$</td>
<td>$(7, 11)$</td>
<td>$(13, 16)$</td>
</tr>
<tr>
<td>$(1, 16)$</td>
<td>$(7, 12)$</td>
<td>$(17, 3)$</td>
</tr>
<tr>
<td>$(3, 10)$</td>
<td>$(9, 7)$</td>
<td>$(17, 20)$</td>
</tr>
<tr>
<td>$(3, 13)$</td>
<td>$(9, 16)$</td>
<td>$(18, 3)$</td>
</tr>
<tr>
<td>$(4, 0)$</td>
<td>$(11, 3)$</td>
<td>$(18, 20)$</td>
</tr>
<tr>
<td>$(5, 4)$</td>
<td>$(11, 20)$</td>
<td>$(19, 5)$</td>
</tr>
<tr>
<td>$(5, 19)$</td>
<td>$(12, 4)$</td>
<td>$(19, 18)$</td>
</tr>
<tr>
<td>\emptyset</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are **28 points** on this toy elliptic curve
ECC DRBG Flowchart
Unlooped Flowchart

S0 → S1 → S2

R1 → R2
3 Facts and a Question

1. Randomness implies next bit unpredictability
2. The number of points on a curve is approximately the number of field elements
3. All points \((X, Y)\) have an inverse \((X, -Y)\) and at most 3 points are of form \((X, 0)\)

Q: Can I use the X-coordinate of a random point as random bits?
X-Coordinate Not Random

No, I cannot use a raw X-coordinate!

As most X-coordinates are associated with 2 different Y-coordinates, about half the X values have NO point on the curve,

Such X gaps can be considered randomly distributed on X-axis

Look at toy example to see what is going on
Toy Example of X Gaps

Possible X coordinate values: 0 to 22
X values appearing once: 4
Twice: 0, 1, 3, 5, 6, 7, 9, 11, 12, 13, 17, 18, 19
None: 2, 8, 10, 14, 15, 16, 20, 21, 22
An X coordinate in bits from 00000 to 10110
If I get first 4 bits of X value of 0100a, I know a must be a 1, as 9 exists but 8 does not
1-bit Predictability

- If output 4 bits as a random number, the next bit is **completely predictable**!
- This property also holds for 2-bit gaps, 3-bit gaps, etc. with decreasing frequency.
- **Bad luck is not an excuse** for an RBG to be predictable!
- The solution: **Truncate** the X-coordinate. Do not give all that info out. How much?
X Coordinate Truncation Table

<table>
<thead>
<tr>
<th>Field Type</th>
<th>Truncation Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prime field</td>
<td>Truncate at least 13 leftmost bits of x coordinate</td>
</tr>
<tr>
<td>Binary Field, cofactor = 2</td>
<td>Truncate at least 14 leftmost bits of x coordinate</td>
</tr>
<tr>
<td>Binary Field, cofactor = 4</td>
<td>Truncate at least 15 leftmost bits of x coordinate</td>
</tr>
</tbody>
</table>
Truncation

- This truncation will ensure no bias greater than 2^{-44}
- Reseed every 10,000 iterations so bias effect is negligible
- To work with bytes, round up so remainder of X-coordinate is a multiple of 8 bits, this truncates from 16 to 19 bits
Quick RSA Review

- Choose odd public exponent e and primes p and q such that e has no common factor with p or q, set $n = pq$
- Find d such $ed = 1 \mod (p-1)(q-1)$
- Public key is (e, n), private key is (d, n)
- Hard to find d from (e, n) if $n \geq 1024$ bits
- $(M^e \mod n)$ is hard to invert for most M
Micali-Schnorr DRBG

\[y_i = s^e \mod n \]

1st time and at seed

\(r \) = leftmost \(x \) bits

\(s \) = rightmost \(\log(n) \times x \) bits

\(n, e, r \)

\(p, q, e, r \)

If additional_input = Null

Additional input
Unlooped Flowchart
Micali-Schnorr Truncation

- For MS truncation, we only use the RSA hard core bits as random bits.
- This has high assurance that the number theory problem to be solved is as hard as possible!
- Reseed after 50,000 iterations.
NIST/ANSI X9

Security Levels Table

<table>
<thead>
<tr>
<th>Security Levels (in bits)</th>
<th>ECC (order of G in bits)</th>
<th>MS (RSA) (modulus in bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>160</td>
<td>1024, 10 hardcore bits</td>
</tr>
<tr>
<td>112</td>
<td>224</td>
<td>2048, 11 hardcore bits</td>
</tr>
<tr>
<td>128</td>
<td>256</td>
<td>3072, 11 hardcore bits</td>
</tr>
<tr>
<td>192</td>
<td>384</td>
<td>Not specified</td>
</tr>
</tbody>
</table>
Number Theory DRBGs

Summary

- 2 Number Theory DRBGs are specified based on **ECC** and **RSA**
- Use one for **increased assurance**, but do not expect it to be the fastest one possible
- No one has yet asked for an FFC DRBG, straightforward to design from ECC DRBG, but specifying algorithm and validation method has a cost