The Information Assurance Advisory Council (IAAC) is a private sector led, cross-industry forum dedicated to promoting a safe and secure Information Society. IAAC brings together corporate leaders, public policy makers, law enforcement and the research community to address the security challenges of the Information Age.

IAAC is engaged with Government and corporate leaders at the highest levels; it produces innovative policy advice based on professional analysis and global best practice.

Corporate Sponsors

[Logos of various companies]

Government Liaison Panel

[Logos of various government agencies]
Disclaimer

IAAC’s recommendations do not necessarily represent the views of all of its members or sponsors, whether private sector or Government. Strategic interaction with Government is through a Government Liaison Panel.
Foreword

When confronted by a corporate “incident” that requires investigation, a surprising number of competing demands soon make themselves apparent. Owners, directors, and managers need to understand and explain to all employees that knowledge and data are key business assets, to be developed and protected accordingly. They need to understand the key strategic and management issues, the extent and nature of their obligations and the implications, in terms of resources and processes. The guide draws key lessons from conventional disaster recovery situations, pointing out that main boards should maintain supervision, ensuring adequacy of reporting, having delegated action to a specialist team. The detailed role of senior management is set out.

This Guide is a timely update of Peter Sommer’s original report, first published in 2005. The report highlights the major data losses in government departments in 2007 and 2008. These losses were largely attributable to a lack of understanding and inadequate leadership and management from board level down to individual business units. But data losses were not limited to government departments alone. Private sector enterprises suffered equally damaging losses.

The guide takes account of amendments to law, placing measures requiring businesses to assist law enforcement agencies in the handling of encrypted material; extensions to the law involving pornographic material; and changes covering disclosure of documents in electronic form.

Peter Sommer identifies the need for a Forensic Readiness Plan, closely related to a Disaster Recovery Plan. He highlights the importance of enterprises having sound plans to identify, collect and preserve digital evidence in forms that will prove robust against testing in legal proceedings. With this groundwork, he judges that directors and senior managers should be able to develop a corporate plan of action that meets the specific needs of their organisation.

This is a well-researched, thorough and well set out report, which merits careful study in order to enable appropriate leadership, management and governance measures to be taken by enlightened boards.

Sir Edmund Burton
Chairman, Information Assurance Advisory Council
About the Author

Peter Sommer (peter@pmsommer.com) carried out his first digital investigation in 1985, a suspected internal fraud in a financial institution. Since 1995 he has frequently appeared as an expert witness in many leading criminal and civil trials involving complex computer evidence. Casework has included charges of high-value fraud, industrial espionage, defamation, theft of intellectual property, software counterfeiting and piracy, disputes over software ownership, regulatory disputes, solicitors’ disciplinary proceedings, global computer misuse, large-scale distribution of paedophile material, multiple murder, narcotics trafficking, terrorism, “phishing”, sale of counterfeit artwork, theft of trade secrets, defamation and state corruption.

His first degree was in law; in the course of a long professional career he has carried out many non-litigious post-incident investigations and acted as risk analyst for leading insurers and loss adjusters.

For seventeen years he taught at the London School of Economics, helping develop its social science-orientated approach to information assurance. He ended up as a Visiting Professor. He is currently a Visiting Reader, Faculty of Mathematics, Computing and Technology, Open University where he is course consultant on their Forensic Computing and Investigations course.

His research and public policy work has concentrated in two principal areas: the reliability of digital evidence and international cyber security policy. He was the joint lead assessor for the digital forensics speciality in the Home Office-sponsored Council for the Registration of Forensic Practitioners and currently advises the Forensic Science Regulator. He is the co-author of the 2011 OECD study Reducing Systemic Cyber Security Risk. Peter Sommer frequently appears in television and in the print media as a pundit on cyber security issues, is former Parliamentary Specialist Advisor, gives evidence to Select Committees and sits on a number of Whitehall Advisory Panels.

www.pmsommer.com

Disclaimer

This publication is intended to provide a general overview of the issues and to indicate sources of further information. The advice tendered should only be used together with analyses specific to individual organizations and as part of a broader management strategy. References to the law should not be taken to be legal advice. Neither Peter Sommer nor the Information Assurance Advisory Council will accept responsibility for any losses or damages incurred as a result of use of material contained in this publication.
Acknowledgements

A number of people offered comments on the previous edition as well as reading in draft this edition. I wish to thank all of them and in particular for this edition, Ian Walden, Duncan Hine and John Austin. I would like to thank IAAC for hosting this publication. Any mistakes are my own.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>4</td>
</tr>
<tr>
<td>Executive Summary</td>
<td>9</td>
</tr>
<tr>
<td>1 Introduction: the Need for Digital Evidence; Requirements for E-</td>
<td>13</td>
</tr>
<tr>
<td>Disclosure</td>
<td></td>
</tr>
<tr>
<td>2 Digital Investigations And Digital Evidence</td>
<td>17</td>
</tr>
<tr>
<td>3 Life-Cycle Of Incidents And Investigations</td>
<td>20</td>
</tr>
<tr>
<td>4 Overall Management Aims</td>
<td>23</td>
</tr>
<tr>
<td>5 Risk Scenarios: surveying for evidence sources</td>
<td>25</td>
</tr>
<tr>
<td>6 “Good” Evidence</td>
<td>29</td>
</tr>
<tr>
<td>6.1 Admissibility</td>
<td>29</td>
</tr>
<tr>
<td>6.2 Weight of Evidence</td>
<td>30</td>
</tr>
<tr>
<td>6.3 Continuity of Evidence</td>
<td>30</td>
</tr>
<tr>
<td>6.4 Cyber-Evidence in Practice</td>
<td>32</td>
</tr>
<tr>
<td>6.5 Continuity of Digital Evidence</td>
<td>33</td>
</tr>
<tr>
<td>7 Devising The Corporate Plan Of Action</td>
<td>34</td>
</tr>
<tr>
<td>8 Issues For The Future</td>
<td>38</td>
</tr>
</tbody>
</table>

Appendix 1: Preservation of Evidence – Guidelines

- Council of Europe Cybercrime Convention 43

Appendix 2: Preservation of Evidence – Individual Procedures

- Individual Workstations/Personal Computers 47
- Evidence From Keyloggers 50
- Large and Medium Computer Systems 51
- Corporate Networks 53
- Email 55
- Personal Digital Assistants/Tablets 57
- Mobile Phones / Smart Phones 58
- Other Storage Media: Cameras, Thumbdrives, Media Players and Other Portable Media 62
- Satnav Devices 63
- Telecommunications Data and Content 64
- IP Addresses 67
- Data from Internet Service Providers 70
<table>
<thead>
<tr>
<th>Evidence From The Web</th>
<th>71</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidence from Web Servers</td>
<td>73</td>
</tr>
<tr>
<td>Evidence from Computer Intrusions</td>
<td>74</td>
</tr>
<tr>
<td>CCTV Equipment</td>
<td>74</td>
</tr>
<tr>
<td>Appendix 3: Admissibility of Evidence from Computers</td>
<td>78</td>
</tr>
<tr>
<td>Appendix 4: Employer Considerations in Carrying out Surveillance on Employees</td>
<td>81</td>
</tr>
<tr>
<td>Appendix 5: Problems of Disclosure and Confidentiality</td>
<td>85</td>
</tr>
<tr>
<td>Civil Procedure</td>
<td>85</td>
</tr>
<tr>
<td>Third Party Disclosure in Civil Proceedings</td>
<td>88</td>
</tr>
<tr>
<td>Criminal Procedure</td>
<td>89</td>
</tr>
<tr>
<td>Police Powers to obtain Third-Party Material</td>
<td>91</td>
</tr>
<tr>
<td>Appendix 6: Problems of Obscene and Indecent Material</td>
<td>93</td>
</tr>
<tr>
<td>Appendix 7: Encryption Issues</td>
<td>96</td>
</tr>
<tr>
<td>Appendix 8: UK Law Enforcement Resources and Structures</td>
<td>99</td>
</tr>
<tr>
<td>Appendix 9: Document Retention / Good Practice Guidance – National and International Standards for Records Management</td>
<td>103</td>
</tr>
<tr>
<td>Appendix 10: Additional Resources</td>
<td>106</td>
</tr>
<tr>
<td>Glossary of Terms Used in Digital Evidence</td>
<td>108</td>
</tr>
</tbody>
</table>
Executive Summary

Can you prove that an electronic transaction has taken place or an event within cyberspace has occurred? Or, alternatively, can you prove that they cannot have happened? A critical feature of the vast majority of computer systems, and hence an essential element in the Information Assurance agenda, is the ability to produce evidence. Where litigation or criminal prosecution is in prospect there is a further requirement on those who run or own computers: the need to identify and preserve digital material which the legal system says should be disclosed to opponents in civil litigation and to defendants accused of crimes.

Businesses, not-for-profit organisations and indeed many individuals must expect that from time to time they will find themselves involved in legal proceedings. When that happens they will need to be able to produce admissible, reliable evidence in support of their position. More than that, in civil proceedings, they will be required to disclose the existence of any material which might assist their opponent. In criminal cases, where the organisation has been the victim of, or scene of, a crime, there will also be an expectation that admissible reliable evidence can be produced. Even if you are not directly involved in a dispute, you and your organisation may be the subject of a Court Order to produce certain documents which are essential to the proceedings.

Often, a great deal of this evidence will be digital form. There are now almost no organisations that do not deploy computers and data extensively both for their own internal purposes and as the means by which they interact with the outside world - in the form of customers, suppliers, the public and the government. Some of the digital records that are created will be formal, part of the central operations of that business. But many more, often of equal importance in typical legal proceedings, will be informal. These informal records include apparently casual emails, social networking messages and activity that takes place on personal computers and smart phones.

Reacting to the needs of the legal system is a non-trivial exercise for which few organisations are well-prepared. Although many businesses now understand the need for and have disaster recovery plans, it is still the case that the Forensic Readiness Plan is a rarity.

The purpose of this publication is to explain what is involved. Ideally it is being read by organisations that do not currently face legal proceedings but wish to plan against that eventuality. But there is also significant guidance for those who have to take immediate action because legal proceedings are now a reality.

Three separate sorts of people need to be involved in the process and this publication is aimed at all three.

- **Owners, directors and managers of an organisation.** They need to understand the extent of their obligations and to provide the resources and framework within which evidence and disclosure takes place.

- **Legal advisors.** Lawyers will know in general terms the expectations of the courts – these appear in the Civil and Criminal Procedure Rules and
elsewhere. But these have to be interpreted in terms of how each organisation actually runs itself.

- **Computer specialists**, who may be CIOs, CISOs, security professionals or support engineers, who will carry out much of the practical work of identifying material, collecting and preserving it safely, and delivering it in a usable and admissible form.

To an extent, all three sets of people need to understand each other’s practical problems.

The purpose of this Guide is to make directors, managers and their professional advisors aware of the issues involved in collecting, analysing and presenting digital evidence. The first third deals with the main management problems and the remainder provides detail of some of the practicalities of implementation.

The overall message is the importance of having a corporate Forensic Readiness Program.

The first part of this guide is directed at major decision-makers, corporate strategists and their senior advisers, including lawyers. It covers the following:

- explaining the legal requirements of “evidence” and the problems of admissibility;
- showing the life-cycle of incidents and how evidence collection needs to be integrated into regular crisis management, incident response and litigation plans;
- explaining the impact of the disclosure rules in civil litigation and in criminal procedure;
- showing the management planning, processes and disciplines necessary if an organisation is to emerge with the greatest possible range of options;
- providing a scheme for deciding the resources that will be required and when and how far requirements can be outsourced to specialist third parties;
- the handling of obscene and paedophiliac material;
- the handling of encrypted material;
- points of contact in law enforcement agencies;
- pointers to further information;
- a glossary

In effect there is an eight-step process:
Throughout this guide background and more technical detail is omitted from the main narrative but appears in the second half as a series of appendices. The guide cannot give more than an overview of the issues as they apply to a wide range of generic organisations. Success will depend on the extent to which directors and senior managers take these ideas forward and adapt them to the specific needs and features of their own organisations.

Lawyers called upon to provide detailed guidance will also find some of the technical material on types of evidence and methodologies for acquisition helpful.

Although this guide is designed for use within the United Kingdom and the descriptions of the law refer to English law, many of the principles are universal and will apply in other jurisdictions.

This is the third edition of a publication that first appeared in 2005. Although the general principles have not changed much else has, for example, in terms of the capabilities and capacities of computers, the growth in numbers and sophistication of smart phones and the development of social media such as Facebook and Linkedin

Information and Communications Technology (ICT) has continued its rapid evolution and this is having an impact on how investigations involving digital evidence are carried out. Increasingly closed circuit television (cctv), a vital resource of physical security and which used to be archived to video tape, is now digitally stored and hence capable of digital examination. Telephony based on internet protocols (VOIP) is no longer a fringe experiment but a substantial and growing alternative for businesses and private individuals – there are many problems of how evidence from VOIP may be collected and handled. More and more companies are routinely recording telephone traffic, but there are both technical and legal problems associated

- identify the main likely threats faced by your organisation
- identify what types of evidence you are likely to need if you have to proceed to civil litigation or criminal proceedings
- identify how far you may have that evidence already
- identify what you will need to do to secure additional essential evidence
- discover enough of your counter-party’s use of computers to be able to negotiate disclosure
- familiarise yourself with potential legal problems such as admissibility, data protection, human rights, limits to surveillance, obligations to staff and others, disclosure in legal proceedings
- identify the management, skills and resources implications for your organisation
- turn the results into an action plan – which will need regular revision as the organisation and its ICT infrastructure develops.
with its use in court. The day of “ubiquitous computing” – any information anywhere – is upon us via cloud services. These and the growth of other forms of out-sourcing present problems which are partly technical – how does one deal with virtualised computer environments? – but also contractual: what can one expect of the out-sourcing facilities company and how may your contract with them impact on your obligations to a court and to regulators?

There have been some important amendments to relevant law. We now have in place measures which require businesses, in particular circumstances, to assist law enforcement agencies in the handling of encrypted material. There are also extensions to the law involving pornographic material.

One of the most significant changes has come via the provision of specific rules covering disclosure of documents in electronic form.

All of these reasons have persuaded us to issue a substantial new version of the guide at this point rather than simply carry on updating the downloadable file that has been available on the IAAC website.
1 Introduction: the Need for Digital Evidence; Requirements for E-disclosure

Since the early 1990s and in particular in the wake of the IRA-inspired bombing campaigns, prudent organisations have felt the need to have a Disaster Recovery or Business Contingency Plan. The events anticipated are usually characterised as high impact/low frequency; they don’t happen very often but when they do they threaten the continued existence of the organisation.

The purpose of such plans is to reduce the panic, to know in advance who should be doing what to speed recovery, to set up procedures, to buy in external resources and facilities. Even though it is impossible to predict the form and direction of any specific catastrophe, the existence of generic plans is now regarded as essential to survival.

But much more common than the catastrophic event is the one where there is a threatened legal outcome. Examples include disputed transactions, suspected fraud, employee problems, complaints of negligence, “smaller” cyber attacks, theft of data. These may be comparatively low impact but they are also high frequency events; most organisations will experience some form of them over the period of just a few months and some may expect them daily.

Common to all of them is the need for evidence, usually in digital form, to support the organisation’s position. Hence the need for a Forensic Readiness Plan, closely related to the Disaster Recovery Plan.

Evidence is required in a very wide range of circumstances, for example:

- in disputed transactions;
- in allegations of employee misbehaviour;
- to show compliance with legal and regulatory rules;
- to avoid charges of negligence or breach of contract;
- to assist law enforcement in criminal and anti-terrorist investigations;
- to meet disclosure requirements in civil claims;
- to support insurance claims after a loss.

Common to all of them is the need for evidence, usually in digital form, to support the organisation’s position. Hence the need for a Forensic Readiness Plan, closely related to the Disaster Recovery Plan.

There is an unfortunate tendency to label “hi-tech” crime as somehow distinct from other forms of criminal activity. In practice, given the extent to which nearly all businesses and very large numbers of people use computers and other digital devices, there is now an extraordinary range of circumstances in which a criminal investigation may need to follow up evidence in some digital form. And that can include such unobvious categories as murder, narcotics trafficking and terrorism. Increasingly therefore, the problem is not “How do we tackle hi-tech crime?” (which then invites the problem of defining the precise scope of “hi-tech crime”) but how do we embed into our regular investigative processes the specific skills and resources needed to handle evidence in digital form?
The detail of the problems that arise when an organisation needs to produce evidence may be “techie”, but the implications for the continued smooth running of the organisation require proper control from, and the full understanding of, the organisation’s most senior decision-makers.

“Forensic Computing” is now an established set of disciplines and the very high standards now in place for preserving material from personal computers create high expectations of other forms of digital evidence, including those from large corporate systems and networks, across the Internet and the families of personal digital assistants (PDAs) and tablets, mobile phones and portable media units.

Unless the organisation has developed a detailed planned response to typical risk scenarios, much potential evidence will never be collected or will become worthless as a result of contamination. Moreover, during an investigation, the organisation will be constantly faced with a dilemma: lose business when essential systems are switched off so that evidence can be properly preserved; or be profoundly handicapped and incur losses because evidence cannot be produced. What is needed is a forensic readiness plan.

As more and more transactions from the commercial world, government and private individuals exist only in digital form, the only way in which you can prove that something has happened – or failed to happen – is via digital evidence. In the digital world people leave digital footprints of their activities from which their actions and intentions can be inferred.

But digital evidence is often highly volatile and easily compromised by poor handling. The chances of success in litigation or successful criminal prosecution by law enforcement agencies depend heavily on the availability of strong evidence. Failure in civil litigation means financial loss, including legal expenses; a failed criminal prosecution can also generate reputational damage to a victim. While many sensible organisations have arrangements in the event of fire, flood, failure of electricity and telecommunications services or acts of terrorism, very few have sound plans to identify, collect and preserve digital evidence in forms which will prove robust against testing in legal proceedings.

Yet demands for digital evidence are far more common than any of the subjects of conventional disaster contingency planning. Very few organisations have the management structures in place to enable them to carry out an efficient, cost-effective and low-impact digital investigation.

Following some of the major financial scandals of the late 1990s and early 2000s, new strands of legislation and regulation impose on businesses the requirement to produce and preserve a wide variety of business records. In the best known of these, the US Sarbanes-Oxley Act of 2002, there are explicit penalties for deliberate destruction of certain essential files. The Basel Committee on Banking Supervision Revised International Capital Framework of 2004 (“Basel II”) requires companies in the financial services industry to conduct a broad risk assessment of those to whom it
makes loans or in which investments are made\(^1\). The UK Combined Code of Corporate Governance applies to quoted companies and lists a wide range of compliance requirements, including operation issues and risk management\(^2\). An undercurrent to these and similar items of legislation and regulation is that material produced in electronic form is reliable. Forensic compliance services are already being set up to maintain reliable archives of essential business documents and emails, but their remit is limited. In the UK, the Freedom of Information Act 2000 states that all public sector bodies must supply requested information within 20 working days, and that such information has to be “reliable”.

Businesses are also being urged to have formal Document Retention policies, essentially an analysis and action plan to retain critical documents for specific lengths of time and then to dispose of them. “Document” includes material in electronic form. A good Document Retention policy has significant overlaps with a Forensic Readiness Program, except that the latter also considers how the “retained documents” are to be produced and analysed in legal proceedings.

During 2007 and 2008 a number of UK government departments suffered catastrophic compromises of security: losses of computers, memory sticks, CDs. A series of reports followed: Poynter on the loss of 25 million HMRC records on two CDs\(^3\), Burton on events at the Ministry of Defence\(^4\); Thomas/Walport on Data Sharing\(^5\) and Hannigan on Data Handling Procedures in Government\(^6\). Common to all of these was an emphasis on the need for formal Information Assurance policies, changes in corporate culture and the need for stronger scrutiny of security performance. After the Coalition government came into power in 2010 a pre-existing body called the Office of Cyber Security was combined with the Central Sponsor of Information Assurance to produce the Office of Cyber Security and Information Assurance (OSCIA). Implicit rather than explicit in all of these recommendations and activities is the need to be able to prove that appropriate levels of care have in fact been exercised.

Even less appreciated, at least outside the world of specialist litigators, are the requirements for e-disclosure. In civil law, disclosure is the formal process by which parties to claims give each other copies of the documents in their control which are material to the issues in the claim. The aim of disclosure – referred to as “discovery” in older procedures and in the USA – is to ensure that the parties and court are fully aware of all the circumstances and to support what the Civil Procedure Rules describe as the “over-riding objective” of ensuring that the parties are an equal footing, saving expense, dealing with the case in ways which are proportionate and ensuring that it is

\(^3\) http://www.hm-treasury.gov.uk/media/0/1/poynter_review250608.pdf
dealt with expeditiously and fairly. Disclosure is not an option and absence of fair disclosure can cause adverse outcomes for those who fail to perform.

It takes place in two stages. First, the parties exchange a list of documents. Secondly, the parties allow their opponents to inspect the disclosed documents, unless they are legally privileged. Traditionally this has taken place by providing photocopies, or physical inspection of the originals. “Documents” has a very wide definition and can include emails, disks, audio and video cassettes, computer files, computer programs and other similar material. Since October 2010 there has been in place a specific “Practice Direction” PD(31B) and accompanying questionnaire to cover Electronically Stored Information (ESI). Many of the requirements are non-trivial. For example, parties have to conduct a “reasonable” search for such material but are also expected to co-operate with each other over such matters as formats for delivery of material and methods by which such material, which can easily be very extensive, can be searched. The opportunities for costs to run out of control are considerable.

This guide aims to help directors, senior managers and their legal advisers to understand the key strategic and management issues. It is designed to anticipate the need for provision of digital evidence and investigations and for e-disclosure by setting up management procedures, acquiring appropriate resources and identifying third-party sources of emergency assistance. For lawyers, it provides an overview of the types of digital evidence and the associated problems of probative value, admissibility and disclosure. But it is only a starting point – other, more specialist publications will need to be consulted while a detailed plan is formulated.

While the detail of collecting and analysing digital evidence is substantially a matter of deploying technical skills, success in doing so depends heavily on the level of careful pre-planning. As we will see, in the middle of an incident there are often important choices to be made between the proper preservation of evidence – which may involve shutting down central computer services for the duration – and the continuity of the business. These are decisions for the business’s most senior managers, not computer technicians or hurriedly-hired external consultants. Again, if planning is poor, key personnel may find themselves being diverted into supporting investigatory and legal processes instead of running the business. The text and appendices to this guide will help to start the process of establishing a proper corporate strategy.

Digital Investigations and Digital Evidence

The triggers for digital investigations are not confined to the obvious cybercrime spectaculars which capture media attention. Far more common are relatively low-level events such as contractual and employment disputes which, if not handled properly, can still cause considerable direct and indirect losses to organisations. One or more of these events will happen to most organisations within any given year, and the triggers for these can include suspected, attempted or actual:

- frauds perpetrated by employees or third parties;
- contractual disputes;
- allegations of breach of duty of care;
- email and Internet abuse;
- online defamation;
- employee disputes;
- sexual harassment;
- acquisition and storage of pornographic and paedophilic material;
- theft of confidential data, data theft and industrial espionage;
- theft of source code and software piracy;
- unauthorised access by employees;
- unauthorised access by outsiders (“hacking”) and unauthorised data modification (viruses, Trojan horses, etc.);
- theft of corporate computer resources for private exploitation;
- use of corporate computer resources to facilitate file-sharing which violates third-party intellectual property rights or are obscene or indecent;
- use of corporate computer resources as one stage in a complex criminal act and where a third party is the intended victim;
- failure of an organisation’s computer systems, causing damage to third parties and giving rise to legal claims for breach of contract or in negligence;
- failure of an organisation’s computer systems such that the organisation wishes to sue suppliers for breach of contract;
- extortion attempts, whether based on physical threats or logical attacks such as distributed denial of service;
- “phishing”, where someone is induced to give away important confidential information to a fake website – businesses may either lose information in this way or find that their own website is being mimicked by phishers;
- denial of service during the organisation cannot function, resulting both in a loss of revenue but also the possibility of third-party consequential claims; the perpetrators may be “recreational” hackers, “hacktivists” seeking to promote an ideological agenda, or criminals in support of an attempt at extortion;
- terrorist-motivated attacks; and
- insurance claims arising out of the above.

Traditional disaster contingency plans prepare for Low Frequency/High Impact events. These can occur in the ICT domain as well, but one has also to prepare for High Frequency/comparatively Low Impact events.
Organisations can find themselves drawn into computer investigations against their will. In civil proceedings the other party is often entitled to demand disclosure or discovery of computer-derived materials. There are also procedures under which a court and Order the provision of documents to aid litigation between two other parties. In criminal proceedings, even though the organisation may be a victim or otherwise a wholly innocent bystander, requests for disclosure from a computer system may be made by the defendant’s legal team.

Attempts at investigation involving computers often fail because of mistakes made at a very early stage – essential digital evidence is ignored, destroyed or compromised and suspects are inappropriately handled. The very fact of having to start such an investigation can create a crisis within a victim organisation. The crisis then needs to be managed. These are some of the main questions that will need to be addressed and which we will be considering later:

- To whom should initial suspicions be reported?
- Who runs the investigation within the organisation?
- Who needs to be involved?
- How should the investigation be carried out?
- What important procedures need to be followed?
- What are the characteristics of good evidence?
- What steps are necessary to identify “relevant” digital evidence – and once located, how can it be reliably preserved?
- What legal obligations exist during such an exercise?
- What may third parties be able to demand by way of “disclosure”?
- How can the investigation operate effectively without hindering day-to-day activities or promoting a crisis of confidence with greater potential for damage than the original wrong?
- How much external help is needed – and what kind?
- Do suspected crimes always need to be reported to the authorities?
- Once a suspicious incident has been reported, how should the relationship with law enforcement and the courts be managed?
- How does an organisation’s senior management retain control of the agenda and direction of an investigation? And how does it relate this to its top-level obligations to keep the organisation’s business functioning normally?

The arrangement of this guide is as follows. First, it looks at the life-cycle of incidents and investigations: without an appreciation of organisational activity, planning is impossible. Second, it develops an understanding of the various overall management aims during an incident so that possible conflicts can be identified (and hopefully be resolved in advance).

Third, the likely risk scenarios that might face a specific organisation are identified. This process has something in common with traditional security and contingency planning analysis. The aim here is not to develop preventative or detective measures, but to elucidate the kinds of digital evidence that are likely to be required for each scenario.
Finally, the general characteristics of “good” evidence and the particular problems of handling digital evidence are considered, and the main types identified. These aspects inform us as to the standards that need to be strived for, and the traps that may snare an organisation if it fails to consider the types of evidence likely to be required.

With this groundwork, directors and senior managers should be in a position to devise a corporate plan of action that is specific to their organisation. This has to cover risk analysis, management aims, management structures (including appropriate reporting), core procedures and resourcing.
3 Life-cycle of incidents and investigations

No two computer investigations are identical. However, the timeline (see Figure 3.1) gives an indication of the number, complexity and duration of typical corporate tasks that may occur, and for which a management framework is essential. The actual details may vary considerably. It is only possible to grasp the range and extent of management decisions that may be involved during and after a computer investigation by understanding the elements in the life-cycle.

The following section concentrates on what happens in an “incident”, but a number of the features in the timeline will also apply in other circumstances, for example, if there is an unexpected third-party demand that digital evidence of various types be produced. In practice, many of the tasks enumerated here will operate concurrently; for some there will be successive bursts of activity and inactivity. The use of the word “incident” is deliberate and intended to be a neutral way of labelling events which may arise either through accident or deliberate malicious activity. (Table 3.1).

Table 3.1: Incident Lifecycle

Detection	Detection may be prompted by a dramatic event, such as the arrival of an extortion demand, obvious failure of major services. Or it could be no more than a suspicion triggered by anomalous behaviour.
Reporting	All organisations need a designated point to which reports can be made, whether corporate security, computer security, audit, the company secretary, human resources or a legal adviser. Although reporting is shown here as a single event, in practice the full extent of an incident may take some time to evolve, so there could be several reports. In addition, some reports will turn out to be false.
Diagnosis – initial	Whoever receives the report should have the skill, experience, resources and corporate clout to make an assessment of what may have happened and to provide initial guidance about how the organisation should tackle the problem.
Management actions based on initial diagnosis	At this point, the relevant executives will be informed and staff detailed to carry out specific tasks. This will usually involve setting up a special “taskforce”.
Evidence collection	This is one of the most important early stages. It includes identifying likely sources of evidence, collection under controlled conditions and preservation.
Diagnosis – mature	Initial diagnoses are likely to be wrong. Evidence collection soon moves into evidence assessment, with a consequential effect on how the problems are perceived. Few crises are so purely computer-based that the only kind of evidence is obtained from computers. The ongoing process of diagnosis will take in evidence from and about individuals and businesses and paper-based documents.
Management actions based on mature diagnosis	As the nature of the problem becomes clearer, the organisation is able to define its objectives with greater clarity and certainty. Once the immediate risks to the integrity of information systems have been resolved, corporate aims will have a more long-term focus. In the timeline, “mature management action” does not cease until the very end, once lessons have been learned.
Business/asset recovery activity	If computer systems have been compromised, there has been some interruption to business, assets have been lost or some aspect of the crisis has become public, there will need to be a business recovery phase, similar to that after premises have been affected by fire or flood, or after a conventional theft. Experience from the established disaster recovery/business contingency planning industry suggests that full recovery always takes much longer than expected. Typical tasks include: restarting computer systems; recovering lost assets; and public relations.
Remedial activity	This includes learning lessons, preventing repetition, introducing new management and audit procedures, and new security engineering facilities. But you can’t learn lessons unless you have fully investigated what went wrong; these lessons may extend beyond the immediate events to problems with corporate culture and management structure.
Civil legal activity	This covers, for example, insurance claims, asset recovery, claims for damages, negligence, breach of confidence, etc. Civil legal activity carries with the requirements of disclosure to the other side of material which affect the outcome of proposed litigation.
Law enforcement agency activity	There may be several phases of law enforcement activity: initial enquiries; collection of statements and evidence; return visits for further interviews and search for evidence; preparation for trial; and attention to defence requests for disclosure.
Criminal and regulatory proceedings	A complex criminal trial may go through several phases, including committal and the substantive trial. Further information may be requested during the trial process.

As can be seen, the value of evidence in the overall recovery plan is towards the end of the process, after all the more immediate actions have been taken. But to be truly effective, evidence identification and collection needs to commence at a very stage within an event.
Figure 3.1: Life-Cycle of Incidents

<table>
<thead>
<tr>
<th>Life Cycle</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection</td>
<td>Reporting</td>
</tr>
<tr>
<td>Diagnosis - Initial</td>
<td>Management Actions - Initial</td>
</tr>
<tr>
<td>Evidence Collection</td>
<td>Diagnosis - Mature</td>
</tr>
<tr>
<td>Business / Asset Recovery Activities</td>
<td>Management Actions - Secondary and Mature</td>
</tr>
<tr>
<td>Remedial Activity</td>
<td>Civil Legal Activity</td>
</tr>
<tr>
<td>Law Enforcement Agency Activity</td>
<td>Criminal and Regulatory Proceedings</td>
</tr>
<tr>
<td>Time Line</td>
<td></td>
</tr>
</tbody>
</table>

- **Detection**: The initial stage is characterized by the detection of an incident. This is followed by reporting, diagnosis in its initial phase, and management actions initiated at this stage.
- **Diagnosis - Initial**: After detection, the incident is diagnosed in its initial phase, where initial management actions are taken.
- **Evidence Collection**: Following diagnosis, evidence collection is carried out to gather relevant information.
- **Diagnosis - Mature**: As the investigation progresses, the diagnosis matures, and more targeted management actions are implemented.
- **Management Actions - Secondary and Mature**: Secondary and mature management actions are taken to address the incident further.
- **Business / Asset Recovery Activities**: Activities aimed at recovering assets or business operations are initiated.
- **Remedial Activity**: Remedial actions are taken to mitigate the effects of the incident.
- **Civil Legal Activity**: Legal measures are taken, including civil cases.
- **Law Enforcement Agency Activity**: Actions by law enforcement agencies are initiated.
- **Criminal and Regulatory Proceedings**: Proceedings related to criminal and regulatory issues are commenced.
- **Time Line**: The timeline represents the sequence of events from detection to completion.
4 Overall Management Aims

The types of event with which we are dealing here fall outside the mainstream activities of most organisations. The normal delicate balance of conflicting requirements within an organisation is placed at hazard whenever there is an unexpected crisis. What we are concerned with is not revenue or profit generation, but loss mitigation. A computer-related investigation is usually triggered by a crisis but can become one in its own right. Once an organisation decides to anticipate the problem there are issues about the adequacy of setting the right levels of resource. Against the risks of being unprepared are the risks of expenditure on facilities and personnel that may never be used.

Up to a point all crises, however set-off, have common features and can be handled through a common business continuity plan. So it may not matter whether a business interruption is caused by a fire, flood, terrorist action or telecommunications service failure – individual detailed business continuity plans for each of these scenarios would be very similar.

The first duty of an organisation is to survive so that it can continue to serve its customers and clients, meet its obligations to debtors, bankers, employees, the public at large and the state. In addition, commercial organisations are expected to generate profits for shareholders. Typical top-level aims during a crisis include:

- arranging for the organisation to continue with its main activities;
- rapid recovery to full operational status;
- recovery of any organisational assets that are at hazard;
- successful insurance claims;
- successful legal claims against third parties;
- meeting obligations to third parties;
- assisting law enforcement in potential criminal matters;
- realising the largest possible number of options for the organisation in terms of future action.

Not least of the difficulties is that, in computer investigations, management objectives may change as more is learned about what has taken place. In particular there will be significant conflict between the need for organisational continuity and the requirement to collect evidence reliably from the very machines that keep the organisation operating.

So, an organisation needs a management and executive framework within which crisis decisions can be made. Some key questions for consideration are as follows.

- To whom should initial reports be made?
- How is an emergent problem to be diagnosed?
- Who will assess the overall impact on the organisation?
- How will the organisation’s main management be in a position to arbitrate the key decisions?
- Who will pursue in detail the investigation, the recovery, the liaison with third parties, the possible public relations impact, the legal aspects?
Many larger organisations already have contingency plans for fire or flood, bombing, kidnap or malicious tampering with a product, for example, but there are also a number of unique features, examined below, which will need to be addressed separately. Before describing the complexion of a planning team and its role within an overall management structure, the nature of the task that it faces needs to be appreciated.

Further, the organisation will need an executive resource. This may be an existing security or contingency planning unit or extensions thereof, perhaps even a completely new unit. Each organisation will need to make its own decisions according to its needs. Finally, there is the question of how extensive that resource should be: does it require its own in-house forensic computing expertise, or can it rely on third parties, or should there be a combination of the two?
5 Risk Scenarios: surveying for evidence sources

The types of evidence that an organisation may need to collect and the methods that it uses to carry out the acquisition emerge from carrying out risk scenarios.

All prudent organisations develop their security policies on the basis of risk analysis. They collect data on the threats that their type of business might face and try to rate each hazard in terms of the frequency and cost of each potential incident. In regular security analysis, the outcome is usually a set of preventative and detective mitigating measures. In some instances, measures to mitigate damage and recover losses are added to these. The types of measures selected will include administrative changes, audit controls, the deployment of appropriate technologies, contracts for disaster recovery sites and insurance. Usually it is not possible to produce risk analysis against precise financial metrics because of the lack of accurate actuarial data – and beyond a certain point, too much effort in risk analysis is counterproductive. However, informed approximations are extremely helpful. For example, the estimated annual costs of likely breaches of security can give a strong pointer to a prudent annual budget for security measures. Risk analysis is the essential precursor to sound, panic-free risk management.

But, as it is usually practised, regular risk analysis often fails to identify the types of evidence that could and should be captured. In addition, various lower level situations – for example, disputes about transactions or employment – fall below the horizon of conventional security analysis. So, it is desirable to review all the threat scenarios from the evidence perspective and consider how it will be collected and preserved to a sufficient degree. A scenario consists of starting with a likely triggering event and then playing out, as a paper exercise, all the likely consequences and possible reactions.

For example, consider a scenario for computer disaster recovery. An essential computer service goes down (due to one of various reasons: failure of hardware or software; a fire in the building; a distributed denial of service attack). Playing out the scenario tells an organisation how soon the business becomes unable to respond to queries, the point at which revenue streams become affected, how quickly existing emergency procedures will begin to offer prospects of return to normal working, and what losses will have been incurred in the meantime.

Existing risk scenarios as well as others need to be examined from the evidence perspective. This means being able to relate activities of potential interest to the computer resources on which the activities are being carried out, and developing an understanding of the files that are being created. For each plausible risk scenario an organisation should create documentation identifying the computer resources and associated files which are likely to be of interest. For example, most businesses are vulnerable to fraud, both from employees and third parties. To prove what has happened an organisation will need at the very least the main transaction records, even if the modus operandi is not explicitly via a computer. If the activity is

8 See for, example, Risk Management and Accreditation of Information Systems, published by the Centre for the Protection of the National Infrastructure (CPNI) http://www.cpni.gov.uk/Products/bestpractice/3016.aspx
computer-mediated, access control logs, web logs and intrusion detection logs will be needed. In an employee dispute, emails, activity logs, telephone logs and access control logs may be necessary. But each business is unique and there is no substitute for doing the analysis for each plausible scenario.

It is beyond the scope of this guide to provide an exhaustive list of all the potential sources of evidence and their importance in every conceivable type of business operation. However, it is possible to identify certain baseline capabilities which the organisation needs to be able to develop. Many of these are existing records and logs, but the organisation needs to know precisely how to turn them into evidence which is unimpeachable in terms of reliability (see Table 5.1).

Table 5.1: Potential sources of evidence

<table>
<thead>
<tr>
<th>Main transaction records</th>
<th>These include all purchases, sales and other contractual arrangements at the heart of the business.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main business records</td>
<td>These include all of the above, but also all documents and data that are likely to be necessary to comply with legal and regulatory requirements.</td>
</tr>
<tr>
<td>Email traffic</td>
<td>Emails potentially provide important evidence of formal and informal contacts.</td>
</tr>
<tr>
<td>Records held by third parties</td>
<td>Where an organisation has outsourced some of its key functions to a specialist ICT business or cloud computing provider, records may not be under its immediate direct control. On what basis will it be able to produce those records?</td>
</tr>
<tr>
<td>Selected individual personal computers (PCs)</td>
<td>If individuals are under any form of suspicion, the organisation will need to be able to seize their PCs and make a proper forensic “image”, which produces a precise snapshot of everything on the hard disks (this includes deleted material which technicians may be able to recover).</td>
</tr>
<tr>
<td>Selected mobile phones / smart phones tablets/PDAs etc</td>
<td>These devices can hold substantial amounts of data. Technical methods for preserving and investigating them are more complex than those for PCs; in addition there may be additional legal problems as ownership and privacy rights may not be wholly clear</td>
</tr>
<tr>
<td>Selected data media</td>
<td>Most computer users archive all or part of their activities on external storage media. These include CD-Roms, Digital Versatile Discs (DVDs), floppy disks, tape, external hard disks, memory cards and Universal Serial Bus (USB) thumbdrives. There needs to be a routine for identifying all of these and securing them, pending examination.</td>
</tr>
<tr>
<td>Access control logs</td>
<td>All but the simplest of computer systems require a password or authenticating device before allowing admission. Usually, these access control systems can be configured to maintain records of when usernames and passwords were issued, when passwords were changed, when access rights were changed and/or terminated. In addition, many systems also maintain logs of accesses or, at least, of failed accesses. These logs, properly managed and preserved, are powerful evidence of tracking activity on a computer system.</td>
</tr>
<tr>
<td>Configuration, event, error and other internal files and logs</td>
<td>All computers contain files which help to define how the operating system and various individual programs are supposed to work. In the current generation of Windows systems, the most important set of configuration information is the registry. From this, forensic technicians can discover a great deal about recent and past activity, including recently accessed files and passwords. Often, there are important configuration files associated with individual programs. Many operating systems also generate error and other internal logs.</td>
</tr>
</tbody>
</table>
Internet activity logs | Individual PCs maintain records of recent web access in the form of the history file and the cache held in the temporary internet files folder. But many corporate networks also maintain centralised logs, if only to test quality of service and check against abuse. When properly managed and preserved, these logs are powerful evidence of activity on a computer system.

Anti-virus logs | Related to these are logs created by corporate installations of anti-virus software. These record the detecting and destruction of viruses and “trojans”. A common defence tactic is to suggest that suspicious behaviour has been caused by a rogue program; anti-virus logs often contribute to resolving such claims.

Intrusion detection logs | Larger computer systems often use intrusion detection systems as part of their security measures – they are intended to detect and prevent several forms of hacking. Producing such logs may help to identify perpetrators, or demonstrate that reasonable precautions have been taken to secure the system.

Back-up media | All computer systems need to have back-up procedures, if only to enable rapid recovery after a disaster. Some organisations back up their entire systems every 24 hours; others have in place a partial, incremental policy.

Telephone logs | Private Branch Exchanges (PABXs) usually have extensive features for recording usage activity. There may be difficulty in using these in evidence; there are also significant problems associated with intercepting the content of conversations. However, these are potentially very important sources of intelligence and evidence.

Physical security access control logs | Many buildings control physical access by the use of swipe cards or other tokens. There may be additional facilities to deal with parking or to give access to particularly sensitive areas. There is usually a central control system which generates logs – this can be extremely useful in pinpointing individuals’ movements.

CCTV recordings | Until recently cctv material was stored on tapes in analogue format. But the cost of digital storage – to fast hard-disk – has plummeted. Digital storage means that cctv images can be rapidly identified by date and time of incident. In addition motion detection and other analytic software can be deployed. At the same time the cost of cameras has collapsed as well, so that many more locations can be made the subject of surveillance.

A useful distinction can be made between material which ought to be routinely collected and available, for example, in the form of regular audit logs and additional capabilities for in depth surveillance. Here, an organisation pre-identifies certain categories of evidence, has facilities and procedures for acquiring and collecting it, but only does so against a specific need. There are two main reasons for doing this: (1) there is little point in collecting vast quantities of data against a very limited need; and (2) it is very likely that the more intrusive forms of data collection will need to be justified in law against a proportionality test. So, depending on the circumstances, increased surveillance of, for example, web usage would need to be justified against
reasonable suspicion of abuse. (The main legal issues are explored in more detail in Appendix 4.)

We will look at Document Retention policies later on (see Appendix 9), but an essential element of these is that, in addition to documents retained for such statutory purpose as company law compliance, taxation, health and safety, etc, proper regard is had to potential evidence in litigation.

It is reasonably well-known that when computer data is deleted it is often readily recovered. This applies to varying degrees to data on the hard disks of personal computers, PDAs, file servers and large corporate machines. Significant expertise in forensic digital data recovery now exists and can be applied both to substantive documents and to the various logs and configuration files mentioned previously. Data recovery is even possible if a disk has been reformatted and partially overwritten with a new “installation”. In forensic digital data work, some forms of recovery are trivially easy, whereas others may require high levels of skill and result only in data fragments, the precise significance of which may see some disagreement among experts.

For each item of desirable evidence, an organisation’s evaluation and procedures need to reflect answers to the following.

- How will the evidence be acquired, physically and practically?
- How will the evidence be preserved, and how will continuity be demonstrated?
- Are there any legal obstacles, such as data protection, human rights legislation or compliance with interception legislation such as the Regulation of Investigatory Powers Act 2000?
- Are there any contractual obstacles – for example within an outsourcing or cloud contract?
- Will the material be admissible?
- Are there likely to be any problems over disclosure?
- Where an organisation has had to rely on forensic digital data recovery, will the results be unambiguous?

The situations where these questions produce disappointing answers should prompt anticipatory action to be able to “cover” the position with more reliable sources of evidence. (Appendix 2 provides some detail on how various classes of digital evidence may be reliably acquired and preserved. Some of the legal issues are discussed in the next section.)
6 “Good” Evidence

Digital evidence must have all the attributes of other types of admissible evidence. Computer-derived evidence provides a number of challenges for the courts and for forensic procedures in general. To understand some of the issues, it is useful to consider what “evidence” is in general terms.

Evidence is that which is offered before a court to persuade it to reach a particular view of events which may be in dispute. In general, evidence may be:

- **real** – an object which can be brought to court and examined on the spot;
- **testimonial** – the eyewitness observations of someone who was present and whose recollections can be tested before the court;
- **documentary** – a business or other record in any form which, once its authenticity has been proved, can be examined for content;
- **technical** – where a forensic technician has carried out some procedures on original “real” evidence and has produced some results. Technical evidence, in the eyes of the court, is not the same as expert evidence, which also includes giving opinions;
- **expert** – the opinions of someone who is expert in a particular field and/or the conclusions of that expert after carrying out a specific investigation;
- **derived** – a chart, video, etc. created from primary evidence to illustrate how certain conclusions might be drawn.

Evidence presented in court has to satisfy tests which fall into two main categories, admissibility and weight.

6.1 Admissibility

For evidence to be admissible, it must satisfy certain purely legal tests of acceptability. This tends to be a function of jurisdictions derived from the English common law as opposed to those based on European civil codes. The best known of the admissibility rules are:

- the “hearsay” rule, which excludes reports of reports;
- the “fairness in evidence acquisition rule”, which grants discretion to judges to exclude material obtained, for example, in violation of the codes of conduct in the Police and Criminal Evidence Act 1984 and Police Act 1997;
- the broad testimonial rule that exhibits including documents need to be produced into court by a human witness who can be cross-examined; and
- the business documents rule which admits documents certified as being created in the ordinary course of business (s 117 Criminal Justice Act, 2003 and s 9 Civil Evidence 1995)

The actual rules are quite complex and have many exceptions. In the UK, intercepted data content can be used only for intelligence purposes – it cannot be admitted in evidence for a court to consider. There is however a fair wind behind those who wish to get rid of this very odd rule, at least in cases involving serious crime and terrorism. In the US the Federal Rules of Evidence help to define “admissibility” in

9 Regulation of Investigatory Powers Act 2000, see also p. 60 below.
that jurisdiction; US court decisions have produced special rules, not replicated elsewhere, to deal with the admissibility of novel scientific and technical evidence. In most European countries, where criminal procedure is dominated by the notion of an examining magistrate, admissibility rules are either absent or informal, depending largely on a “relevancy” test. In English criminal law, judges have discretion to exclude evidence unfairly acquired. There is similar discretion in civil proceedings on the basis of the “over-riding principles” in the Civil Procedure Rules.

6.2 Weight

Having satisfied the admissibility criteria, the evidence can be considered then for weight of fact – its persuasiveness or probative value. While in the final analysis “weight” is a non-scientific concept, there are a number of desirable features in non-testimonial evidence, that is, exhibits and documents of various kinds. These attributes include that an exhibit is:

- **authentic** – specifically linked to the alleged circumstances and persons;
- **accurate** – free from any reasonable doubt about the quality of procedures used to collect the material, analyse it (if appropriate and necessary) and introduce it into court. It has to be produced by someone who can explain what has been done. If a forensic method has been used it needs to be “transparent”, that is, freely testable by a third-party expert. In the case of exhibits which themselves contain statements – a letter or other document, for example – “accuracy” must also encompass accuracy of content. This normally requires the document’s originator to make a witness statement and be available for cross-examination;
- **complete** – it tells within its own terms a complete story of particular set of circumstances or events.

6.3 Continuity of Evidence

Also known as “chain of custody” in the US, continuity of evidence refers to the ability to report everything that has happened to an item of evidence from the point at which it was acquired to when it is presented as an exhibit in court. Thus, for a knife found at a scene of crime, continuity would be established by means of police notes, photographs, “bagging and tagging” of the knife in a polythene bag with the number of the tag recorded, a witness statement from an exhibits officer, and witness statements from each forensic scientist looking for blood, fingerprints, DNA, etc., which include references to handling the “bag and tag” as well as further witness statements from any forensic scientists instructed by the defence team. The process is designed to limit the opportunities for contamination or confusion, accidental or deliberate, or to pinpoint when contamination occurred. But there are also other elements which set computer-derived evidence apart, as follows.

10 The *Daubert* tests – *Daubert v. Merrell Dow* 509 U.S. 579 (1993) provides the following tests: (1) whether the theory or technique can be (and has been) tested; (2) the error rate associated with the method; (3) publication in a peer-reviewed journal; and (4) whether the technique has gained widespread acceptance.

11 s 78 Police and Criminal Evidence Act, 1984.

12 See, for example, the arguments and discussions in *Tchenguiz v Imerman* [2010] EWCA Civ 908, http://www.bailii.org/ew/cases/EWCA/Civ/2010/908.html
6.3.1 Computer data can be highly volatile
Many forms of conventional evidence are claimed to be a “snapshot” of a particular set of circumstances, but the problems are particularly acute with computers. This can create considerable difficulties over authentication as to the content and time of creation.

6.3.2 Alteration of computer data
Computer data can be easily altered without leaving any obvious trace that such alteration has taken place. Alterations in handwritten and typed documents are usually self-evident; log and account books are designed so that it is easy to detect whether an entry or page has been omitted. It can be argued that there are plenty of examples of forgery based on typed and handwritten originals, but computer-based documents can be forged with an ease and freedom from detection which is of a quite different order. It is of course entirely possible to design a computer system that thwarts certain forms of unacknowledged alteration. But, in contrast to, for example, paper-based accounts books, there are few obvious “standards” which set a measure of what to expect.

6.3.3 Contamination of computer material
As a result of the process of collecting it as evidence, computer material can be easily changed. Many forms of forensic examination run the risk of contamination. Biological samples from a subject can be intermingled with those of the examiner. But the problems with some computer-derived material are intense – the very act of starting up a computer or opening an application or file, even if there is no intention to alter anything, will create changes although they may not be immediately visible.

6.3.4 Computer evidence is usually “derived”, not direct
Much immediate computer evidence is not obviously readable by humans. Actual exhibits are often derived, manipulated and “presented” away from their point of origin. This becomes apparent as soon as one moves from the limited vision of “computer evidence” as being simply a “record or document produced by a computer”. There is nothing wholly unique about this; the typical DNA trace exhibit is not DNA itself but a purported representation in a form which aids analysis. The particular problem in relation to computer evidence is that a large number of possible and potentially “accurate” representations of original computer data can exist. What is seized may be a computer hard-disk which in turn contains large numbers of directories of files of various kinds, while what is put immediately before the court may be any of a number of purportedly accurate printouts or “screen dumps”. The large variety of possible representations of original material makes difficult the evolution of “standards” such as those existing for DNA charts, for example. And the possibilities for inaccurate representation are very much greater. Nearly always, computer-derived exhibits require that the court makes a chain of inference before reaching a conclusion.
6.3.5 Computers create as well as record and produce evidence

Traditional, paper-based account books consisted of sheets of paper onto which handwritten or typed entries were recorded manually; subsequent calculations were also substantially manual, even if a simple calculator was employed for some of the stages. But in the computerised equivalent, it is only the original entries that are input manually – all the other “records” are produced by the computer. There are many examples where computers “assemble” documents, etc. and only do so at the point at which a request is made for the document to be created. This can be true of online requests as well as conventional printouts or on-screen reports.

6.3.6 The changing ICT landscape

The ICT landscape of hardware, operating systems, software, application programs, communications protocols and social and commercial infrastructures is in constant change. The vast majority of “forensic science” deals with underlying physical, biological and chemical situations which do not change, although over time new techniques for analysing them emerge. But in ICT, significant changes are to be expected even over a five-year period. The Internet as a consumer “product” only dates from 1994/5. Specialists in digital forensics have to cope with an unparalleled rate of change but still strive to work to the same standards of rigorous verification that are expected in the more traditional forensic disciplines.

6.4 Cyber-evidence in Practice

Digital evidence can consist of, among other things:

- **content** – of a file, typically, the words and figures in a document or report, images, designs within an application file, a database or selection, emails, web pages, files downloaded;
- **meta-data** – within certain files, that is, data about data which is not immediately viewable but indicates, for example, who created a file, how many times it has been edited and when it was last printed. Microsoft word processing and spreadsheet documents may contain extensive meta-data;
- **directory data** – information about a file which is held in a system’s storage media containing details of name, various associated date and time stamps, and size;
- **configuration data** – files and directory data which help a computer and/or application programs to behave in a particular way and which may provide evidence of how and when the computer was used. On a Windows PC, this includes material found in the registry;
- **logging data** – files created by application programs and operating systems which either record activity explicitly as in audit trails and online keystroke captures, or which can be used to attempt to reconstruct events, e.g. “history”, “session”, “event” and “recent” files;
- **material from back-ups** – depending on the circumstances, any of the above;
- **forensically recovered data** – material obtained from storage media which would not normally be seen, e.g. undeleted files, files from slack space, swap files, caches, plus of fragments of any of the above;
- **eavesdropped data** – material obtained by placing a monitor across a telephone or network connection. This in turn divides into two:
 - traffic data – who called whom, when and for how long;
 - content – what was said;
- **expert interpretations** – based on any of the above in any combination.

These categories are not mutually exclusive.
6.5 Continuity of Digital Evidence

This encompasses the same underlying concepts as those for more physical types of evidence. Clearly, some types of “computer” evidence are physical objects – personal computers, disks, disk media, PDAs, mobile phones and so on – and these are bagged and tagged in the same way as the paraphernalia of street crime. Particular care may need to be taken with the storage conditions of computers, mobile phones and PDAs. Some gadgets need to be supplied with electrical power, or their internal clocks (even data) may fail. Some media may be spoiled by proximity to magnetic currents or damp.

Evidence which is in electronic format can be demonstrated to be uncontaminated if at an early stage it has been subjected to digital fingerprinting (MD5 and similar tests13) and the original digital fingerprint has compared successfully with the tendered exhibit.

But there is a further meaning to “continuity of digital evidence”: most exhibits produced to a court are derived from material originally acquired, not the material itself. Often, at the very least, it will be a printout of material originally found in digital form – there needs to be clear continuity on whether the printout is complete and reliable and who carried it out. To take the matter a little further: by itself an entire log file is indigestible; usually someone will have used software tools to look for patterns of activity that are thought to be significant. The same applies to any of the large databases that are usually at the heart of most commercial enterprise packages, which record orders received, goods despatched, send invoices and create a general ledger; it will only be selections from the database that are relevant. Again, a court is unlikely to be comfortable when presented with an entire PC; an analyst will have carried out searches for files and perhaps other patterns of usage. Continuity means that the defence team has to be in a position to trace back from the helpful derived evidence to the raw material from which it has been drawn. This is not only to ensure that the evidence has not been altered during processing, but also to establish that no mistakes have been made by the analyst or the tools deployed – and also for the defence to be able to argue that other selections and analyses may produce very different results.

There is an important practical consequence to how digital evidence is tendered in litigation. Each item needs to have an explanation of where it has come from. In the case of a file produced from a hard disk, for example, it should be referred to by its full path name, eg, from laptop computer no 23: C:\Users\User Account Name\Documents\My Documents\img\Important File.docx14

13 A file or an entire disk is subjected to a mathematical process to produce a “result”; in effect a short stream of letters and numbers. Once that file or disk has been copied the same mathematical process is re-applied and should produce the same “result”; if it doesn’t the copy is not identical to the original

14 File fragments (which don’t have a name) are referred to by the physical locations on disk
7 Devising the Corporate Plan of Action

By now it should be possible to identify the elements in a corporate plan of action in order to be able to respond to the requirements of producing digital evidence. Table 7.1 (below) provides an outline. As with any generic list, some items will be inappropriate for certain types of organisation and larger types of business may need to add further elements. Small and medium-sized enterprises may feel that the list is more sophisticated than they require; although they may lack things as a “disaster recovery team”, nevertheless this is function that they need to anticipate. The table is divided into anticipatory measures, incident management measures and longer term measures. Some of the functions can be outsourced to third-party specialists – but careful decisions will need to be made about which functions and their extent. It should also be borne in mind that at any one time there may be several “incidents” in play, operating on a variety of timescales.

Table 7.1: Outlining the corporate plan of action

<table>
<thead>
<tr>
<th>Anticipatory Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk analysis</td>
</tr>
<tr>
<td>Desirable evidence analysis</td>
</tr>
<tr>
<td>Available evidence review</td>
</tr>
<tr>
<td>Review of Document Retention Policies</td>
</tr>
<tr>
<td>Assembly of key system documentation</td>
</tr>
<tr>
<td>Review of out-sourcing and cloud contracts</td>
</tr>
<tr>
<td>Review of back-up, archiving procedures and facilities</td>
</tr>
</tbody>
</table>
Evidence collection and preservation policy and specific guides

At this point it should be possible to produce a written policy for evidence collection and preservation, plus a series of specific guides to cover particular computer resources. The guides should have a similar status to disaster recovery plans, and be subject to periodic revision and testing.

Set up incident management team

It has to be clear who is supposed to do what and to whom they report. An incident management team will require resources (see below).

Review of employment contracts, etc.

The organisation may need certain additional powers to remove any ambiguity about its right to collect certain kinds of evidence as there is the potential for clashes with, for example, human rights and data protection legislation. Adjustments in contracts of employment and notifications regarding changes of policy may be necessary.

Identification of gaps

The above exercises will probably result in the identification of gaps in response. The urgent issues (defined from the risk analysis) will need swift attention; longer term matters can be put into a future programme.

Incident management measures

Reporting point/first responder and procedures

This is the person or team to whom suspicions and fears or requirements to produce evidence are first reported. In an incident, this is the individual who will make the initial diagnosis.

Every member of the organisation should be clear about who reports should be made to. Those who receive such reports should have, among other things, excellent sober diagnostic skills. Quite often, initial fears may be exaggerated and all that is required is that information technology (IT) support is brought in for a remedy.

Incident management team

One of the key lessons from conventional disaster recovery management is that the main board of an organisation should not attempt the detail of response but, while maintaining supervision and ensuring adequacy of reporting, should delegate the task to a specialist team.

Helpful advice about Computer Security Incident Response Teams (CSIRTs) can be found at http://www.cert.org/archive/pdf/03tr001.pdf. Depending on the circumstances, this team may have strong links with existing security and contingency planning teams, although the emphasis may need to change. A typical team might include:

- the head of IT;
- the head of IT security;
- links to the board/chief executive (if not already arranged);
- a representative from corporate security;
- a representative from human resources;
- a representative from public relations;
- a lawyer (internal or external);
- a leader of specialist investigators/technicians (internal or external).
Role of top management

By implication, the role of the main management team may have, in addition to their regular duties, the following additional ones:

- supervision of the emergency management team, including specific tasking, resourcing, performance;
- assessment of diagnoses;
- review of the implications for main business activities;
- review of the implications for relationships with customers, bankers, the investment community, etc.;
- review of any specific legal requirements and regulatory obligations thought to be at risk;
- review of implications for employees and contractors, including the possibility of termination;
- consideration of the need to report suspected crimes to the authorities, the nature of liaison;
- supervision of insurance claims and asset recovery;
- supervision of public relations issues.

Resourcing – internal

A tempting option is to consider having in-house forensic computing expertise. There will probably be no shortage of techies who would love to attend courses and buy appropriate kit. Specialist vendors who have concentrated mostly on law enforcement are now expanding their products into the corporate market.

The problem for many individual organisations is that for most of the time they will have no need for forensic computing skills, but when they do, they may need very high levels of skill, and may also want it in quantity. Perhaps the best analogy is that of medical First Aid: all organisations of any size need a competent First Aider, some may be so large as to justify the employment of a few nurses and perhaps even a doctor. But very few need a permanently-employed surgeon. Thus, for most organisations, what is likely to be required is someone with a basic awareness of evidence collection issues and a knowledge of what specialist third-party suppliers can offer.

Resourcing – third-party contracts

If specialist skills are going to be required from third parties – and more often than not for most organisations this will be the case – it is better to know where they are going to come from and not rely simply on advertisements. Will the organisation need consultants for high-level strategic advice, good contacts with law enforcement and the regulatory authorities, investigatory skills or detailed technical support, and in what combinations?

In terms of likely need, a review of the firms and individuals that are available, as well as their strengths and weaknesses, is essential. As with any purchase of third-party security services it is important to establish that the company has relevant experience (as opposed to simply having an impressive background in law enforcement or intelligence) and that it is trustworthy.

It may be useful to contemplate a contract for services on a contingency basis: this enables the parties to evaluate each other and for the supplier company to have sufficient pre-knowledge of an organisation’s IT infrastructure and internal culture to be able to respond promptly.

Asset recovery, loss mitigation issues

During any incident where there has been a loss, whether tangible or reputational, the organisation will want to have specific resources for recovering assets and minimising/mitigating other losses. This is a normal security function. The existence of good-quality evidence of the types and quantum of loss will assist.
At a practical level it is important to designate a Single Point of Contact (SPOC) to deal with law enforcement requirements. This enables an organisation to track every contact with law enforcement and also simplifies the tasks of law enforcement investigators. The function is distinct from the role of a legal adviser – the SPOC will need to mediate and serve law enforcement and prosecutor requirements for access to specific evidence, background information and arrangements to interview individuals.

The SPOC should be able to respond to requests for formal disclosure. Later, they may need to make arrangements for court appearances. In a civil case involving complex evidence, a technically-aware SPOC will be required to deal with lawyers and the needs of specialist expert witnesses (on both sides). The task of SPOC could be combined with that of first responder, as overlapping skill sets are required.

Longer term measures

Programmes to address gaps in available evidence	Faced with the many issues surrounding provision of reliable digital evidence, most organisations will aim for an initial programme to meet the most urgent and obvious needs. Once this task has been achieved, any plan should be subject to periodic review and revision. Business functions and technical infrastructures tend to change significantly over time; in addition, new forms of IT-related crime become fashionable, causing a change in the requirements to produce evidence.
Improvements in overall system specification and management procedures to capture more potential worthwhile evidence	
Improved enhanced local evidence handling training	
8 Issues for the Future

For all organisations and individuals that have recognised the need to be able to capture digital evidence of important transactions and activities, the lesson is: today, whatever analysis you carry out and whatever measures you install, they will become rapidly obsolete. Already with us are ever-expanding amounts of personally-created data, ever higher speeds of data transfer, always-on portable computing, cloud computing, ubiquitous computing, remotely-located data stores protected by strong encryption and grid computing. The mid-2000s saw the growth of social networking sites and the likes of Facebook, LinkedIn and their siblings have provided a much richer, more fluid and easier to use mechanism. But their very popularity has made it much easier for investigators to identify private detail about individuals which can later be exploited. As many digital investigators will tell you: “The good news is there is much more potential evidence which may be important; the bad news is that you have to work your way through it all.”

But the implications of the use of out-sourcing and its more intense sibling, cloud computing are management issues and hence need to be discussed here.

Outsourcing and Cloud Computing: Implications for Evidence and E-Disclosure

The outsourcing of some or all of an organisation’s ICT facilities has become very attractive. Cloud computing consists of various extensions to the basic notion. In all instances the basis of the arrangement is a contract specifying performance criteria. Anything not in the contract or which cannot be readily implied as part of the contract is excluded.

At the moment there are strong anecdotal indications that few outsourcing contracts anticipate what should happen when evidence is sought or a potential litigation may be under obligations to disclose.

As a result, anyone preparing a Forensic Readiness Program will need to understand what outsourcing contracts may be in place and what their terms contain.

The main attractions of outsourcing include:

- The organisation can concentrate on its core functions and expertise and not become distracted with the problems of ICT management
- There is no need to maintain expensive specialist staff when the need for their skill may only occur every few years when a system is being changed. Specialist consultancy is purchased together with the means of directly delivering its recommendations
- Corporate accounts may benefit from the way in which capital investment is handled and tax management
- Off-shoring: purchasing semi-routine skills from countries with lower labour costs
• Capacity management: the provision of additional resources on an on-demand basis without the need for additional investment.

The main disadvantages include:

• If the contract is poorly drawn up and the outsourcer fails to perform, the penalties may be limited to the value of the out-sourcing contract and not the actual losses incurred
• The customer becomes locked into the supplier and the costs of switching supplier are prohibitive. If the customer wishes to change the ways in which it works, or modify an existing contractual arrangement, there may be little choice but to pay whatever the outsourcing supplier demands
• The organisation purchasing out-sourcing may lose contact either with customers or suppliers and may not be able fully to respond to their needs
• And, from the perspective of this Guide, it may be wholly unclear how evidence is to be produced and e-disclosure requirements met, and at what costs.

In effect an outsourcing contract can vary from total provision in which the very work stations in the customer’s premises are owned by the outsourcer and the in-house technical support staff are employees of the outsourcer, to the situation when only one or two discrete services are bought in. Among the latter, malware detection and other forms of content filtering, the purchase of web-space for publishing and e-commerce links to the banking system are common and often sensible choices. A number of industries have shared facilities for ordering and progress chasing and these may have additional common services such as email also available. As a result an outsourcing contract can be almost any size.

Cloud provision isn’t a single service either, but can operate under a variety of technical and contractual models. There are usually said to be three “service” models, though at the margins some of the distinctions become somewhat blurred:

• Cloud Software as a Service (SaaS), where what is supplied is software – low level popular examples include Google Docs, Google Calendar, Google Picasa but can also be more extensive and professional
• Cloud Platform as a Service (PaaS), where one or more “virtual” computers are supplied for the customer to install and run their software. Many businesses use this model for web-servers, particularly if the web-server is to have more sophisticated services such e-commerce and back-end customer databases
• Cloud Infrastructure as a Service (IaaS), which takes PaaS a stage further and the customer buys computer services which can be expanded as needed and where payment is on the basis of resources actually used. This can be very helpful in coping with unexpected levels of demand.

There are also said to be four “deployment” models:
• Public cloud, where services are offered to the public in general
• Community cloud, where the services are offered only within a specific industry, profession or other community
• Private cloud, where cloud technology is used within a single organisation, largely to be able to share demand for resources between different entities who may need them at different times. This is a model to be adopted by the UK Government in the G-Cloud
• Hybrid cloud, as the name suggests is one which has elements in combination of the above.

In practice, the key is what the contract – service level agreement - actually specifies. The following are some important questions to ask in relation to the availability of evidence:

• Who “owns” the data that is collected, generated and processed by the service? How accessible is to the customer? And at what cost if the precise form of the report or result has not been anticipated in the contract?
• If the documents15 are held in an encrypted form by the outsourcing / cloud service, what arrangements exist if there are lawful requirements that it be decrypted.
• Are there jurisdictional problems because the customer is in one country and the processing power and data in one or more others?
• How far are the statutory obligations of the customer to retain certain “documents” (see Appendix 9 below) being met?
• Does the contract consider the position of “Documents” that might be required as evidence?
• Does the contract contain a fee structure to address the supply of “Documents” that might be required in disclosure? In terms of material that might be needed: in what form(s) is it available – what provision is there for selection or supply in a particular format? And what costs are involved?
• In relation to “documents” which might be the subject of a court order to disclose, how might a court interpret the “in control” criterion of standard disclosure if there was a reasonable expectation that an organisation should hold such material but that it is in fact held by an outsourcing business?
• How would the integrity and completeness of the tendered documents be proved?

15 “Document” for this purpose implies any information, substantive file, database extract etc
The Changing Risk Landscape

Every time an organisation initiates an alteration or enhancement to its computing and telecommunications facilities, its risk landscape changes. The enhancement may appear to be slight – a new way of communicating with customers and partners, a decision to allow the use of new facilities on a mobile phone, the provision of access to associates of certain resources, an altered contract for the provision of services, the decision to allow and perhaps exploit, Web 2.0. and social networking facilities. The overall risk landscape is also affected by what is happening beyond the organisation: the changing demographics and their consequences of computer ownership and literacy, the new ways in which the Internet is being delivered nationally and globally, the availability of new forms of cyber attack tools.

From the perspective of an organisation’s broader information assurance policy there is now an inevitable requirement that their particular risk landscape is subject to frequent reviews and adjustments made. But within the narrower scope of this publication there are implications as well: the number of scenarios in which investigations may be deployed will almost certainly increase and also there will be more places where digital evidence may be being created.
Appendix 1: Preservation of Evidence – Guidelines

The only area where there are well-developed procedures for seizing digital evidence relates to data on hard disk – disk forensics – where a number of organisations have published guides\(^{16}\). Many of them are similar to the *Good Practice Guide* of the UK’s Association of Chief Police Officers (ACPO)\(^{17}\), which has some useful principles.

- **Principle 1**: No action taken by law enforcement agencies or their agents should change data held on a computer or storage media which may subsequently be relied upon in court.
- **Principle 2**: In exceptional circumstances, where a person finds it necessary to access original data held on a computer or on storage media, that person must be competent to do so and be able to give evidence explaining the relevance and the implications of their actions.
- **Principle 3**: An audit trail or other record of all processes applied to computer-based electronic evidence should be created and preserved. An independent third party should be able to examine those processes and achieve the same result.
- **Principle 4**: The person in charge of the investigation (the case officer) has overall responsibility for ensuring that the law and these principles are adhered to.

The Guide goes on:

Computer-based electronic evidence is no different from text contained within a document. For this reason, the evidence is subject to the same rules and laws that apply to documentary evidence.

The doctrine of documentary evidence may be explained thus: the onus is on the prosecution to show to the court that the evidence produced is no more and no less now than when it was first taken into the possession of the police.

Operating systems and other programs frequently alter and add to the contents of electronic storage. This may happen automatically without the user necessarily being aware that the data has been changed.

In order to comply with the principles of computer-based electronic evidence, wherever practicable, an image should be made of the entire target device. Partial or selective file copying may be considered as an alternative in certain circumstances e.g. when the amount of data to be imaged makes this impracticable.

\(^{16}\) See below.
\(^{17}\) Available at: http://www.7safe.com/electronic_evidence/ACPO_guidelines_computer_evidence.pdf
In a minority of cases, it may not be possible to obtain an image using a recognised imaging device. In these circumstances, it may become necessary for the original machine to be accessed to recover the evidence. With this in mind, it is essential that a witness who is competent to give evidence to a court of law makes any such access.

It is essential to show objectively to a court both continuity and integrity of evidence. It is also necessary to demonstrate how evidence has been recovered, showing each process through which the evidence was obtained. Evidence should be preserved to such an extent that a third party is able to repeat the same process and arrive at the same result as that presented to a court.

A proposed Standards for the Exchange of Digital Evidence from the International Organisation on Computer Evidence suggests a similar set of principles for the standardised recovery of computer-based evidence:

- upon seizing digital evidence, the actions taken should not change that evidence;
- when it is necessary for a person to access original digital evidence, that person must be forensically competent;
- all activity relating to the seizure, access, storage, or transfer of digital evidence must be fully documented, preserved and available for review;
- an individual is responsible for all actions taken with respect to digital evidence while the digital evidence is in their possession;
- any agency that is responsible for seizing, accessing, storing, or transferring digital evidence is responsible for compliance with these principles.

The US Department of Justice Guidelines can be found at: http://www.ojp.usdoj.gov/nij/pubs-sum/199408.htm

There is also a standard under development: ISO 27037: “Guidelines for identification, collection, acquisition and preservation of digital evidence”

Council of Europe Cybercrime Convention

The Council of Europe Convention on Cybercrime of 23 November 2001, also known as the Treaty of Budapest, is the first internationally binding legal instrument with regard to the consequences of modern information technology for criminal law and procedure. Although the Council of Europe is a regional body, the Convention

18 For a G8 conference: http://www.ioce.org/G8_proposed_principles_for_forensic_evidence.html
provides for a global framework for law enforcement in cyberspace; non-Member States of the Council of Europe such as Canada, Japan and the US contributed to the preparation of the Convention and accordingly signed and supported the agreement20. The Convention aims to provide harmonised definitions of various computer-related crimes, so that mutual cooperation and extradition can be expedited. Most jurisdictions require some equivalence between their own law and that of the country requesting assistance before they will grant an extradition request.

The Convention also extends towards issues involving evidence, both in terms of warranting methods and actual procedures. With regard to electronic evidence, Council of Europe Recommendation No. R(95)13 concerning problems of criminal procedural law connected with information technology21, adopted on 11 September 1995, states the following:

Special procedures and technical methods for handling electronic evidence should be developed which ensure and reflect the integrity and authenticity of the evidence. Legal provisions on evidence relating to traditional (paper) documents should similarly apply to electronic documents. (Principle IV.13)

The Explanatory Memorandum to the Recommendation explains the difficulties of electronic evidence as opposed to paper documents:

Among other things electronic documents can only be read by means of special hard- and software and they can be easily manipulated in such a way that the manipulation is not detectable by the eye. (Para. 152f)

The Explanatory Memorandum suggests different procedures for authentication of electronic evidence, as with the establishment of a complete chain of custody, from the person who first copied the data to the person who produced the printout for the trial, or the use of electronic signatures (para. 161).

The development of a harmonised approach in this matter at an international level is indispensable because IT offences are often cross-border in nature (para. 164). Otherwise, according to the Explanatory Memorandum, serious problems with regard to the admissibility of electronic evidence will continue to exist. (ISO 15489, the International Standard on Records Management, discussed below).

21 Available at: http://www.coe.fr/cm/ta/rec/1995/95r13.htm
Table A.1 notes some of the more important standards and initiatives.

It is fair to say that its main focus is on disk forensics, PDAs and mobile phones as opposed to larger computers and networks but there are some useful general principles, an overview of legal issues, a glossary and a list of UK police contact points. |
Obviously, the description of the law is for US readers. The overall CCIPS site contains many documents, press releases and links of considerable value to the researcher: http://www.usdoj.gov/criminal/cybercrime/
and contains references to the Council of Europe Cybercrime Treaty to which the UK is a signatory. There is also a Guide for First Responders: http://www.iwar.org.uk/ecoespionage/resources/cybercrime/ecrime-scene-investigation.pdf |
As the US-based component of standardisation efforts conducted by the IOCE, SWGDE was charged with the development of cross-disciplinary guidelines and standards for the recovery, preservation and examination of digital evidence, including audio, imaging and electronic devices: http://www.fbi.gov/hq/lab/fsc/backissu/april2000/swgde.htm |
| **Internet Request for Comments (RFC)** | Internet RFC 3227 provides the Guidelines for Evidence Collection and Archiving (http://www.faqs.org/rfcs/rfc3227.html). RFCs are one very important way in which Internet protocols and good practice are discussed and promulgated: http://www.ietf.org/rfc/rfc3227.txt |
| **CTOSE (Cyber Tools Online Search for Evidence)** | CTOSE was a research project funded by the European Commission. Its purpose was to gather available knowledge from different expert groups on all the processes involved in dealing with electronic evidence and to create a methodology on how to deal with electronic evidence that might occur as a result of disputed electronic transactions or other computer related and hi-tech crime: http://www.ctose.org/ |
ISO 17799 / ISO27000 series

ISO 17799 and now IS27000 is the International Standard for Information Security Management. It addresses many aspects of information security and internal controls, but also stresses the need for formal incident response procedures and tools. These procedures should cover:

- analysis and identification of the cause of the incident;
- planning and implementation or remedies to prevent recurrence, if necessary;
- collection of audit trails and similar evidence;
- communication with those affected by, or involved with, recovery from the incident;
- reporting the action to the appropriate authority.

The organisation that has suffered a security incident must collect evidence properly for three purposes:

- internal problem analysis;
- use as evidence in relation to a potential breach of contract, breach or regulatory requirement or in the event of civil or criminal proceedings, e.g. under computer misuse or data protection legislation;
- negotiating for compensation from software and service suppliers.

ISO 15489 / British Standards Institute PD0008

International Standard on Records Management – standards for record-keeping in electronic form

Handbook of Legal Procedures of Computer and Network Misuse in EU Countries

2005 Project to update the EC Handbook of Legislative Procedures of Computer and Network Misuse. It will include a confirmation and review of the existing information, as well as collection of legislative information relating to the 10 new member states.

ISO 27031

Guidelines for ICT Readiness for Business Continuity;

ISO 27037

ISO/IEC 27037 “Guidelines for identification, collection, acquisition, and preservation of digital evidence”,

PCI/DSS

Payment card Industry data security standard

https://www.pcisecuritystandards.org/security_standards/
Appendix 2: Preservation of Evidence – Individual Procedures

Individual Workstations/Personal Computers

The aim is to make an exact copy of the hard disk(s) as soon as possible after the computer has been seized. The exact copy must include not only all the normally visible files but encompass all the sectors of the hard disk, even if initially they appear to be empty, so that any deleted data fragments can be recovered. Technicians and investigators must avoid contaminating the evidence so that what is produced is a detailed snapshot immediately prior to seizure. The process is called “forensic imaging”.

To be carried out successfully this requires both appropriate technical products and following certain procedures. Each step in turn needs to be carefully recorded so that there is no opportunity for others to question the technician’s skills.

The main hardware product is a “write-protect” device; it is installed along the cable that connects a hard disk or similar medium to a computer and, as the name implies, allows data on the hard disk to be read but blocks all attempts at writing to it.

There are a variety of software products. Retail “imaging” products are designed to assist recovery after a hard disk failure. For PC, products such as Ghost, Acronis True Image, and Paragon (for Apple Mac, SubRosaSoft’s CopyCatX II) may not be adequate in a forensic arena as they usually concentrate only on “live” files as opposed to data that has been deleted but are still resident on disk; some retail imaging products actually add data during imaging. The Unix ‘dd’ command is a reliable and flexible standard part of the Unix operating systems and is completely free, although not easy to use. Most computer forensic practitioners use stand-alone products such as EnCase or FTK Imager. These are part of a complete disk forensics suite, but the imaging element, unlike the facilities for subsequent analysis, is free. The professional products often contain in-built integrity checking, so that an “image file” (intermediate file which either can be directly examined or from which exact clones of the original can be made) can be verified against the original using “digital fingerprinting”.22 Not all imaging products can cope with all the disk operating systems that might be encountered and some versions of well-known products may fail to capture everything on a hard disk, which is why competent technicians need to be employed to carry out the work.

The first task is to ensure that, once the computer has been seized, the computer is not booted up normally as, under most modern operating systems, during the process fresh data will be written to disk, even if all that happens is that the computer is started up and then almost immediately afterwards shut down. To avoid this, usually a technician will remove the hard disk and install it in his own specialist workstation. The workstation will contain, among other things, specialist “imaging” software; a write-protect device; and a further hard disk onto which the resulting “image file” can be stored prior to being backed-up to DVD and/or CD, tape or network store. In the case of a laptop or other computer where disk removal is difficult, the computer is

22 A complex mathematical calculation is performed on the contents of the original and then on the clone – if original and clone are identical, the product of the calculation will also be identical.
started up with an alternative operating system from the CD drive. The special CD contains the imaging software and networking capability. The computer to be imaged is linked via a network cable to the technician’s computer, which then takes charge of events and collects the image file over the network cable. (The network actually consists of only two computers and the cable has to be of the “cross-over” variety). “Network” imaging tends to be a lengthy process because of the slow speed of data along the cable compared with carrying it out disk-to-disk.

There are also specialist hand-held hardware devices which can carry out high-speed imaging of disks, once they have been removed from their computers. They are of particular value when time is of the essence, for example where computer downtime may incur extensive consequential loss.

The ACPO Good Practice Guidelines23 provides much more specific advice for particular situations. In general terms, a PC that is seized in depowered mode should not be started up by anyone other than by a trained forensic technician. PCs that have to be seized while powered up will require careful consideration to decide the precise method; if the suspect is an ordinary user, a note of what is on screen and perhaps photographs of the screen, plus notes and photographs covering all cables, etc. connected to the PC is often sufficient. If the suspect is an IT specialist, where there is the possibility that “logic bombs” are already in place to destroy data wholly or partly, or where there may be a link open to a significant remote computer, then it is essential to involve a trained forensic technician before any attempted seizure takes place, as there may be a variety of opportunities to capture essential evidence and avoid data destruction.

A further problem occurs where a larger “personal” computer contains several hard disks designed to work together in a “RAID” array. These are used mainly where very fast performance is required, as in an office server or in video-editing workstations. Usually, the disks cannot be imaged separately and specialist assistance is required to determine the best course of action.

In any event, the technician will make contemporaneous notes of what has been done, to be incorporated in a witness statement or exhibit later.

A further essential task for the technician is to check the “clock-time” on the computer that is being imaged. All computers have an onboard clock, sometimes referred to as the BIOS clock, from which the day and time stamps used by the computer are derived. It is important to establish how far the computer’s clock-time diverges from the actual time, as this may have an impact on assessments of chronologies of events later. A handy tip is to get the computer’s BIOS screen to a point where the clock is visible and then to place next to it a clock which takes its timing from an “atomic” source; the two are then photographed together using a digital camera or mobile phone with in-built camera.

Some software-based imaging products permit the technician to “preview” a hard disk of interest – that is, carry out an initial examination safely but without first having to

make an image. This can save time by the early elimination of “irrelevant” material and is particularly useful when large numbers of disks have to be examined.

Most of the popular forensic analysis products available are for PCs running the Windows family of operating systems.24 Examples include EnCase25, AccessData FTK26, X-Ways27, and ProDiscover28. Many of these products can also cope with Linux and some other Unix family operating systems. However, experienced forensic technicians often prefer to use Linux-based forensic tools to examine Linux-based hard disks. Examples include SMART29 and SleuthKit30. The Apple Mac family is relatively poorly supported by commercial forensic tools. EnCase “understands” the disk filing system, but there are now specialist tools such as SubRosaSoft’s MacForensics Lab31 and the Black Bag suite32. Since Apple OS X is in fact underpinned by BSD Unix, it is possible to use Unix-based tools for imaging and analysis.33

If a hard disk of any kind is found to be of interest, it should be properly sealed as a potential exhibit. If the owner of the original computer says that the hard disk contained essential working data, a clone of the hard disk can be made from the original onto a new hard disk which can then be installed in the computer; alternatively, key files can be exported to CD, DVD or external hard disk. Hard disks are now extremely low-cost and there is little excuse for not preserving original evidence. There may be circumstances in which some of the material found on a hard disk is such that it should not be returned to general circulation. Examples include indecent images, data subject to the Official Secrets Act and terrorism legislation and material which might prejudice a fair trial. In these circumstances it will be necessary to negotiate with the law enforcement agency for the release of essential but non-sensitive material.

Legal issues

Seized computers will normally be regarded as “real” evidence for admissibility purposes. However, the contents of individual documents (files) found on a computer may need to be admitted separately34, particularly if more than one person has had routine access to that computer. Investigators also need to demonstrate that they are “authorised” to access the computers for the purposes of the Computer Misuse Act 1990.

24 Many of these do much more than preserve evidence – they also perform analyses
25 http://www.guidancesoftware.com/
26 http://www.accessdata.com/products/ftk/
27 http://www.x-ways.net/forensics/
28 http://www.prodiscover.com/ProDiscoverDFT.htm
29 http://www.asrdata.com/tools/
30 http://www.sleuthkit.org/
31 http://www.macforensicslab.com/
32 http://www.blackbagtech.com/software_mfs.html
33 Newer Macs powered by Intel chips also have a replacement for the BIOS called EFI (Extensible Firmware Interface) which in turn affects how the computer boots up and hard-disks are partitioned; older forensic analysis tools can only “see” the contents of such hard-disks after manual fiddling,
34 For example, under the business records provisions in s. 117 of the Criminal Justice Act 2003.
In general terms, employers and their agents are normally “authorised” to access computers used by their employees, but this may be subject to a detailed examination of contracts of employment. Section 10 of the Computer Misuse Act 1990 protects law enforcement officers in the execution of their powers of inspection, search or seizure. Where computers are seized from professionals such as lawyers and accountants there may be issues of professional privilege (under Part 2 of the Criminal Justice and Police Act 2001 and associated codes of practice)\(^{35}\). Section 54 restates the rule that legally privileged material seized in a warrant must be returned. But it goes on to say that legally privileged material can be retained if it is “inextricably linked” to other material which is seizable.

The presence of legal professional privileged material can also be an issue where computer media has been acquired as a result of a court order in civil proceedings. The situation often arises in Civil Search Orders. The owner of a computer may also protest that, in addition to the information specifically being sought as part of the proposed litigation, the data media holds much irrelevant material, some of which is commercially confidential or subject to Data Protection obligations.

It is not technically feasible to redact part of a forensic disk image, that is, blank off sectors and still hope that the result is viable. In these circumstances resort must be had to procedures similar to those deployed by a supervising lawyer in a Civil Search. The lawyer must be independent and make the judgements about relevance and disclosure; in the instance of a forensic disk image, he really should have his own technical expert to translate his legal judgement into appropriate practical technical solutions.

Evidence from Keyloggers

A keylogger is an item of hardware or a covert software program which, as the name implies, captures every keystroke made on a computer such that the activities of the user can be reconstructed. Hardware versions are usually inserted between the keyboard and the computer and are normally so physically small that only careful inspection will reveal their existence. Keyboards are normally connected to computers via a PS/2 or USB interface; keyloggers are available in both formats. The keyloggers have memory storage facilities and the investigator periodically collects the data and plays it back on his own computer. Hardware keyloggers can only capture data which has actually been typed in, any on-screen consequences and the results of mouse-movements (or if in use, touch-screen events) are not captured.

Software versions offer similar facilities and are usually designed to operate covertly – their existence is not shown up when a computer user tries to find which programs are “running” on his machine. Software keyloggers, once installed, can usually be controlled remotely, across a network or the Internet, provided of course that the targeted computer is actually connected to a network. Most software keyloggers can be asked to perform screen-captures, or send messages to investigators if particular keywords are triggered.

\(^{35}\) Actually an update of the Police and Criminal Evidence Act 1984, Code B.
Legal issues

Assuming for the moment that the keylogger is being installed by an investigator instructed by the employer of a suspect, the legal considerations are similar to those for any other sort of employer-based investigation. These are covered in Appendix IV. In other circumstances, the use of software-based keyloggers involves breach of s 3 of the Computer Misuse Act 1990. Hardware-based keyloggers might, it could be argued, be counted as “interception” for the purposes of s 1 of the Regulation of Investigatory Powers Act, 2000. Police investigators installing hardware devices covertly would need to operate under Part 3 of the Police Act 1997; it is a moot point but it looks as though they are not allowed to use covert keylogging software as s 10 of the Computer Misuse Act only gives protection against “unauthorised access” (s 1) and the installation of the software involves breach of s 3.

Large and Medium Computer Systems

Traditionally, the courts have simply accepted the printout of reports and documents. In the UK police powers to obtain these in the course of a search are covered, among other places, under general powers of seizure in s. 19 of the Police and Criminal Evidence Act 1984. Section 19(4) permits “the constable” to require that information held in a computer is “to be produced in a form in which it can be taken away and in which it is visible and legible”.

But should an organisation not now be expecting the system to be “imaged” in the way that it is for single hard disks, so that defence experts are absolutely sure that they can run as many verification tests as they wish? Does an organisation have to make a forensic copy of the entire network of a large bank with a global presence and all its subsidiaries, just because an assistant manager in a UK branch is accused of fraud by colluding with customers over credit agreements and says that the computer is not accurately reflecting all the business transactions and queries made?

Often, it is not feasible to “image” or “clone” larger computer systems, so some form of selection will have to be made. In so doing, several things need to be borne in mind:

- the organisation needs to persuade a court that the output of the computer, taken as a whole, is reliable;
- the organisation has to show that it has captured the “complete” evidence in terms of the litigation being pursued, not just a selection favourable to its case;
- the evidence must be admissible.

In terms of the overall reliability of a computer system, the following elements in a witness statement may help to persuade a sceptical court:
In terms of the exhibit that is being produced, it is useful to be able to give the following:

- a description of the computer system’s overall functions within the organisation;
- an account of how long the system in its present configuration has been in operation;
- what forms of testing took place prior to commissioning and what forms of routine audit are in place;
- what external factors exist to act as a check on reliability. For example, most accounts systems refer to transactions with other organisations and banks – failures in an organisation’s own computer systems would soon produce complaints from counterparties. Third-party computer records may corroborate the records an organisation wishes to introduce in evidence;
- what security features exist and how they are managed – this is to anticipate a suggestion that incriminating material was placed there by someone other than the suspect;

- where it comes from:
 - is it in the form of a report that the computer regularly produces as part of its normal functions?
 - is it a regular audit or log file generated as part of the computer system’s normal functions?
 - is it a regular back-up – if so, how far is it a “complete” back-up?
 - is it a regular back-up – if so, how far is it a “complete” back-up?
 - if the exhibit is the result of monitoring or specialised analysis to test initial suspicions, how was the monitoring set up?
- how the selection of evidence was made and why it can be regarded as “complete” in terms of the issues at hand;
- what procedures were used to collect the evidence such that it can be regarded as free from tampering;
- what procedures were used to preserve the evidence so that it can be regarded as free from subsequent tampering. This may take the form of imaging some computers or copying selected files to write-once data media such as CD or DVD, or making a digital fingerprint of the files;
- what manipulation or subsequent analysis was carried out to make the material “easier to understand” – this is a perfectly legitimate course of action, but in this event the original material should be exhibited so that the defence team can test the manipulation or analysis.

An organisation should be prepared for defence team demands for further disclosure so that they can test the overall reliability of its evidence and perhaps request further information from its computer system in order to test or prove assertions of their own.

Legal Issues

Usually, admissibility of evidence will be on the basis that the material is a “business record” as defined in s. 117 of the Criminal Justice Act 2003; an “expert report” for the purposes of s. 118(8) and 127 of the same Act; or “real evidence”. However, evidence may be excluded, for example if it has been obtained unfairly (judicial discretion under s. 78 of the Police and Criminal Evidence Act 1984), or in contravention of data protection or human rights legislation.
Legal issues are rather less acute in civil cases. A business is obviously able to produce evidence from systems that it owns. Many records will fall into the category of “documents which may be received in evidence without further proof” under s 9 Civil Evidence Act, 1995 and others may be admitted subject to the “hearsay” provisions of Civil Procedure Rule 33.

Corporate Networks

In addition, often it is not feasible to “image” or “clone” networks. Apart from the quantity of machines that would need to be imaged, if the evidence is to have real integrity, the entire network would have to go offline and be shut down for the duration. If this does not happen, then the images of each of the various constituent computers will be “snapshots” taken at different times – the data will not synchronise and corroborate. So, again, the form of selection will have to be made. In so doing, several things need to be borne in mind:

- the organisation needs to show that it has captured the “complete” evidence in terms of the litigation that it is pursuing;
- the evidence must be admissible.

An organisation will need to be able to justify the overall reliability of the network and the particular workstations and servers that it is submitting as evidence. The following elements in a witness statement may help to persuade a sceptical court:

- a description of the network’s overall functions within the organisation;
- the network’s topography – does it have one server, several servers or none? Are there any unusual features about the communications links?
- how the network is managed;
- what security features exist and how they are managed – this is to anticipate suggestion that incriminating material was placed there by someone other than the suspect;
- how long the network in its present configuration has been in operation;
- what forms of testing took place prior to commissioning and what forms of routine audit are in place;
- what external factors exist to act as a check on reliability. For example, most accounts systems refer to transactions with other organisations and with banks – failures in a business’s own computer systems would soon produce complaints from counterparties; third-party computer records may corroborate the records you wish to introduce in evidence;
- what can be said about the reliability of the constituent elements of the network – operating systems, software, hardware;
- compliance with any external good practice or system audit standards.
In terms of the exhibit that is being produced, it is useful to be able to say:

- where it comes from:
 - is it in the form of a report that the system regularly produces as part of its normal functions?
 - is it a regular audit or log file generated as part of the normal functions?
 - is it a regular back-up – if so, how far is it a “complete” back-up?
 - if the exhibit is the result of monitoring or specialised analysis to test initial suspicions, how was the monitoring set up?
 - is a complete image being provided of key workstations and servers?
- how the selection of evidence was made and why it can be regarded as “complete” in terms of the issues at hand – why it was considered safe to exclude other potential sources of evidence? Particular regard should be given to the position of servers;
- what procedures were used to collect the evidence such that it can be regarded as free from tampering;
- what procedures were used to preserve the evidence so that it can be regarded as free from subsequent tampering. This may take the form of imaging some computers or copying selected files to write-once data media such as CD or DVD, or making a digital fingerprint of the files;
- what manipulation or subsequent analysis was carried out to make the material “easier to understand” – this is a perfectly legitimate course of action, but in this event the original material should be exhibited so that the defence team can test the manipulation or analysis.

As always, an organisation should be prepared for defence team demands for further disclosure so that they can test the overall reliability of its log evidence and perhaps request further information from its computer system in order to test or prove assertions of their own.

In the last few years products have begun to emerge which allow for workstations to be remotely monitored and imaged across a corporate network. The most mature products appear to be EnCase Enterprise Edition and ProDiscover Professional. These new products require that each workstation to be monitored has a small “servelet” program installed on it. The monitoring takes place from a specially designated workstation and the servelet on each monitored workstation accepts commands from it. Communications between the monitoring and monitored workstation run across the corporate network, but are encrypted. The hard disk on the monitored workstation becomes “write-protected”, just as it would during a conventional examination, so that the process should be free from contamination by the examiner.

Although this approach seems very promising it has yet to be tested fully in the courts and there may be practical problems such as the time taken to image. For any organisation considering the deployment of remote monitoring or imaging, in addition to the costs of the software licence, significant funds will need to be set aside for the related training and development of appropriate procedures. There will still be problems of selection of material and anticipating how a defence expert might test it – or the defence team complaining that their expert is not able to conduct a realistic test and that as a result the evidence should be excluded.
Legal Issues

Admissibility of evidence will be on a similar basis to that for material obtained from large computer systems: that the material is a “business record” as defined in s 117 of the Criminal Justice Act 2003; an “expert report” for the purposes of s 118(8) and 127 of the same Act; or “real evidence”. However, evidence may be excluded, for example if it has been obtained unfairly (judicial discretion under s 78 of the Police and Criminal Evidence Act 1984), or in contravention of data protection or human rights legislation.

For civil matters, a business is obviously able to produce evidence from systems that it owns and runs. Many records will fall into the category of “documents which may be received in evidence without further proof” under s 9 Civil Evidence Act, 1995 and others may be admitted subject to the “hearsay” provisions of Civil Procedure Rule 33.

Where remote monitoring has been used, there may be arguments which suggest that a interception for the purposes of the Regulation of Investigatory Powers Act 2000 has taken place. Employers should be able to have the benefit of the Telecommunications (Lawful Business Practice) (Interception of Communications) Regulations 200036. This allows a business to carry out an interception on its own network in order to: “establish the existence of facts”, “in the interests of national security”, “for the purpose of preventing or detecting crime”, and “for the purpose of investigating or detecting the unauthorised use of that or any other telecommunication system”. In any event, in a corporate environment employees will need to be have been forewarned that their computer use may be subject to monitoring of various kinds.

Email

Copies of emails may be found on the personal computers of the sender and the recipient and on one or more email servers. For each of these, copies may exist in archived back-ups. If either the sender or recipient uses a mobile device such as a mobile phone or tablet, copies may exist there as well. Obviously, a simple printout of an email is better than nothing, but because of the ease with which a wordprocessor can be deployed to alter or fake an email, a more sophisticated approach is required.

The key to securing reliable email evidence within an organisation is to know how the specific email service works – in particular, where copies of emails are likely to be stored. It is not unusual for suspects to attempt to delete emails from their local machine – hence the importance of being able to locate alternative copies. Clearly, each further copy of an individual email that is discovered provides greater levels of corroboration, and hence authenticity.

Emails sent over the Internet or using internet-like protocols have “headers” associated with them, which are normally suppressed when viewed through a regular email client program37, which contain information about where the email originated.

36 http://www.opsi.gov.uk/si/si2000/20002699.htm
37 In Microsoft Outlook Express, for example, the headers can be viewed via right-clicking and selecting “Properties”.
and what route it took to the recipient. This information, though it can be forged or spoofed, can be used to provide a level of authentication.

Email programs can be divided into two types: client programs, which are found on the PCs of those who send and receive email; and server programs, which act as a hub for email exchange between individuals within a business and also mediate the relationship with the outside world. Client programs include Microsoft Outlook and Outlook Express, Eudora and Thunderbird. Server programs include Microsoft Exchange, FTGate, MailTraq and IBM/Lotus Notes (although this last has a number of additional functions). Most organisations used a protocol called IMAP, where copies of emails are retained on servers for long periods.

The emails themselves are stored in files associated with the email application – a forensic technician needs to have a knowledge of which files are important and where they are located. Attachments to emails may be stored elsewhere, in another directory on the disk. In the simpler older products, often the email files can be read directly using a text editor, but in more modern products such as Outlook, Outlook Express, and Thunderbird the emails are held inside a structured database and can be read only from within the email program or a specialist utility. Email server programs also store messages within specialist databases. The advantage of the structured database is that it then becomes easy to carry out sophisticated searches for individual emails, by sender, recipient, subject, content, date and so on. In addition, the fact that each email is within a structured database makes tampering with the content of individual emails more difficult.

One disadvantage is that the set of emails within a database may contain material that is wholly irrelevant to the litigation and which is subject to data protection or human rights legislation, is commercially sensitive or covered by legal privilege. In these circumstances it may be necessary to arrange for an independent third party to have formal supervision of the files, along the lines of what is done in civil search orders or under Part 2 of the Criminal Justice and Police Act 2001 and associated codes of practice.

Some email services are presented via a web interface. For individuals, there are services such as Hotmail, Yahoo and Gmail, and many large ISPs offer a web-based service so that their customers can access email when away from their usual base via someone else’s computer or an Internet café. Similar web-based email services can be offered by large organisations for their staff based on corporate email servers – Microsoft Exchange can be set up in this way, for example. In those circumstances the participants’ PCs will not maintain a permanent record of emails sent and received. However, for recent emails, a computer forensic technician may be able to retrieve copies from the “temporary internet files” folders (also known as the cache).

Legal Issues

There are some general restrictions on employer surveillance of employees and these apply to emails, phone calls and web browsing, among others (they also apply to the use of closed circuit television) (these are considered in Appendix 4).
Once these hurdles have been overcome, emails obtained from a PC may be admissible either as “business records” or as “real evidence” but there has to be a basis for them to be lawfully obtained in the first place. As far as PCs are concerned, the computer owner or another authorised person has to give permission, otherwise there may be an offence under the Computer Misuse Act 1990. Further, this would produce the inevitable argument that information obtained in an unauthorised fashion should be excluded under s. 78 of the Police and Criminal Evidence Act 1984. It is likely that emails obtained from servers will be admissible as “business records”. However, if the server contains emails which have yet to be delivered to their destination, those emails might be regarded as still passing through a communications medium and thus be subject to the Regulation of Investigatory Powers Act 2000. So, part of the skill of looking for email evidence is to avoid those potential sources of emails which might be rendered inadmissible.

Statements producing email exhibits will need to cover the following:

- where the email has come from a client program installed on an individual PC – the identification of the program and the steps taken to capture and preserve the supporting files;
- where the email has come from a server program – the identification of the program and the steps taken to extract and preserve the supporting files; whether this is simply a subset of the total email data available and what basis was made for the selection, whether a larger subset is available against appropriate defence team request;
- in the case of a server program – what security features exist and how they are managed (this is to anticipate a suggestion that incriminating material was placed there by someone other than the suspect);
- compliance with any external good practice or system audit standards.

Personal Digital Assistants / Tablets

Despite their small physical size, PDAs are often substantial PCs in their own right. They hold personal data, diaries, documents and often emails. Increasingly, cellular phones and PDAs are converging. The tablet, exemplified by the IPad, is a PDA and multi-media device with a large touch-screen.

In terms of capturing evidence, there are a number of choices. Ideally, like hard disks PDAs should be “imaged”. As with evidence from hard disks and other data storage media, it is important to be able to demonstrate that the process of collection has not caused the data to be modified. Just as with conventional PCs, in some instances the mere act of “just having a look” may cause data alteration. PDAs often contain two sorts of memory: internal and external. The external is usually on a card – Compact Flash, Secure Digital, etc., and this presents relatively few problems as the cards can be removed and read. But the internal memory cannot be removed easily or read without somehow powering up the PDA. Furthermore, some PDAs lose data if their internal batteries are not kept charged up. If a PDA is to be regarded as prime evidence, then advice should be sought to ensure that critical data is not lost after seizure and before a case comes to trial.

38 There may be explicit or implied authorisation under an employee’s contract of employment. In addition, it is possible to seize a computer under a warrant.
Specialist forensic tools have emerged. At the time of writing, Paraben39 has a collection, although EnCase also offers some facilities. In addition, there are some “free” or Open Source utilities such as pdl for Palm40 and OSImage and DumpPROM for Pocket PCs. There is a useful overview available from the US National Institute of Science and Technology41. Precise technical procedures vary between PDA “families”. In the Palm family there is a hidden command which puts the Palm into “console” mode, whereas Pocket PCs have to be imaged via the “ActiveSync” program. PDAs use a variety of connectors to link the PDA to a PC so that one of the earliest tasks of the technician is to ensure that they have access to the correct hardware for the job in hand. Because of the many opportunities to make mistakes, technicians are advised to provide fuller than usual contemporaneous notes.

Depending on the circumstances, it may be necessary or appropriate to use a lesser technique for capturing essential information. The large PDA families, Pocket PC and Palm42, have achieved their popularity in part from the ease with which information can be shared between the portable device and a PC, capturing the PC files (Palm terms this “Hotsyncing” and PocketPC terms it “ActiveSync”). However, not all information on the PDA is copied to the PC. The safest route is to secure the PDA and await proper imaging by trained personnel. Detailed technical advice has been produced by US National Institute of Standards and Technology43.

IPad forensic tools include EnCase Neutrino (which also cover the Iphone and ITouch) and Oxygen Forensic.44 Other tablets use the Android operating system which is also very popular on smart phones45

\section*{Legal Issues}

These are similar to those regarding PCs. In admissibility terms the entire Tablet or PDA is “real evidence”. However, there are significant hurdles in terms of getting full legal access to a PDA where the owner does not want to cooperate and the PDA is personal property, not that of the business. Unauthorised access may be a criminal offence and there may be data protection and human rights issues.

\section*{Mobile phones/Smart Phones}

The first mobile phone, as opposed to a radio or walkie-talkie which could be linked to the telephone network, dates from 1973. Modern cellular mobile phones, as available in 2011, provide much more than the ability to provide on-the-go communications to any telephone, fixed and mobile, anywhere in the world. They often have substantial PDA functionality – contact lists, diaries, stored files,

\begin{itemize}
\item 39 http://www.paraben-forensics.com/catalog/index.php?cPath=25&osCsid=4a67143f86e68754330bc45c3eea12e3
\item 40 http://www.grandideastudio.com/portfolio/index.php?id=1&prod=17
\item 41 http://csrc.nist.gov/publications/nistir/nistir-7250.pdf
\item 42 Some PDAs also use a version of the Linux operating system.
\item 43 Guidelines on PDA Forensics, available at: http://www.iwar.org.uk/comsec/resources/nist/pda-forensics-sp800-72.pdf
\item 44 Others are reviewed in this paper: http://viaforensics.com/education/white-papers/iphone-forensics/
\item 45 These sites are good gateways to issues in Android forensics: http://android-forensics.com/ and http://viaforensics.com/android-forensics/
\end{itemize}
photographs, etc and may also feature in-built cameras. As with PDAs they can synchronise with personal computers. The traditional PDA is on the point of vanishing as the smart phone becomes ever more popular, but Apple, for example, maintains both the iTouch and the iPhone.

In addition to making conventional telephone calls, many mobile phones can also make data calls and link to the Internet both to browse the world wide web and to provide mobile email. Increasingly almost any Internet service which is available to desk-top and laptop computers is also available on a mobile phone. Connectivity may not end there; most smart phones have wi-fi facilities and connect wirelessly to local area network. The use of Bluetooth connectivity is also wide-spread; Bluetooth can be used, among other things, for wireless headsets, to connect a mobile phone to a PC, to connect to other mobile phones, and also to some sat-nav systems. Many smart phones also have GPS facilities, providing satellite navigation.

It is the complexity and variety of mobile phones and particularly smart phones which provide the corporate investigator with many potential headaches – plus the fact that new models appear all the time. Unlike PCs, where most corporate machines will use the Windows family of operating systems or Mac OSX, each mobile phone manufacturer may develop their own operating system. There are some broad families of mobile phone operating systems for more sophisticated products – Symbian, Windows Mobile / Windows 7, Blackberry/RIM, Palm/WebOS, Linux, Android and iOS – many of these exist in several variants and there are many instances of customisation to give individual phones their unique specification. It requires a not insubstantial investment by specialist investigators to maintain a collection of connectors, cables and software for the range of models they are likely to be asked to examine.

There are two big problems as well as some more minor ones facing anyone seeking to preserve a mobile phone for evidential purposes: how to ensure that existing data on the phone does not become over-written or otherwise lost, and how to extract all the data that might be there.

The ACPO Good Practice Guide provides some advice\(^{46}\). A mobile phone seized in a power-on mode is by definition ready to receive calls and SMS messages. When voice and SMS messages are received, the registers in the phone which log such matters are updated. But a mobile phone once switched off may be protected with a PIN and not be capable of being restarted without the co-operation of the owner. Some mobile phones, though fewer than in the past, have volatile memory which means that if a battery is allowed to run down, some of the data artefacts will be lost. One solution to the “let’s keep the phone on to preserve memory but stop it from receiving calls” problem is to place the phone, switched on, but within a Faraday cage, in effect a grounded metal box or metallic bag. But when you do so, the battery will then almost certainly exhaust itself more rapidly, as the phone may think that it is simply out of range of a base station and will increase transmission power.

Turning now to the basic function of making and receiving telephone calls: each phone gets its identity in two ways: the SIM or Subscriber Identity Module\(^{47}\) is what identifies the caller to the phone network and also provides the means of payment, which will be either on a monthly contract or be topped up on a “pay as you go” basis. The IMEI or International Mobile Equipment Identity is what uniquely identifies any particular item of hardware. Mobile phones have two, sometimes, three areas where unique, investigation-relevant, information may be held. The SIM in addition to holding immediate information about the phone’s number, its IMSI and its location area identity, will also hold contact details and SMS messages. The body of the phone also has an area of “addressable” data storage and this can include, contact details, SMS messages and will also contain details of recent phone calls made, received and missed. Finally many mobile phones also have slots for external storage cards such secure digital, micro-digital etc.

What this means is that if it is considered appropriate or helpful to seize a mobile phone as potential evidence it is essential to have proper professional assistance available at a very early stage.

Because of the volatility issues mentioned above it is especially important that proper time-stamped contemporaneous notes are kept. For example:

- Was the phone switched on at the point it was acquired?
- Were any arrangements made to keep the battery charged?
- Is there a photograph of it (especially its display) at the time of seizure?
- If it was switched on, what decision was made about leaving it powered on or switching it off, and why?
- Were any phone calls or messages received before it could be passed to a technician?
- Were any inspections of call registers, etc made because of perceived operational necessity? Are all of these fully documented?

The Netherlands Forensic Institute has produced two useful documents:

- A “principles” document which shows how the ACPO principles for handling computer evidence in general can be applied to mobile phones: http://www.holmes.nl/MPF/Principles.doc
- A work-flow document which shows the steps required in a proper investigations of a mobile phone: http://www.holmes.nl/MPF/FlowChartForensicMobilePhoneExamination.htm

\(^{47}\) USIMs are the equivalent for UMTS or 3G services
There are only two areas of technical investigation which are open to those without specialist equipment and training and both of these are quite limited.

- Many mobile phones come with software to “sync” (synchronise) or provide back-up to a PC. The actual facilities within the software can vary considerably: some back up key settings, some provide synchronisation with well-known PC applications such as Microsoft Outlook and share with it contact details, diaries, notes and “tasks”. Provided that access to the computer is available and it has been properly imaged and preserved it is worth looking for the presence of mobile phone “syncing” software such as Microsoft Active Sync, Palm HotSync or Nokia PC Suite to see what data is associated with them. Almost certainly if they are present and configured they will be linked to the Outlook, Outlook Express or similar.

- The SIM can be removed and some of the contents can be read in the very low-cost reader devices sold to allow regular users to back them up or transfer phonebook and live SMS details from one mobile phone to another. But these devices are usually not capable of reading all the data on a SIM card or of recovering deleted data.

The URL: http://www.e-evidence.info/cellarticles.html is a good source of further reading and an indication of the availability and capabilities of the facilities on offer to specialist technicians.

Legal Issues

These are similar to those regarding PCs and PDAs, though with the additional difficulty that telephones might be regarded as more “personal” than other devices thus setting the bar on the tests of necessity and proportionality that bit higher. In addition, voice and SMS messages which are intended for the owner of the phone have been intercepted and have not been received by the intended recipient may fall foul of the Regulation of Investigatory Powers Act 2000.

In admissibility terms the entire mobile phone is “real evidence”. However, there are significant hurdles in terms of getting full legal access to a mobile phone where the owner does not want to cooperate and the phone is personal property, not that of the business. Unauthorised access may be a criminal offence and there may be data protection and human rights issues. It might be prudent for an organisation that supplies mobile phones to its employees to address the issue of employee rights to privacy explicitly in the contract of employment or similar document.

Cellsites analysis

An investigatory route available to law enforcement is cellsite analysis: the ability to track the movements of the owner of a mobile phone using signals detected from that phone whether or not a call is in progress. The global mobile phone system relies on the existence of a large number of local base stations which link the mobile phone to the rest of the telecommunications network. Each mobile phone provider has to know at any one time the location each of its customers – those with their phones switched on – so that a call can be initiated through the closest base station. In order to make
this possible, powered-up mobile phones are constantly exchanging brief messages
with nearby cellsites and “registering” with them. This registration data is retained by
the mobile phone company and can be supplied, against the appropriate warrant, to
law enforcement. By correlating the signal data over time and by triangulating
against the location of the base station masts, a reasonably accurate picture of the
movements of a mobile phone owner can be built up. The level of accuracy depends
on a number of factors, including the density of base stations in the relevant vicinity,
the absence of data misreadings, the result of signal bounce and distortion which can
result from high buildings and other terrain features, and the level of traffic on the
base stations.\footnote{If a base station is “full” of active connections it may offload traffic to another nearby base station.}

In the UK, this data is “retained” – kept – for 12 months\footnote{Data Retention (EC Directive) Regulations 2009 and Anti-Terrorism, Crime and Security Act, 2001, Part 11, Voluntary Code of Practice.}

The main limitation on this technique in private as opposed to law enforcement
investigations is that the cell site location data is unlikely to be released other than
against a proper law enforcement-sponsored warrant or Court Order.

There is one exception, where the owner of the mobile phone has consented to be
tracked. Such services are available in a number of countries, including the UK.
Typical customers are parents anxious about their children and businesses needing to
identify the location of some of their employees. The UK services require customers
to go to significant lengths to demonstrate that consent has been obtained.\footnote{An example can be seen at: http://www.followus.co.uk/mobilephonelocationandyou.htm}

Versions of Google maps for running on some mobile phones use the same technique in order
to deliver a “show me where I am” service. GPS-based services are much more
accurate for these location-finding facilities.

Other Storage Media: Cameras, Thumbdrives, Media Players and Other Portable Media

The physical size of media in relation to the amount of data held continues to
plummet, as does the variety of devices upon which they can be found. Digital
camera media, Compact Flash, Secure Digital, etc. can hold any kind of data, not just photographs. USB “thumbdrives” with a capacity of 2Gb cost under £100 in late
2005 and about £30 one year later in 2006. A year later still, and the cost had fallen
well below £10. In 2011 2Gb thumbdrives are given away as promotional material.
In 2000 most laptop computers had hard disks with less capacity. 2Gb is also
equivalent to three fully-filled CDRoms. Memory cards as used in camera and media
players are smaller than a postage stamp – 8 GB can be bought (in 2011) for under £1
per GB. Many portable disk drives and music players, with typical capacities of up to
1000 GB (1TB) and priced as low as £50, are capable of being secreted in a modest-
sized pocket. Only the most careful examination of a computer will reveal whether
any of these devices have ever been connected to it\footnote{You would need to examine the System Registry}. Yet a company’s entire
financial records, list of customers, research and development programme can be
secreted easily even within a device of 2Gb capacity. The same goes for 100,000
web-sized photographic images.
Most of these classes of media operate in a similar fashion to hard disks in that often deleted data can be recovered. So it is important that any devices suspected of holding data relevant to an incident or investigation are seized and properly imaged.

Legal Issues

The main legal issue in a corporate, non-law enforcement inquiry is that the devices may be the personal property of a suspect and there may be no immediate and timely basis upon which they can be seized.

SatNav Devices

Early satellite navigation devices featured maps of limited detail, were relatively difficult to input data to, and were too expensive for most sections of the public. But during 2006 in particular prices fell dramatically and the specifications of models available increased. So ubiquitous have they become that by 2007 the UK Office of National Statistics included satnav devices in the basket of 650 goods and services which it uses to measure inflation. As we have seen, GPS is now a common facility in smartphones.

With increasing sophistication has come greater possibility of useful forensic examination. More expensive satnav devices contain hard-disks, lower end models use memory cards.

For the forensic examiner the problems are similar to those for PDAs and mobile phones. There are few common standards other than NMEA, which is the protocol by which data is transmitted by the satellite and available to be interpreted electronically. Each manufacturer has its own ideas about the internal design of their satnav units, and these develop and change with the appearance of new models. Some of the popular TomTom family of devices appears to use a variant of Linux. Some manufacturers rely on a modified form of Windows Mobile.

Typically what is stored includes: recent destinations, saved home and destination addresses, uploaded “Points of Interest”. Most units sold for use in cars do not retain data about specific journeys. Navman devices seem to hold some records and sometimes it is possible to recover deleted material from some TomTom devices. Hand-held devices as sold to trekkers, on the other hand, often have a “breadcrumb” facility which records the journey (and which is useful for those who get lost and wish to return to their starting point or plot their journeys afterwards on a terrain map).

Some of the more sophisticated devices can be linked to PCs for back-up purposes, to receive updates and to plan journeys – the software for TomTom devices is called TomTom Home. As with syncing software used for PDAs and Mobile phones it is often a good idea to see if there is a computer with whom syncing has taken place and if any useful information exists on it. Some higher end satnavs also connect via bluetooth to a mobile phone, and in those circumstances it is often possible to retrieve phonebooks, call records and even text messages.
Legal Issues

The main legal issue in a corporate, non-law enforcement inquiry is that if the device is the personal property of a suspect there may be no immediate and timely basis upon which they can be seized. Even if the device is provided by the employer, the right to seize may be limited unless there has been some warning in the contract of employment.

In making a decision to seize, an investigator has to consider what contribution the satnav might have to the overall aims of the investigation. If there is a general concern that a vehicle might be misused (or stolen) an embedded satnav device with a link to a mobile phone which can collect data from it at will will be a better choice.

Telecommunications data and content

There are a modest number of practical problems in gathering telecommunications data and content from corporate sources, but these are dwarfed by the legal hurdles.

Analogue Telephony

This covers conventional telephone calls taking place on or through corporate switchboards (PABXs). Such switchboards routinely provide data about the numbers called and the time and duration of calls. They do so in order to monitor costs for external calls and to check on service quality in respect of internal calls. The logs produced can be of considerable value in many kinds of investigations. To capture the contents of such calls a recording device – tape or disk – is placed across the relevant lines. Some businesses routinely record phone calls as a check against disputed transactions, or to see whether their employees are misbehaving.

In a forensic situation, the immediate and important issue is to be able to demonstrate that the logs and/or recordings are reliable and have not been tampered with. For the logs:

- it is helpful to be able to say something about the specific PABX and what logging facilities exist;
- there should be some statement about how they were collected, by whom, what precautions were taken, and how selections of data were made;
- once taken, they should be subjected to some form of integrity check, such as MD5 digital fingerprinting, as a guard against post-capture tampering.

For voice monitoring:

- it is helpful to be able to say something about the specific facilities used;
- there should be a statement about what precautions against partial capture were taken and how selections of conversations were made in terms of counterparties, periods of time and so on;
- once taken, the logs should be subjected to some form of integrity check, as a guard against post-capture editing.
The real difficulty is establishing a legal basis on which to carry out the monitoring of internal telephone communications data and content (this is reviewed below and in Appendix 4).

Companies and private individuals can request from their telephone companies copies of their own past telephone bills and detailed call records. Since this is their own personal data there is no conflict with data protection legislation. In practical terms, and because telephone companies must comply with a telecommunications directive (Directive 97/66/EC of the European Parliament) not to hold personal data longer than is necessary for business purposes, call records for earlier periods may not be available. Most telecommunications companies will make a charge to supply historic information.

Data Traffic

There is little practical difficulty for an organisation to monitor data traffic on its own internal networks. In effect, one or more network cards are set up in areas of high traffic flow and instead of just listening for packets of data specifically directed at the associated workstation, all the passing data is collected (putting the card into “promiscuous” mode) and then filtered according to various criteria. Such facilities are used regularly to monitor the quality and load of data traffic on a network and to carry out a variety of technical diagnostics. In the situation of an investigation it is trivial to switch such facilities to monitoring activity by workstation, user identity, email name or the occurrence of specific words. Forensically, the technical issues to be covered in a witness statement include the following:

- can the organisation provide a brief technical description of the monitored network?
- can the organisation identify and describe the technical facilities, hardware and software used to carry out monitoring, including the location of the monitoring points on the network?
- can the organisation describe and provide the raw logs that were generated during the monitoring, and say how it preserved them?
- can the organisation describe any post-capture processing that was carried out to analyse the logs and produce more understandable derived exhibits?

In certain circumstances some organisations may be unwilling to be wholly candid in revealing all about their internal networks. In that event, careful calculations need to be made of the balance of advantage in refusing disclosure requests (with the possible result that crucial evidence is disallowed) and the chances that litigation or prosecution may fail.

52 This Directive has been modified by Directive 2006/24/EC which is implemented in the UK as the Data Retention (EC Directive) Regulations 2007. http://www.opsi.gov.uk/si/si2007/uksi_20072199_en_1
Legal Issues

As with the surveillance of internal telephone calls, the real difficulty is establishing a legal basis on which to carry out the monitoring of data activity (this is reviewed below and in Appendix 4).

Subject to obtaining appropriate authorities and warrants, law enforcement and other government agencies have access to material from public telecommunications businesses which include land-based telecom companies, mobile phone companies and ISPs.

The main law is the Regulation of Investigatory Powers Act 2000 (RIPA 2000). Briefly, this makes it unlawful to intercept any communication in the course of transmission without the consent of one of the parties or without lawful authority. English law is unusual in that it makes a distinction between interception of communications or traffic data (who called who, when and for how long) and content (what was said). Traffic data also includes location data such as where a mobile phone company holds records on which specific base station a given mobile was registered at any one time. Some data held by ISPs or collectable by them is also classified as “communications data”. Warrants for interception of content can be issued only by the Home Secretary and are subject to various criteria, which include “the interests of national security”; “for the purpose of preventing or detecting serious crime” and “for the purpose of safeguarding the economic well-being of the United Kingdom”. The Home Secretary has to be convinced that such interception of content is necessary in relation to other possible means of obtaining the same information and proportionate to the circumstances. Section 17 excludes content evidence from most legal proceedings and also forbids any disclosure that interception of content has taken place.\(^\text{53}\) Chapter II of RIPA 2000 (ss. 21–25) covers the circumstances in which authorisations and notices to collect and disclose communications data are issued and by whom. The grounds on which such authorisations and notices may be issued include the following:

- “in the interests of national security”;
- “for the purpose of preventing or detecting crime or of preventing disorder”;
- “in the interests of the economic well-being of the United Kingdom”;
- “in the interests of public safety”;
- “for the purpose of protecting public health”;
- “for the purpose of assessing or collecting any tax, duty, levy or other imposition, contribution or charge payable to a government department”;
- “for the purpose, in an emergency, of preventing death or injury or any damage to a person’s physical or mental health, or of mitigating any injury or damage to a person’s physical or mental health”; and
- for any other purpose specified by an order made by the Secretary of State.

\(^\text{53}\) At the beginning of 2008 the Government announced that it might consider changing the admissibility rules about the content of traffic, but only in respect of terrorism offences and serious crime and subject to a number of limitations. At the time of going to press a report has been published - http://www.official-documents.gov.uk/document/cm73/7324/7324.asp - but the matter is still being reviewed by a Privy Council Committee under Sir John Chilcot.
There is a lengthy and complex list of “designated persons” who can issue authorisations, but such authorisations have to be necessary and proportionate to the circumstances. There are arrangements to make payments to meet the cost of the telecoms companies, etc.

Communications data is admissible in evidence. It may be used not only to show that a conversation took place at a particular time but also to show patterns of contact which may in turn suggest relationships between those involved.

The scope for a private company to get access to records from a public telecommunications service without the assistance of law enforcement or one of the other agencies empowered under Part II of RIPA 2000 seems extremely limited. One such route, prior to the commencement of litigation, is via a *Norwich Pharmacal* Order – covered below in Appendix 5.

The debate continues as to whether the UK is wise to maintain the distinctions between content and communications data. Most of the public debate is about the relative risks of losing important cases because content cannot be produced and the possible issues of disclosure of precise methods. But once one leaves the world of conventional telephones, where there is a clear technical distinction between content and communications (tariff and connection data versus recording voices), within most forms of data communication such as email, web-browsing and Voice over Internet Protocol (VoIP) telephony, the clear technical distinction no longer exists and the courts may have to interpret the legislation. They may only be able to do so by examining material that may turn out to be “content” and therefore both inadmissible and which should be excluded from legal proceedings.

IP Addresses

IP addresses are the way in which computers and other devices are identified on the Internet. The addresses are often recorded automatically in various log and configuration files; they appear for example in the logs generated by webservers and also appear in email headers. It is essential to develop an understanding of how reliable an indicator of the identity of an individual IP addresses actually are.

We need to step back a little into the fundamentals of computer networking. The value of a network is that large numbers of computers and other devices such as printers can communicate with each other without the need for every device to have a bilateral link to every other device. The solution requires several things:

- each computer or device needs to be separately identified – it needs to have a network address
- there is a cable or other link which connects to each device at least once
- communications between computers are broken down into small segments or packets, each of which contains information about the originating device, the destination device, a fragment of the content, a means of identifying the fragment so that the total content can be re-assembled at its destination in the correct order
• some form of error correction so that data losses of various kinds are identified and, hopefully, corrected

There are several ways in which solutions can be achieved – in each instance the totality is known as a protocol or standard. There are a number of commercial proprietary networks but the most widely used is TCP/IP because it is open source and there are very large numbers of network devices and software which support it. TCP/IP underpins the Internet.

TCP/IP is currently undergoing a revision; the current scheme is called IP Version 4; the incoming scheme, now being rolled out, is called IP Version 6. The main reason for the new version is that the means for identifying or addressing individual devices in IP v4 was inadequate – there are already many more devices than “addresses”. The problem is very similar to that of telephone numbering – the schemes for these have to be revised every few years because forecasts about growth have under-estimated.

Under IP V4 addresses are expressed in a notation called “dot decimal” or “dotted quad” – in essence 4 groups of numbers separated by dots, each number no more than 3 digits. Thus 123.345.567.980. The website used by the BBC’s news service has the IP address 212.58.226.30.

The addresses are given out under a scheme run by a body called IANA – Internet Assigned Numbers Authority, and its Regional Internet Registries, RIRs. Each RIR maintains a publicly searchable directory of who “owns” each address. The directory is known as the WHOIS database.

There are a number of user-friendly websites which allow you to enter an IP address and get some information about who is using it, eg http://whois.domaintools.com/.

There have been two ways of overcoming the short-fall in addresses and investigators need to understand the principles behind both. They are Network Address Translation, or NAT, and Dynamic Addressing, achieved by means of Dynamic Host Configuration Protocol, or DHCP.

Network Address Translation is used widely in corporate and home networks. Each device – computer, network printer, etc – has an address on the internal network. (In very many cases, it will be in the range 192.168.0.nnn or 192.168.1.nnn which are among those “reserved” for that purpose.) For internal communications, the devices can communicate directly. If they wish to talk to the outside world they do so via a router. In home setups, the router is often in the same box as the modem which interacts with the telecommunications service. The router has an internal address (usually 192.168.0.1 or 192.168.1.1 or 192.168.2.1 if it is a small or home system). But it also looks outwards to the Internet and will have an external Internet address. There are a number of ways of finding out the current external address but a convenient method is to go to one of a number of websites that will read and report the address. Many of them also report on the Internet Service provider (ISP) and also attempt to provide an approximate geographic location. In a large corporate environment the internal IP address range is often within 10.0.0.0–10.255.255.255.
The role of the router is to keep track of the requests each internal computers makes to the outside world (and the responses thereto) and feed them via the external IP address. Thus to the outside world there may appear to be just one computer, whereas the internal network may have tens or even hundreds of computers.

Dynamic IP Addressing is a facility used by Internet Service Providers to optimise the use of the available public addresses. Each ISP has a collection or pool of addresses, far fewer than the number of customers. But most customers do not require to be communicating on the Internet all of the time. So the opportunity exists to let a customer lease an IP address for a short period when needed as opposed to having a permanent fixed address. They way this is done is that the customer, when he sets up his Internet connection (these days the setting up will probably be done automatically via one program or another or by powering up his modem/router), says he wishes to use Dynamic Host Protocol Configuration, or DHCP, which in essence is a request to the ISP along the lines of: “Hello I am your customer, please let me have an external IP address”.

One interesting and important consequence is that individual subscribers do not keep their IP address beyond each session; every time they re-power their router/modem they will almost certainly get a fresh IP address from the pool the ISP has available.

As a result, an IP address by itself under IP V4 by itself is not sufficient uniquely to identify a computer user. Further information is required. At the ISP’s premises there will be equipment to assign IP addresses to their customers. The commonest form of this works under a protocol called RADIUS (Remote Authentication Dial In User Service (RADIUS). It does authentication, authorization and accounting. A RADIUS log is generated and kept.

Thus, if an investigator comes across an IP address and associated time/date stamp and wishes to associate with an individual, the following steps are necessary:

- a WHOIS lookup will identify the ISP
- the ISP can match the specific IP address and the time with a subscriber (but may not be willing to release such information without proper legal authorisation
- at the subscriber’s premises there may be several connected computers but there will probably be no record of which was active at any particular time
- each computer may have more than one authorized user; a chronology of activity may indicate who was using it at specific times

Even this may not produce wholly reliable results. For example, if the network at the subscriber’s premises uses wifi (as many do) and if the wifi connection has not been secured, then it is possible that an unknown third party passing the premises is responsible for the activity. As a further instance, if one of the computers on the network has been trojanised and is being controlled from elsewhere on the network.

Usually the way to resolve such issues is to carry out a forensic disk examination of computers that have fallen under suspicion to see if there are activities which can be associated with events that caused the original recording of the IP address.
Under IPv6 there are many more IP addresses available. IPv6 addresses are written in eight groups of four hexadecimal digits separated by colons

```
2001:0db8:85a3:0000:0000:8a2e:0370:7334
```

At the time of writing, although IPv6 has been “released” and operating systems such as Windows 7 are ready for it, most ISPs have yet to implement it. It seems likely that local network address translation and DHCP will no longer be required as each personal computer or device will have its own more-or-less permanent IP address. However the problems of reliably identifying individuals via an IP address will still not be wholly solved:

- there may be more than one person using a computer
- the computer may still be trojanised and controlled from afar.

Data from Internet Service Providers

ISPs provide what is in fact a bundle of services to customers. Typically, these include:

- connection to the Internet;
- facilities for emails to be sent from the customer to others on the Internet;
- facilities for emails addressed to customers to be received by the ISP and then held until such time as the customer requests the emails, either by connecting or opening their email client;
- facilities for hosting websites so that they are permanently available to the world wide web. These websites may be simply “static” – that is, containing information that does not change very frequently, or may be full-scale e-commerce sites capable of taking orders from the public, linking to credit card authorisation schemes, confirming details of sales and originating computer records for the vendor to translate into despatch of orders;
- more general purpose hosting facilities, in effect giving the customer an almost empty Internet-connected computer on to which can be loaded a variety of customised specialist services. Some of these can be considered “cloud” services (see [insert xref].)
The operation of a ISP generates various logs which are essential to its business, either in terms of maintaining quality of service or for tariffing. From the perspective of law enforcement the most important of these is the Remote Authentication Dial In User Service (RADIUS) log.

Legal Issues

If ISPs operate in the UK, they can readily provide customers with their own personal data that the ISP holds about them. But for most purposes, ISPs cannot supply data on third parties other than against a proper authorisation under RIPA 2000 or an explicit court order. Again, in relation to a website that an organisation may have had hosted by an ISP, the ISP can provide the organisation with such web logs as it has collected and the organisation is prepared to pay for. But logs from the websites of third parties are unlikely to be available in the absence of authorisation under RIPA 2000 or a court order.

Emails held on the ISP’s mail server computers will be regarded almost certainly as being on a public telecommunications service for the purposes of RIPA 2000. To obtain traffic data, law enforcement will require an appropriate authorisation under Chapter II of RIPA 2000 but that evidence will be admissible and can be used to show that communications between specific individuals took place but will not provide the content, what was actually said. To get the content a warrant signed by the Home Secretary will be necessary, and the material can only be used for intelligence purposes but will not be admissible as evidence.

The main civil route to litigants seeking information from a person who is not a party to the litigation is a court order under CPR 31.17. This covers the position once proceedings have started. Information can also be obtained before then under CPR 31.18 and more specifically through a Norwich Pharmacal Order. Both are explained in more detail below at Appendix 5.

Evidence from the Web

An organisation may have come across something on a remote website and thinks that it may be needed for evidence. It could be an offer of something for sale after a transaction has been completed, it could be defamatory, it might indicate misuse of proprietary or confidential information. How does an organisation capture it?

One route is simply to use the “Print” option within the browser. Most browsers will not only print out what you can see on the screen but also provide a footer with details of the URL (website and specific page) together with a day and time stamp. As with other printouts, the result is better than nothing but also open to the charge of ease of subsequent alteration. The same could be said of “saves” to disk. Both Microsoft Internet Explorer and Mozilla Firefox gives options to save “Web Page Complete” and “Web Page HTML only”, but here too, post-capture modification of content is easy.
There are programs that can capture an entire website or part thereof. One example is Webwhacker\(^{54}\), which can preserve the directory structure of a website and save it to external storage such as a CDRom for later examination. The programs work by starting at a “top” or “root” page of a website and then identifying and following all the links below, capturing each in turn. The process is sometimes called “spidering”. In addition, the program can monitor a website for changes, which may be useful during an investigation. There are two sorts of website capture program: one type is designed to allow the entire site to be viewed offline via the user’s own local computer. In order for the various links to work, the pages on the original website may need some internal alteration: the result is convenience in viewing but loss of forensic accuracy. In order to achieve the latter, web-capture software which simply draws down copies of the original pages is required. In practice, it often makes sense to use both methods.

There are some important limitations that need to be considered. The first is that what can be seen on screen is not necessarily what is currently on a remote site due to the caches kept by ISPs and on Internet browsers. A further complication is that what is being seen on screen may have been assembled from a number of sources and in quite complex ways, as when the web designer has used “frames” or “cascading style sheets”. Older web-capturing tools may fail to “get” every single element.

All this means that both web-capturing and writing accompanying witness statements have to be carried out with some care in order to anticipate criticism.

The second limitation is that spidering only works when the webpages have fixed content: that is, they exist as files on the remote website. But on many websites the pages being seen are created “on-the-fly” against a specific request or in response to specific circumstances – this is known as dynamic page creation. Examples include the “results” pages created by search engines such as Google, the “welcome” page on Amazon.com where, in response to a cookie on your computer, you are greeted by name and with a list of uniquely personalised “recommendations” based on previous purchases, as well as the accumulated shopping baskets that almost all e-commerce pages have.

In these circumstances the only evidence an organisation may be able to collect is a “controlled” printout: one where careful contemporaneous notes are written up during the process, in the hope that this will be sufficient to persuade a court. Web activities may leave information in the cache which, when reviewed in a cache analysing program such as Netanalysis\(^{55}\), may provide corroboration – however, not all e-commerce pages are captured in the cache\(^{56}\). Ways around this include the use of a video camera to record onscreen activity, or programs such as Camtasia, which sit in the background and save snapshots of the screen to a movie file – the program is used to develop computer training modules.

\(^{55}\) http://www.digital-detective.co.uk/intro.asp.

\(^{56}\) To prevent double-ordering, or the subsequent retrieval of sensitive financial information.
Evidence from Web Servers

This is the other side of the same problem. An organisation may own a website and wish to assert that it has been publishing certain items of information, or it may wish to demonstrate that certain individuals have been visiting the site at particular times and carrying out certain types of activity.

Web server programs, among which the most popular are Apache and Microsoft Internet Information Services, can be set up easily to collect activities into a log. These logs are usually in Common Log Format (CLF), although it is possible to collect additional information. From a forensic perspective, these logs are no different from other types of computer log that one may wish to offer in evidence.

In terms of the overall reliability of web server logs, the following elements in a witness statement may help to persuade a sceptical court:

- a description of the computer system’s overall functions and the role of the web server within it;
- an account of how long the system in its present configuration has been in operation;
- what forms of testing took place prior to commissioning and what forms of routine audit are in place;
- what external factors exist to act as a check on reliability;
- what security features exist and how they are managed (this is anticipates suggestion that incriminating material was placed there by someone other than the suspect);
- whether other similar systems are in existence that have a good history of reliability;
- compliance with any external good practice or system audit standards.

In terms of the precise exhibit that is being produced, it is useful to be able to say:

- how the selection of the data in the exhibit was made and why it can be regarded as “complete” in terms of the issues at hand;
- what procedures were used to collect the evidence such that it can be regarded as free from tampering;
- what procedures were used to preserve the evidence so that it can be regarded as free from subsequent tampering – this may take the form of imaging some computers or copying selected files to write-once data media such as CD or DVD, or making a digital fingerprint of the files;
- what manipulation or subsequent analysis was carried out to make the material “easier to understand” – this is a perfectly legitimate course of action, but in this event the original material should be exhibited so that the defence team can test the manipulation or analysis.

Usually, admissibility of evidence will be on the basis that the material is a “business record” as defined in a “business record” as defined in s. 117 of the Criminal Justice Act 2003. For civil matters, a business is obviously able to produce evidence from systems that it owns and runs. Many records will fall into the category of “documents
which may be received in evidence without further proof” under s 9 Civil Evidence Act, 1995 and others may be admitted subject to the “hearsay” provisions of Civil Procedure Rule 33.

Evidence from Computer Intrusions

An interesting issue arises when an investigator wishes to make a covert entry into a suspect’s computer across a network or the Internet. At a technical level, this is a relatively easy task: any of a number of Trojan horse and remote administrator programs will accomplish this. Facilities for capturing each keystroke on a computer or collecting screen snapshots at regular intervals (keylogger programs) are also widely available and usually operate covertly. Remote forensics tools are a form of computer intrusion.

However, for the corporate investigator there are significant legal hazards. Any such entry without authorisation from the computer owner is an offence under the Computer Misuse Act 1990. Even if the computer is owned by the investigator’s employer, the computer user has a reasonable expectation of privacy and the circumstances must be such that these expectations can be overcome – for example, because of a term in the employee’s contract of employment (see Appendix 4 for the general problems of employer surveillance of employees).

For law enforcement it is possible to get a warrant for intrusive surveillance under s. 26(3) of RIPA 2000. Section 32(3) sets out the circumstances in which such surveillance has to be justified, and there are overarching tests of necessity and proportionality.57. There are a number of problems for law enforcement: it may wish to avoid disclosing its precise methods and, although it is possible for law enforcement to approach a judge under the public interest immunity agenda, this may be at the expense of not being able to use the result of the intrusion.

In addition, there is a “reliability of evidence” problem: how can the investigator reassure the court that the evidence on the computer submitted has not been tampered with? Essentially, once the investigator is inside the computer, all assurance of the integrity of any evidence derived vanishes – it is no longer possible to state categorically that the evidence has not been tampered with. At worst, if in a criminal case defence lawyers suspect that their client has suffered a law enforcement intrusion, even if no evidence has been adduced by the prosecution, they may have powerful arguments for claiming that the evidence is so tainted that the trial should be abandoned.

CCTV equipment

Early forms of closed circuit television consisted of a low-cost, low resolution camera linked by coaxial cable to a monitor; if it was desired to record activity, it was to a tape-based machine, usually one which ran much more slowly than a conventional

57 A code of practice can be found at: http://www.homeoffice.gov.uk/crimpol/crimreduc/regulation/codeofpractice/surveillance/part1.html
VCR so that the tapes did not have too be changed too often. The use of hard-disk-based recording has had many advantages: it is less prone to wear than tape, hard-disk capacities permit long periods of usage, indeed a recorder can be set to re-use hard-disk space automatically after, say, seven days of usage; time-codes are much easier to enable – this is crucial if you want to examine activity at particular known points; there are a wide variety of compression levels available depending on the desired quality of the recorded video; multiplexing of several different cameras can take place on just the one recording medium. More modern cameras can also use network protocols and cables instead of coaxial cable; indeed they can use wireless networking which greatly eases and reduces the cost of installation. Finally for more advanced systems, once the video is in digital form, software can be used to analyse recorded activity.

It is the digital element in modern CCTV that justifies its inclusion in this section of the guide. The problem is that there are few established standards for recording CCTV video on to hard-disk. Most of the systems are proprietary to their individual manufacturers and it can be difficult to extract video streams of even still pictures therefrom without the aid of the manufacturer. The hard-disks inside CCTV recorders can nearly always be removed and subjected to forensic imaging. But thereafter without the specific software in the CCTV recorder (often firmware, software installed on a microchip) the disk operating system and the precise method by which the video was recorded to disk, the forensic disk analyst may not be able to view the video.

Indeed one of the major problems faced by law enforcement is that, in a complex enquiry, in order to follow the activities of people of interest, they require to look at the recorded output of large numbers of different systems, all in different formats.

A Home Office publication, http://www.crimereduction.homeoffice.gov.uk/cctv/cctv36.htm gives some useful assistance to those contemplating a new or revised CCTV system. Much of it applies to organisations that think the main use of their CCTV systems will be in internal investigations, as opposed to providing assistance to law enforcement. The following is a summary:

In order to ensure the evidential value of pictures, your CCTV system should meet the following requirements:

Quality - Are the pictures good enough?

- Before installing a CCTV system you should have a clear idea of what you want the system to do and how it should perform (e.g. recognise the face of someone walking through a doorway, or read a vehicle registration number).
- It should not be expected that enhancement features, such as zoom controls, would provide extra detail. If you can't see it, then it's not fit for purpose.
- You should test the system using a volunteer etc.
- The quality of the recorded or printed pictures may differ from the live display.
- Ensure the time and date on the system are correct.
- The quality of the pictures should not be compromised to allow more to be squeezed onto the system.
• Regularly maintain all aspects of the system (e.g. camera focus, cleaning of lenses, etc).

Storage - Are the pictures stored appropriately?

• Access to the system and recorded images should be controlled to prevent tampering or unauthorised viewing.
• A record should be kept of who has accessed the system and when. Further information on this can be found in the BSI document *Code of Practice for Legal Admissibility of Information Stored Electronically* (BIP0008) or from your local Crime Prevention Officer.
• Physical protection methods such as locked rooms are just as effective as electronic protection methods that require proprietary software or hardware. These can hinder the police's investigation.
• It is important that recordings are retained beyond 31 days if possible.
• It should be possible to protect specific pictures or sequences, identified as relevant to an investigation, to prevent overwriting before an investigator can view or extract them.

Export - Can the pictures be easily exported from the system?

• A trained operator and simple user guide should be available to assist the investigator in replay and export.
• Export of medium and large volumes of data can take a substantial period of time. The operator should know the retention period of the system and approximate times to export different amount data.
• If the software needed to replay the pictures is not included at export, the police may have trouble viewing it. Export of a system event log or audit trail, and any system settings with the pictures will help establish the integrity of the pictures and system.
• The system needs to be capable of exporting small or large amounts of video quickly without losing quality. An ideal solution for medium-to-large downloads, would be for the system to have the facility to export to a 'plug-and-play' hard drive.
• The system should not apply any compression to the picture when it is exported as this can reduce the usefulness of the content.

Playback - Can the pictures be easily viewed by authorities?

• The replay software must allow the investigator to search the pictures effectively and see all the information contained in the picture and associated with it.
• It should be possible to replay exported files immediately, e.g. no re-indexing of files or verification checks.

Further information can be found at: http://scienceandresearch.homeoffice.gov.uk/hosdb/cctv-imaging-technology/
Legal Issues

The use of CCTV on employees falls squarely within the guidance given in Appendix 4 of this guide, which addresses the broad issues of employers’ rights to carry out surveillance on their employees.

If the CCTV is aimed at non-employees including members of the public, the main laws to worry about are Human Rights and Data Protection. The essence is that an organisation has to be clear what the reasons are for the installation and to make sure that the way the system is set-up does not cause any intrusion beyond that necessary and proportionate to achieve those goals. Typical aims would be theft reduction and public safety. But the privacy of individuals must still be respected. For example cameras should not be pointed at areas where people have a reasonable expectation of privacy and where there are no specific grounds for believing that wrong-doing can be spotted there, as opposed to other locations. More intrusive surveillance of identified individuals would also need to pass the necessity and proportionality tests: for example that they had appeared to carry out activities consistent with theft.

In relation to the storage of cctv recordings in which people appear (including those recordings in digital form), the standards used must be meet the eight data protection principles as the video recordings will count as “personal data”: the data must be

- fairly and lawfully processed.
- processed for limited purposes and not in any manner incompatible with those purposes.
- adequate, relevant and not excessive;
- accurate.
- not kept for longer than is necessary.
- processed in accordance with individuals’ rights.
- secure.
- not transferred to countries without adequate protection.

The Information Commissioner has issued a Code of Practice:
Appendix 3: Admissibility of Evidence from Computers

The word “admissibility” refers to legal rules that are applied to an item of potential evidence before a court can consider the value of the facts that it purports to offer. This Appendix provides an overview of the issues.

If a device is simply recording information as in, for example, automated records of telephone calls, or who entered a building at a particular time, or an amount of fuel dispensed, evidence from such devices is admissible as “real evidence”. To qualify: there must no possibility that the recording can be adjusted or manipulated – it must be a “dumb”, automated process.

If an entire computer or some item of data storage media (disks, tapes, etc.) are seized and can be offered in court, they are admissible as “real evidence”. Anything derived from this real evidence – printout, display, CDROM extracts, the product of analysis – becomes a separate exhibit, admissible when the person who carried out the derivation is present in court and can formally produce the exhibit and be cross-examined.

Up until April 2000 there was a separate admissibility regime for computer evidence which required a certificate that the computer was operating properly and was not used improperly, before any statement in a document produced by the computer could be admitted in evidence (the former s. 69 of the Police and Criminal Evidence Act 1984). But today a presumption exists that the computer producing the evidential record was working properly at the material time and that the record is therefore admissible as real evidence. However, this presumption can be rebutted if evidence casting doubt on its intrinsic reliability is adduced. In this event it will be for the party seeking to produce the computer record in evidence to satisfy the court that the computer was working properly at the material time.

Nevertheless, documents found on a computer may be “documentary hearsay” – although the existence of the document on a computer is admissible, its contents may need to be separately admitted.

A printout or substantive computer file is a document if:

- the document was created or received by a person in the course of a trade, business, profession or other occupation, or as the holder of a paid or unpaid office; and
- the information contained in the document was supplied by a person (whether or not the maker of the statement) who had, or may reasonably be supposed to have had, personal knowledge of the matters dealt with.

It then becomes admissible as “business document” for the purposes of s. 117 of the Criminal Justice Act 2003. The court may make a direction if satisfied that the statement's reliability as evidence for the purpose for which it is tendered is doubtful in view of-

- (a) its contents,
- (b) the source of the information contained in it,
(c) the way in which or the circumstances in which the information was supplied or received, or
(d) the way in which or the circumstances in which the document concerned was created or received.\(^{58}\)

Communications data acquired under warrant is admissible and normally will be produced by a telecoms company or similar using the business records rule under s. 117 of the Criminal Justice Act 2003. It is also often possible to admit as “real evidence” on the basis that the data is automatically created without human intervention. As we have seen, currently content is not admissible under s. 17 of the Regulation of Investigatory Powers Act 2000 (RIPA 2000). However, content is admissible if it has been obtained from an overseas law enforcement agency within its own jurisdiction and is subject to the availability of someone to produce it before the English court.

For civil proceedings, the “business records” route is via s 9 Civil Evidence Act, 1995:

1. A document which is shown to form part of the records of a business or public authority may be received in evidence in civil proceedings without further proof.
2. A document shall be taken to form part of the records of a business or public authority if there is produced to the court a certificate to that effect signed by an officer of the business or authority to which the records belong.

For this purpose—

(a) a document purporting to be a certificate signed by an officer of a business or public authority shall be deemed to have been duly given by such an officer and signed by him; and
(b) a certificate shall be treated as signed by a person if it purports to bear a facsimile of his signature.

“Records” means records in whatever form including computer records. S 8 of the same act also allows for the provision of copies of the original.

Expert evidence has been admissible in English law since 1782 and there are cases going back to 1554. But “expert” for this purpose means the right of the witness to offer opinions based on experience. This is distinct from the role of a forensic technician who may have carried out a technical investigation or procedure and simply reports factually on their findings. In the end it is for a judge to form a view of the extent of any individual’s “expertise” and hence the territory over which opinions can be offered.

Traditionally English law excluded so-called “bad character” evidence – that is material which is not directly linked to the suspect events but which might show that an accused has a propensity or proclivity towards certain types of activity. Until 2003, defence lawyers were able to argue that such material was “prejudicial”. But the Criminal Justice Act, 2003, introduced a number of circumstances in which a

\(^{58}\) s 177(7)
judge, after applying some tests, could allow the evidence to go before a jury. The details appear in Part II Chapter 1 of the Act – sections 98-113. Increasingly investigators are examining computers of suspects in the hope of finding, if not direct evidence of wrong-doing, but material which meets the tests laid down in the Act. These tests include “important explanatory evidence”, “matter in issue between the defendant and the prosecution” and “evidence to correct a false impression.” On this basis indications of websites visited and/or bookmarked as a favorite or some email traffic may now be adduced in evidence.

A judge has general discretion to exclude any evidence which appears to be so unfair (normally by reference to the way in which it was obtained) that it would have an adverse effect on the fairness of the proceedings; s. 78 of the Police and Criminal Evidence Act 1984). Normally, judges only make such exclusions on the application of defence lawyers.

Admissibility rules in countries on the European mainland tend to be much more relaxed than in the UK. This is often a function of the different criminal justice procedure. The UK procedure is adversarial – the judge acts as the chair over proceedings in which the evidence and arguments are presented by opposing lawyers. The continental procedure is inquisitorial, dominated by an examining magistrate. Admissibility rules in the US follow the English common law model but have evolved differently. For example, warrants to seize evidence have to be drawn up with much more precision than in the UK; material seized outside the scope of a warrant, unless “in plain sight” may be rendered inadmissible. One of the more interesting divergences is the way in which novel scientific and technical evidence is handled. In the UK, the jury is simply presented with opposing expert witnesses (who may have been asked to identify points of agreement and disagreement). In the US, novel scientific and technical evidence is an admissibility issue, with the judge acting as a gatekeeper to protect the jury from scientific evidence which has not been established as “generally accepted”. Where necessary, a trial before the main trial is held (a voir dire) – the Daubert rules.

59 More guidance on the US position can be found at:

60 Under CPR 33.5: http://www.justice.gov.uk/criminal/procrules_fin/contents/rules/part_33.htm

Appendix 4: Employer Considerations in Carrying Out Surveillance on Employees

Computer investigations into employees by employers operate under the same constraints and rules as ordinary investigations. Among other things, the individual employee is protected by the following:

- Employment Rights Act 1996;
- Human Rights Act 1998;
- Data Protection Act 1998;
- Sexual Discrimination Act 1975;
- Race Relations Act 1976;

For example, this last covers the circumstances in which an interview takes place and when a caution should be administered. Two other Acts are particularly important in the IT domain:

- Computer Misuse Act 1990;

Any action by an employer has to pass a test of “necessity” (there was no less intrusive route) and “proportionality” (what was done was limited to what appeared to be strictly proportionate to the circumstances – are you investigating stolen stationery or substantial missing funds?).

In determining a legal policy for any form of surveillance, there are some general principles from which the detail flows:

The basic power in respect of private telecommunication services is found in s 1(6) of RIPA:

The circumstances in which a person makes an interception of a communication in the course of its transmission by means of a private telecommunication system are such that his conduct is excluded from criminal liability under subsection (2) if—

(a) he is a person with a right to control the operation or the use of the system; or

(b) he has the express or implied consent of such a person to make the interception.
The detailed rules for legitimate interceptions are mainly to be found in the Telecommunications (Lawful Business Practice) (Interception of Communications) Regulations 200062. To fall within the Regulations, the interception has to be by, or with, the consent of a person carrying on a business, for purposes relevant to that person’s business and using that business’s own telecommunications system.

Interceptions are authorised for monitoring or recording communications:

- to establish the existence of facts;
- to ascertain compliance with regulatory or self-regulatory practices or procedures;
- to ascertain or demonstrate standards which are (or ought to be) achieved (quality control and training);
- in the interests of national security (in which case, only certain specified public officials may make the interception);
- to prevent or detect crime;
- to investigate or detect unauthorised use of telecommunication systems;
- to secure, or as an inherent part of, effective system operation;
- to determine whether received communications are business or personal communications;
- made to anonymous telephone helplines.

The UK also has a code of guidance for employer–employee relationships. The Information Commissioner’s 2005 Employment Practices Data Protection Code63 states the obligations of employers. It lays down strong principles of data protection, prohibits the making of decisions solely on the basis of automated data, requires employers to notify employees of surveillance policies and places limits on the extent of monitoring which can take place. It requires the explicit consent of employees before sensitive data such as medical or information can be collected. The third part of the Employment Practices Data Protection Code contains a guideline on how firms can legally monitor staff emails. Employers have the right to monitor staff emails, provided that employees have been warned that monitoring is taking place and that the reasons for monitoring have been explained. The Employment Practices Data Protection Code covers a range of surveillance activities including opening emails or voicemail, checking internet usage and recording with closed circuit television (CCTV) cameras, but it also warns businesses that the covert monitoring of employees is unlikely to be permissible unless it is done in response to a request from a law enforcement agency.

62 The full text of the Regulations is available at : http://www.hmso.gov.uk/si/si2000/20002699.htm
63 Available at: http://www.informationcommissioner.gov.uk/cms/DocumentUploads/ico_emppraccode.pdf
The Code states that following it will:

- increase trust in the workplace – there will be transparency about information held on individuals, thus helping to create an open atmosphere where workers have trust and confidence in employment practices;
- encourage good housekeeping – organisations should dispose of out-of-date information, freeing up both physical and computerised filing systems and making valuable information easier to find;
- protect organisations from legal action – it will help employers to protect themselves from challenges against their data protection practices;
- encourage workers to treat customers’ personal data with respect – it will create a general level of awareness of personal data issues, helping to ensure that information about customers is treated properly;
- help organisations to meet other legal requirements – the Code is intended to be consistent with other legislation such as the Human Rights Act 1998 and RIPA 2000;
- assist global businesses to adopt policies and practices that are consistent with similar legislation in other countries – the Code is produced in the light of EC Directive 95/46/EC of 24 October 1995 on the protection of individuals with regard to the processing of personal data and on the free movement of such data and ought to be in line with data protection law in other European Union (EU) Member States;
- help to prevent the illicit use of information by workers – informing them of the principles of data protection and the consequences of not complying with the Act should discourage them from misusing information held by the organisation.

The Code goes on to give some general principles about monitoring:

- it will usually be intrusive for an organisation to monitor its workers;
- workers have legitimate expectations that they can keep their personal lives private and that they are also entitled to a degree of privacy in the work environment;
- if employers wish to monitor their workers, they should be clear about the purpose and satisfied that the particular monitoring arrangement is justified by real benefits that will be delivered;
- workers should be aware of the nature, extent and reasons for any monitoring, unless (exceptionally) covert monitoring is justified.

In any event, workers’ awareness will influence their expectations.

It says that any organisation that wishes to monitor electronic communications should establish a policy on their use and communicate it to workers. Further detail in the Code suggests specific elements of such a policy. Each specific act of monitoring should be accompanied by a formal impact assessment, carried out by a group of people able to look at all the likely implications.

The Computer Misuse Act 1990 refers to “unauthorised acts” of accessing computers or modifying their contents. In a corporate situation, a business is normally authorised to examine its own computers but the provisions of data protection and human rights legislation still apply. A business is not authorised to access the computers owned privately by its employees – these can include laptop computers,
mobile phones, PDAs and data storage devices such as thumbdrives and personal media players,

It is good practice for an employer, or anyone instructed by them to carry out an investigation, to commence with the assumption that they have no powers whatever to investigate – and then explicitly refer to each action in terms of a legal justification. Investigations should always be the subject of contemporaneous notes, which should include actions, decisions and findings. The role of the investigator’s record is to show what was done, when and why. It provides a response to critics – who may have the benefit of hindsight - and, where relevant, a justification for costs incurred. It should start with the remit of the enquiry and cover every activity within the investigation, including phone calls and informal discussions.

Businesses should also consider creating formal records of decisions which might be construed as impinging on the rights of employees, together with the reasoning behind the decisions.
Appendix 5: Problems of Disclosure and Confidentiality

For businesses, one of the potentially worrisome features embarking on a civil action is that the “other side” is entitled to disclosure, sometimes referred to by its US name, “discovery”. And similar concerns apply when cooperating with law enforcement in a prosecution. Indeed, in both civil and criminal matters, someone who is not a direct victim but a third party may find that they are the subject of a disclosure requirement. There is little doubt that on occasion some defence lawyers, lacking any better tactic, have attempted “aggressive disclosure”, hoping to thwart a prosecution or civil action by requiring the disclosure of embarrassing or sensitive information to the point where the party concerned decides that it is in their wider interest to withdraw cooperation.

Police have power to obtain information from third parties either via a Production Order or search warrant.

This appendix provides an outline of the law and the issues, but it is stressed that in any individual situation, an organisation will need access to specific legal advice.

Civil Procedure

In civil litigation the parties have a mutual obligation to disclose to each other any “document” in their possession which might affect the outcome of the dispute. For England and Wales the details can be found in the Civil Procedure Rule 31 and the associated Practice Directions at http://www.justice.gov.uk/civil/procrules_fin/contents/parts/part31.htm. The specific details referring to electronic documents are at: http://www.justice.gov.uk/civil/procrules_fin/contents/practice_directions/pd_part31b.htm

A document has to be disclosed if it is something:

- upon which the party in possession relies;
- which adversely effects the case of the party in possession;
- which supports the other party’s case;
- something which adversely effects the other party’s case
- other documents covered which may be covered in a specific Practice Direction.

“Document” has a very wide meaning and includes computer records, both formal and informal. Lawyers refer to these as Electronically Stored Information – ESI. Disclosure involves formally notifying the other parties to the litigation that the documents exist – usually by producing a list of documents or classes of documents. The duty to disclose continues throughout the litigation process. The only
circumstances in which the full disclosure regime is not required are when a case is heard under the small claims or fast track procedures.

It is not necessary to produce the individual documents themselves until a request to do so is received. However it is obviously wise to think through the methods by which delivery is to be achieved. In the first instance the disclosed documents will have to be made available for inspection.

The general principles are:

(1) Electronic Documents should be managed efficiently in order to minimise the cost incurred;

(2) technology should be used in order to ensure that document management activities are undertaken efficiently and effectively;

(3) disclosure should be given in a manner which gives effect to the overriding objective of keeping costs low and proportionate;

(4) Electronic Documents should generally be made available for inspection in a form which allows the party receiving the documents the same ability to access, search, review and display the documents as the party giving disclosure; and

(5) disclosure of Electronic Documents which are of no relevance to the proceedings may place an excessive burden in time and cost on the party to whom disclosure is given.

The duty to disclose is limited by three criteria. First it is limited to documents which are or have been in a party’s control. Second the search for disclosable material is limited to what is “reasonable”. Thirdly, the costs must be “proportionate” to the sum in dispute (this is a general requirement of costs in civil litigation and is not limited to issues of disclosure). Two of these criteria are “soft”, in the sense that the law and procedure rules do not provide much detail. Reasonableness is defined by: (a) the number of documents involved; (b) the nature and complexity of the proceedings; (c) the ease and expense of retrieval of any particular document; and (d) the significance of any document which is likely to be located during the search. Parties must state if they consider a particular form of potential search “unreasonable” – and why. But the search does not to have to be on the basis of “leaving no stone unturned”

In each individual case in the end it is for a judge to assess both reasonableness and proportionality.

On the face of it, this appears to place both parties in great difficulties as they will not want to wait on a court’s decision but will wish to make some anticipation. However in practice, the courts have provided a ESI Questionnaire, available in Word format at: http://www.hmcourts-service.gov.uk/HMCSCourtFinder/GetForm.do?court_forms_id=2429. (It is also the Schedule to CPR 31B).
Almost any test of reasonableness and proportionality is likely to be tested against the declarations and analysis the ESI Questionnaire requires. It asks, among other things, for:

- a date range
- identities of creators or custodians of documents
- forms of communication used (email plus anything else) plus references to types of software used, details of media storage and information about back-ups and archives
- types of electronic document, including the output of word-processors, spreadsheets, image files – and again information is required about the software, media storage and back-ups
- databases, including document management systems – information is required about the nature of data held and methods by which inspection can take place
- proposed search methods including keywords (which have to be specified) but also any other search method which is being contemplated. The software to be used must be identified together with an indication of how the other parties will access the information. Any specific issues, such as how email attachments and images will be handled, must also be referred to.
- how encrypted material is to be handled
- whether metadata is to be included
- whether it is intended that delivery of disclosed material should be in electronic form as opposed to print-out.

Responses to the ESI Questionnaire must be accompanied by a Statement of Truth, as with other witness statements. Considerable pressure is applied on the parties to meet and agree, as far as possible. A first attempt at agreement has to take place before the first Case Management Conference – the event at which the court seeks to identify the issues and the length of time that might be needed for a trial. Actions by one party to overwhelm opponents by threatening the cost of disclosure will be regarded by the courts as conflicting with the “overriding objective” in CPR 1 of enabling the court to deal with cases justly. This includes saving expense and ensuring costs are proportionate. The Courts have considerable power to order the parties to carry out certain actions necessary to deal with the dispute expeditiously.

Litigants might be tempted to destroy documents which they would prefer not to have to disclose. Once litigation is contemplated all disclosable documents must be preserved, even if they would normally have been deleted in the ordinary course of business. Moreover if disclosable documents have been destroyed before the commencement of proceedings, the judge may draw an “adverse inference” that the party is not behaving as they should. The case of *Tchenguiz v Imerman*[^64] in 2009 concerned a hard-fought divorce in which, among other things, the assets of the marriage had to be shared out and there was a strong suspicion of concealment. Also at issue was the use of apparently illegal methods to obtain the concealed information.

A party can apply to the Court to withhold inspection or disclosure of a document but apparently on the basis that “disclosure would damage the public interest” (CPR 31.19).

Third-Party Disclosure in Civil Proceedings

The main civil route to litigants seeking information from a person who is not a party to the litigation is a court order under CPR 31.17. This covers the position once proceedings have started. Information can also be obtained before then under CPR 31.18 and more specifically through a Norwich Pharmacal Order.

An order under Rule 31.17 is only made where the documents of which disclosure is sought are likely to support the case of the applicant or adversely affect the case of one of the other parties to the proceedings and disclosure is necessary in order to dispose fairly of the claim or to save costs. The judge will expect to see evidence to support these criteria and the recipient is entitled both to question the detail of the order and to expect a reimbursement of cost.

A Norwich Pharmacal Order operates on the basis of a case called *Norwich Pharmacal Co. & Others v Customs and Excise Commissioners* [1974] AC 133.

The tests the Court will apply are that:

- It is in the interests of justice
- The evidence is essential to the success of the proposed litigation, either to identify proper defendants or to obtain essential information
- It is very likely that the target of the NPO has it
- The target of the NPO is involved in the alleged wrong-doing, albeit innocently, but is not simply a witness. But is also unlikely to be a party in the substantive claim
- The applicant has provided the court with a coherent body of data from which to assess; and has made full and frank disclosure

There is a strong preference for the Order to made on notice to the respondent (the person to whom the Order will apply) though it is possible for an Order to be obtained *ex parte*, without notice, if there are exceptional grounds for secrecy and urgency.

One situation in which Norwich Pharmacal Orders have been used has been in proceedings against suspected infringers of copyright in video games, computer programs and films. Typically the pirated material is exchanged via file-sharing. During the use of these the IP addresses of the subscribers of the apparently infringing computers are obtained by agents of the copyright holder. An application is then made to get the relevant Internet Service Provider to produce information about the subscriber who had that particular IP address at that specific time. Lawyers for the copyright holders are then in a position to write to the alleged apparent infringer.

In English criminal law, the prosecutor is under a continuing duty to disclose prosecution material not previously disclosed that might reasonably be considered capable of undermining the case for the prosecution against the defendant or of assisting the case for the defendant. Up until 1996 when the current regime came into law, disclosure was on the basis that the defence asked for material against a “relevancy” test. If necessary defence lawyers would go to court to ask a judge to issue orders for disclosure. But now, under the Criminal Procedure and Investigations Acts (CPIA) of 1996 and 2003, the onus is on the prosecutor. Ultimately a failure to disclose could result in a case being lost on the basis of abuse of process. Other sanctions can include an order to exclude evidence from consideration at trial and the awarding of costs against the prosecution.

The CPIA regime also imposes an obligation on the defence to produce a defence case statement setting out the particular bases upon which it is intended to rely, including any issues of fact and any points of law. Issues of fact can include disputes about witnesses, evidence, technical analysis and alibis. Issues of law can include interpretation, arguments about admissibility and claims about abuse of process. The defence is also required to give notice about witnesses that might be called at trial and must also provide the name and address of any expert witness instructed for possible use at trial. Failure to comply will result in the judge making an adverse inference and, in a jury trial, drawing this to the attention of the jury.

The defence can still go to court and argue that disclosure has been incomplete.

The general policy aim is to have trials where all the professionals, the judge and lawyers, know in advance what evidence is to be produced so that the trial consists of a clear and clean presentation to the jury (if there is one). The arrangement is in sharp contrast to most TV and film court-room dramas, where the stocks-in-trade are the last minute new witness and the just-discovered piece of vital evidence. Courts do not want either side to be ambushed.

Most of the detailed requirements in criminal disclosure are directed at law enforcement investigators and at prosecuting lawyers. The detail can be found in the Manual available on the website of the Crown Prosecution Service: http://www.cps.gov.uk/legal/d_to_g/disclosure_manual/.

Most of the readers of this IAAC publication most of the time will be “third parties” in criminal proceedings in that they are victims, or associated with a scene of crime. As a result this outline is slanted towards their needs:

Material which is collected by investigators in the course of an investigation but is not going to be used directly as evidence to support criminal charges is known as “unused material”. The investigator is supposed to keep all material that appears to have some bearing on any offence under investigation or any person being investigated or on the surrounding circumstances unless it is incapable of having any impact on the case. The investigator is under a duty to alert the prosecutor to the existence of relevant material that has been retained in the investigation. This is known as “revelation”.

Criminal Procedure
Revelation to the prosecutor does not mean automatic disclosure to the defence. The decision to disclose is for the prosecutor, not the investigator and the test is, as we have seen, “any material which might reasonably be considered capable of undermining the case for the prosecution against the accused, or of assisting the case for the accused, and which has not previously been disclosed.”

“Revelation” consists of the investigator (or if it is a large complex case, a specifically-designated disclosure officer) providing a schedule of the unused material to the prosecutor. There is scope to designate certain unused material as “sensitive”, that is, material which the investigator believes that disclosure would give rise to a real risk of serious prejudice to an important public interest; reasons must be given. Chapter 8 of the CPS disclosure manual sets out these “public interests”, which include protecting the security and intelligence agencies, the willingness of citizens, agencies, commercial institutions, communications service providers etc to give information to the authorities in circumstances where there may be some legitimate expectation of confidentiality, protection of witnesses against intimidation, national (but not individual or company) economic interests, the use of covert human intelligence sources, and the protection of secret methods of detecting and fighting crime.

But it is for the prosecutor to determine, not the investigator. The CPS Disclosure Manual says: “The prosecutor must be satisfied that the risk is real, not fanciful. The prosecutor must be in a position to explain to the court the ground upon which it is asserted that there is a real risk of serious prejudice to an important public interest.” Where the prosecutor decides that sensitive material requires disclosure to the accused because it satisfies the disclosure test (might reasonably be considered capable of undermining the case for the prosecution against the accused, or of assisting the case for the accused) and, in consultation with the police, that it is not possible to disclose in a way that does not compromise the public interest in question, and that disclosure should be withheld on public interest grounds, the ruling of the court must be sought or the case abandoned. Courts can issue a Public Interest Immunity (PII) order limiting disclosure if they are persuaded by a prosecutor’s arguments.

Third parties – victims, managers and technicians associated with computers that might contain evidence – are not a formal part of the disclosure regime. However the reality is that they will inevitably have contact, sometimes extensive, with investigators – who do have a duty to retain “all material that appears to have some bearing on any offence under investigation or any person being investigated or on the surrounding circumstances” and which in turn is subject to disclosure. As we have seen, the relevant grounds for designating material as sensitive are:

- the willingness of citizens, agencies, commercial institutions, communications service providers etc to give information to the authorities in circumstances where there may be some legitimate expectation of confidentiality
- protection from intimidation

There are also special provisions to protect those with a statutory duty to report suspicious financial transactions (e.g., banks, other financial institutions, IFAs, lawyers, accountants).
The grounds do not include the economic interests of private individuals or companies.

Accordingly where a business finds itself a third party in a criminal investigation, legal advice about disclosure and relationships with law enforcement investigators may be highly advisable. Usually law enforcement officers are very sensitive to the issues and will seek to find workable compromises.

If a staff member of a third party becomes formally instructed by law enforcement to provide assistance and particularly if it amounts to “expert evidence” (a person whose evidence is intended to be tendered before a court and who has relevant skill or knowledge achieved through research, experience or professional application within a specific field sufficient to entitle them to give evidence of their opinion and upon which the court may require independent, impartial assistance), then they do become part of the disclosure regime. They also must recognise that when they give evidence in court, their overriding duty is to the court, and not their employer. Details appear at:

And
http://www.cps.gov.uk/legal/d_to_g/disclosure_manual/annex_k_disclosure_manual/.

Police Powers to Obtain Third-Party Material in Criminal Proceedings

The police’s most commonly used method to obtain information from a third party is the Production Order. The main mechanism is via Schedule 1 of the Police and Criminal Evidence Act, 1984 (PACE). A “constable” must make an application of a judge. Production Orders are made in circumstances in which it is reasonable to assume that once shown to the person holding the information compliance will follow. The application must be made inter partes, in other words, the intended recipient of an Order is in court and in a position to raise objections either in terms of principle or in matters of detail. In many instances recipients of such an Order will want to cooperate but need the Order so that they can overcome other countervailing legal obligations, for example under Data Protection legislation or other reasons of confidentiality. The Schedule contains special provisions for information in electronic form requiring that it be supplied in a visible and legible form.

If the police think they won’t get co-operation, they will go for a search warrant. S 8 of PACE gives a power to a magistrate (a Justice of the Peace) to authorise a constable to enter and search premises if he is satisfied, among other things, that there are reasonable grounds to suppose that there is material likely to be of substantial value to the investigation of an indictable offence. However if the officer wants material that is “special procedure” or otherwise “excluded” – this often means journalistic research – then the application must be made to a judge. Details appear in PACE Code of Practice B.

66 http://www.legislation.gov.uk/ukpga/1984/60/section/8
Appendix 6: Problems of Obscene and Indecent Material

Human beings are interested in sex, and in some cases this takes the form of accumulating and sometimes distributing quantities of pictures with extreme sexual content. In a corporate environment this may be the subject of a specific inquiry or may be discovered during an entirely separate investigation.

This appendix explains the main problems that corporate investigators may encounter and the risks to - and obligations of - the organisation.

English law distinguishes between adult and child pornography and also between material which is “obscene” and that which amounts to “extreme pornography”. For this purpose a “child” is someone who is or appears to be under the age of 18 (s. 45 of the Sexual Offences Act 2003).

In terms of adult material the test of obscenity is applied by a court. Section 1(1) of the Obscene Publications Act 1959 states:

(1) For the purposes of this Act an article shall be deemed to be obscene if its effect or (where the article comprises two or more distinct items) the effect of any one of its items is, if taken as a whole, such as to tend to deprave and corrupt persons who are likely, having regard to all relevant circumstances, to read, see or hear the matter contained or embodied in it.

In practice over the years, juries have become steadily more permissive and the prosecution criteria have tended to move in step. There is no offence in possessing such material, only if it is “published”. The test for publication is:

(3) For the purposes of this Act a person publishes an article who—
 (a) distributes, circulates, sells, lets on hire, gives, or lends it, or offers it for sale or for letting on hire; or
 (b) in the case of an article containing or embodying matter to be looked at or a record, shows, plays or projects it [, or, where the matter is data stored electronically, transmits that data].

The Crown Prosecution Service tends to want strong *prima facie* evidence of publication for gain, widespread offence being caused by virtue of public display, or ease of access.

Since January 2009 there has been a further offence of possession of “extreme pornographic images” in the Criminal Justice and Immigration Act, 2008, section 63. Extreme pornographic images have a narrower definition than “obscene” for the purposes of the Obscene Publications Act. The test is:

69 http://www.opsi.gov.uk/acts/acts2008/ukpga_20080004_en_9#pt5-pb1-11g63
(7) An image falls within this subsection if it portrays, in an explicit and realistic way, any of the following—

(a) an act which threatens a person’s life,

(b) an act which results, or is likely to result, in serious injury to a person’s anus, breasts or genitals,

(c) an act which involves sexual interference with a human corpse, or

(d) a person performing an act of intercourse or oral sex with an animal (whether dead or alive),

and a reasonable person looking at the image would think that any such person or animal was real.

This is a “strict liability” offence. Strict liability means that there is enough to convict, provided that a person is found in possession of offending material and that they know that they are in possession. There are a small number of defences, which the defendant has to prove to the court on the balance of probabilities. Further guidance, published by the Ministry of Justice in November 2008, is available at: http://www.justice.gov.uk/docs/extreme-pornographic-images.pdf

Child material is dealt with under the Protection of Children Act 1978 which creates offences of “making” and “distributing” an indecent image of a child under the age of 18. The Court of Appeal has interpreted “making” to include the simple “making of a copy” or even “causing a picture to appear on screen knowing that it was indecent”. An important extension of the 1978 Act exists within s. 160 of the Criminal Justice Act 1988. The effect of s. 160 of the Criminal Justice Act 1988 is that, as with extreme pornography, it is a “strict liability” offence to possess “indecent” pictures (i.e. of children in a sexual situation).

The combination of the strict liability offence of “possession” and the tight definition of “making” have the potential to create significant difficulties for the organisation or corporate investigator, who just wants to do the right thing.

Section 46 of the Sexual Offences Act 2003 provides a defence that a “making” was necessary to do so for the purposes of the prevention, detection or investigation of crime, or for the purposes of criminal proceedings. Section 46 works on a “reverse burden of proof” basis. A defence is available where a person “making” such a photograph or pseudo-photograph can prove that it was necessary to do so for the purposes of the prevention, detection or investigation of crime, or for the purposes of criminal proceedings. A memorandum of understanding between the Crown Prosecution Service and the Association of Chief Police Officers dated 6 October 2004 provides guidance. It seeks to protect those who genuinely come across such

70 See http://www.cps.gov.uk/publications/docs/mousexoffences.pdf
material unexpectedly but may be called upon to preserve evidence, while
discouraging amateur sleuths, bogus “researchers” and vigilantes.

The factors affecting the decision whether to accept a claim that “making” was
covered by the s 46 defence are:

- the way in which the indecent photograph or pseudo-photograph was discovered or
 made – those knowingly making abusive images will need to demonstrate that they
 have some identified role or duty, as a result of which they needed to respond to a
 complaint, investigate the abuse of a computer or other electronic communications
 system, or access particular data, and that they “made” the images within the course
 of that duty;
- the speed with which the indecent photograph or pseudo-photograph was reported
 and who it was reported to;
- the handling and storage of the indecent photograph or pseudo-photograph –whether
 it was appropriate and secure;
- that the copying of photographs or pseudo-photographs must be the minimum to
 achieve the objective and be appropriate;
- that individuals should be expected to have acted reasonably.

A further bit of advice is that it is prudent that all decisions made by a system
administrator and an organisation that finds itself unexpectedly handling indecent
material should keep careful and full records in internal minutes.

In due course it is likely that new guidance will be issued to cover the handling of
extreme pornography under s 63 of the Criminal Justice Act, 2008 but for the moment
it seems sensible to make the ACPO/CPS Guidance on indecent images of children
also apply to extreme pornography. Indeed the defences available under the 2008 Act
track closely those in s160 of the Criminal Justice Act 1988 which covers possession
of indecent images of children. For the moment the only specific official help is to
be found in the Ministry of Justice document referred to above.

The Internet Watch Foundation (http://www.iwf.org.uk) is the only non-police body
to whom suspected indecent material can be reliably and readily reported. The
website contains, among other things, a form for reporting and various items of advice
for IT professionals as well as an explanation of its other activities. It was formed in
1996 following an agreement between the government, police and the Internet Service
Provider (ISP) industry that a partnership approach was needed to tackle the
distribution of child abuse images online. It operates the only authorised hotline in
the UK for the public to report their inadvertent exposure to illegal content on the
Internet. It is funded by the EU and UK Internet industries, including ISPs, mobile
network operators and manufacturers, content service providers, telecoms and
software companies and credit card bodies.
Appendix 7: Encryption Issues

Although during the course of an internal investigation a business may come across material encrypted by a suspect, since October 2007 UK businesses have needed to plan for another sort of eventuality: where they themselves use encryption to protect files and communications traffic and are asked by law enforcement to produce material in “intelligible” form.

There are three main circumstances in which encrypted material is found in corporate investigations:

- The organisation itself uses encryption facilities in the course of its business. In these circumstances the solution to decrypting often lies in the hands of the organisation. However there may be obligations to third parties, such as customers or clients etc. However some organisations use encryption the passphrase for which changes with each session, but this usually applies to encryption used in the course of transmitting data rather than for stored files.

- Where an individual has used encryption for their own use and outside any corporate framework.

- When law enforcement in the course of an investigation requests access to information that would normally be held in encrypted form.

Decryption techniques:

It is beyond the scope of this guide to deal in any detail with methods of decrypting encrypted files, but it may be helpful to understand some of the basic steps an investigator will follow.

The first step is to seek to identify the specific encryption product deployed. This can usually be done by searching the associated PC – at the very least there has to be software or hardware capable of encrypting and decrypting. The next step is to determine the unique passphrase. There are a variety of methods; some encryption systems have turned out to be inherently weak so that the vulnerabilities can be exploited by specific software tools – many of these are available on the web. A second approach is to use the so-called “dictionary attack” where a list of large numbers of “typical” passwords are thrown at the encrypted file until one of them works.

If a disk which contains encrypted files is examined forensically it is sometimes possible to locate file fragments which are either of the cleartext versions of the encrypted files or are the passphrases. The “dictionary attack” and “forensic examination” methods can also be combined: once a disk (with all its deleted content) has been forensically examined its entire contents can be indexed and each word in the index added to the “dictionary” – the theory being that if the passphrase exists on the disk somewhere it will eventually be fed to the encrypted file and decrypt it.
Powers to compel decryption

Powers to make it a criminal offence not to provide plaintext versions of encrypted material, or the means by which encrypted material can be decrypted were introduced into the Regulation of Investigatory Powers Act in 2000 (in Part III), but the relevant sections were not brought into force until 2007. It took until then for a number of misgivings from the banking and computer industries to be addressed.

Although foremost is the minds of legislators was the situation of the individual PC owner with a requirement for concealment – typical examples would be those planning terrorist attacks and collectors of pictures of child sexual abuse – the legislation also covers organisations that store and transmit encrypted information.

The main concerns these had were:

- That law enforcement would demand encryption keys which rendered into plaintext not only the material covered by a warrant but other, innocent files, including those which the organisation held in confidence
- That some encryption methods, particularly those used to transmit data, involve the use of ever-changing session keys. As a result at any one time the organisation would not know the key in use; the only way to provide decrypted access to law enforcement might be to drop encryption altogether
- That they might receive an Order which while valid nevertheless involved great cost and inconvenience and there would no way to negotiate an alternative

The main relevant provisions of RIPA are:

- power to require disclosure of protected information in an intelligible form (section 49);
- power to require disclosure of the means to access protected information or the means to put it into intelligible form (section 50(3)(c)); and
- power to attach a secrecy provision to any disclosure requirement (section 54).

In order to allay the anxieties of organisations, a Code of Practice has been issued: *Investigation of Protected Electronic Information* 71

Public authorities seeking access must fulfil a number of requirements – for example notices can only be issued by a restricted group of office holders, the information sought must be identified as specifically as possible, all orders must satisfy necessity and proportionality tests, explanations must be provided, and there should be circumstances allowing the recipient of such a notice to discuss the precise means of compliance – for example what information is actually needed in order to satisfy the needs of an investigation.

71 http://security.homeoffice.gov.uk/ripa/encryption/
The Code of Practice lays great emphasis on attempting to achieve a consensus and in particular that an organisation or individual served with such an order be allowed to supply the protected information in an unprotected format rather than supplying the key that would perform the decryption. This would be particularly important where the key opens up documents which are not relevant to the enquiry.

For businesses the problem remains that there may be a clash between existing obligations of confidentiality and the receipt of an order to decrypt. In those circumstances lawyers may advise a business to wait until there is judicial order which they can say they were compelled to comply with.
Appendix 8: UK Law Enforcement Resources and Structures

The second edition of this publication contained the sentence: “The current position for a business that wishes to report a computer-related crime to UK law enforcement is not straight-forward.” It would be nice to be able to say that matters have improved since then. In fact there have been significant changes in the names and functions of the various units concerned with cyber crime and, as in 2008, the changes are continuing.

It is all too easy to take a look at policing structures and see how they could be different, even perhaps, improved. How do you manage the split between local, national and international policing? At what point do you say that an investigation is not a matter for a general purpose detective however good but requires the attention of a dedicated specialist? If so, what types of specialist units should you create – and what should be their respective remits? How far should law enforcement officers become involved in technical forensic work, as opposed to leaving this to scientists? These are policy issues which affect policing as a whole, not just the cyber domain.

This is now roughly the position: All local police forces now have some capacity to handle computer disk and network forensics, although the latter is limited to networks which follow internet-like (TCP/IP) protocols. In some forces the specialists are all police officers but others employ civilians; in addition there are a number of private companies, usually staffed by ex-law enforcement personnel, which provide technical support. Overall the coverage is best described as “patchy”. There are a number of specialist police officers possessed of considerable skill and some of these have Masters’ degrees in digital forensics. But equally some of the officers within local hi-tech crime units may only have been involved in the area for a very short time and only received quite limited specialist training. A number of the local units are being amalgamated and shared on a regional basis.

The Police Central e-crime unit (PCeU) is in place and now has a staff of approximately 85. The Metropolitan Police currently has several semi-separate units dealing with computer evidence, not only the PceU but also specialist entities to assist in Special Branch, anti-terrorism and child protection. It also has a specialist civilian-staffed Computer Systems Laboratory to conduct examinations of computers, PDAs and mobile phones.

However there have been other initiatives. There is a National Fraud Reporting Centre, National Fraud Intelligence Bureau and a National Fraud Strategic Authority. The City of London Police is the lead force for “fraud”. The City of London Police’s unit concentrates on fraud and has close contacts with financial institutions and regulators. It has a Cheque and Credit Card Fraud Investigation Unit.

72 Hansard 19 June 2008; http://www.publications.parliament.uk/pa/cm200708/cmhansrd/cm080619/text/80619w0005.htm#080619H0001736
73 http://www.cityoflondon.police.uk/NR/rdonlyres/3528E395-EDE9-4B8C-A8BA-829C00982E0D/0/chequecreditcardfraudinvestigationFOI.pdf
The Ministry of Defence Police is charged with the security of defence sites and events in and around them, as opposed to issues of pure military discipline. It has the largest fraud squad in the UK and that includes a computer forensics unit.\(^\text{74}\)

SOCA, the Serious and Organised Crime Agency is in the course of being “transformed” into a “National Crime Agency”. It was formed from the old National Crime Squad, National Criminal Intelligence Service and elements from Customs and Revenue and the Security Service. It describes itself as “an intelligence-led agency with law enforcement powers and harm reduction responsibilities. Harm in this context is “the damage caused to people and communities by serious organised crime.” Its main preoccupations are trafficking of Class A drugs and organised immigration crime and fraud; it also deals with the confiscation of assets which are the results of crime and the Suspicious Activity Reports issued by banks to counter money-laundering. It has an E-Crime Unit which supports all of these activities but which also investigates large-scale hi-tech crime. SOCA is an “Executive Non-Departmental Public Body” sponsored by, but operationally independent from, the Home Office and, as we have seen, is not directly “police”. Much of its work tends to avoid too much publicity though the E-Crime Unit takes part in publicity drives about computer security as part of its “harm reduction” remit. It is not at all clear how the National Crime Agency will be significantly different.

The Serious Fraud Office (SFO)\(^\text{76}\) investigates and prosecutes serious or complex fraud. It is responsible to the Attorney-General. It started work in 1988 and has been through a series of revisions of its detailed remit. Not the least of its difficulties is that complex fraud requires lengthy and expensive investigations and trials are correspondingly long and costly. For as long as it has been in existence critics have wondered how far cases could be simplified and how far the penalties could extend beyond the obvious criminal sanctions of fines and imprisonment to regulatory controls, in effect to stop fraudsters from trading. The SFO has strict acceptance criteria for the sorts of case it takes on:\(^\text{77}\):

- does the value of the alleged fraud exceed £1 million?
- is there a significant international dimension?
- is the case likely to be of widespread public concern?
- does the case require highly specialised knowledge, e.g. of financial markets?
- is there a need to use the SFO’s special powers, such as Section 2 of the Criminal Justice Act?

The SFO has a specialist computer forensics unit and also has significant expertise in handling large quantities of evidence in both paper and electronic form.

CEOP, the Child Exploitation and Online Protection Centre, is part of the UK police service but also has links to SOCA and is being absorbed within it. Its main function is the protection of children against sexual abuse, but it also has an investigation and

\(^{74}\) http://www.mod.uk/DefenceInternet/AboutDefence/WhatWeDo/SecurityandIntelligence/MDPGA/AboutMinistryofDefencePolice.htm

\(^{75}\) http://www.soca.gov.uk/

\(^{76}\) http://www.sfo.gov.uk/

\(^{78}\) http://www.ceop.gov.uk/
enforcement unit which has significant technical expertise. It is being absorbed into the new National Crime Agency.

Specialist units within HM Revenue and Customs, Department of Work and Pensions and Department for Business Industry and Skills continue to grow.

The National Technical Assistance Centre (NTAC) handles warranted intercepts under the Regulation of Investigatory Powers Act 2000 and also acts as the central law enforcement resource for handling encrypted data. It is staffed predominantly by law enforcement officers but is not part of the UK police service.

The Association of Chief Police Officers (ACPO) encompasses a Computer Crime Working Group. A Good Practice Guide for the Handling of Computer Evidence is published by ACPO. The Working Group works closely with the Home Office Digital Evidence Group, which has representatives from all law enforcement agencies and the Crown Prosecution Service. The current ACPO e-Crime Strategy can be downloaded from:

The strategy calls for all UK police officers to be trained to be cyber-aware, for all investigators to understand the main issues in handling evidence in digital form, for there to be local, regional and national digital forensic examination capabilities and for their be a centre of national excellence. There are also to be arrangements for stronger co-operation between the police and industry and for the use of “cyber-specials”, analogous to special constables.

The Forensic Science Regulator\(^\text{79}\) is a “public appointee” sitting in the Home Office whose function is to ensure that the provision of forensic science services across the criminal justice system is subject to an appropriate regime of scientific quality standards. The Regulator has been in place since the beginning of 2008 and has set up an advisory specialist group to deal with digital evidence. The aim is to set standards to which forensic science laboratories will have to comply if they are to get contracts from the police; this move in turn has been made more necessary as a result of the Government’s decision to cease funding the Forensic Science Service.

In the private sector, some large telecoms companies, including ISPs, have set up their own investigatory and specialist forensic units, not only to address fraud against themselves but to service the requirements of law enforcement under the Regulation of Investigatory Powers Act 2000; a system of Single Point of Contact (SPOC) has been set up to streamline the process and develop consistent standards. A number of organisations support the anti-piracy initiatives of the trade associations for owners of intellectual property, e.g. Federation Against Software Theft, Business Software Alliance, Entertainment and Leisure Software Publishers Association; often their staff are drawn from law enforcement and Trading Standards.

In addition there are a number of specialist private sector companies and individuals who provide digital forensic expertise. These are available to law enforcement, defence lawyers and for non-criminal work. There is however no quality assurance or vetting scheme for these.

\(^{79}\) http://police.homeoffice.gov.uk/operational-policing/forensic-science-regulator
There is thus some significant capacity within the UK to tackle e-crime but critics have complained that there has been insufficient co-ordination of initiatives and resources.

At the end of November 2011, the Government published *The UK Cyber Security Strategy: protecting and promoting the UK in a digital world*[^80] and this sets out its future plans. A new national cybercrime capability is to be set up within the new National Crime Agency which will draw together the activities of PCeU and SOCA eCrime; it will deal both with crimes that take place primarily in cyberspace and with more “ordinary” crimes where digital evidence is important. There will also be a single means by which the public can report cyber crime, including over the web. Many of the detailed proposals in the current ACPO strategy document are to be adopted.

The aim of a formal Document Retention Policy is to provide internal guidance to an organisation about the documents it needs to hold against various statutory and other requirements and for how long. Such a policy can be seen as an important sub-set of a Forensic Readiness Programme. During civil e-disclosure, the existence of a well-thought-out Document Retention Policy can help a court determine, among other criteria, “extent of reasonable search”, whether a document can be said to be “in the control” of a party and proportionality of costs.

As is the case with other guidance given in this publication, it should be treated as general, introductory material; each organisation needs to formulate its own policy in the light of specific circumstances. There are two broad categories:

- Records for which there are statutory retention periods
- Records for which there are no statutory periods but where retention is advised on the basis that legal obligations might arise. For many purposes the period is a minimum of 6 years; this is the time during which many legal proceedings must be commenced, as per the Limitation Act 1980.

Below is a sample of some the more important statutory requirements:

<table>
<thead>
<tr>
<th>Company Formation Records</th>
<th>No formal requirement to keep after lodging at Companies House, but permanent retention advised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company Registers, Minutes, Charges etc</td>
<td>10 years</td>
</tr>
<tr>
<td>Company statutory returns</td>
<td>No formal requirement to keep after lodging at Companies House, but permanent retention advised</td>
</tr>
<tr>
<td>Accounting Records</td>
<td>3 years for private company, 6 years for public company. Tax records, 6 years. Contracts executed by deed 12 years. Insurance related records, 15 years</td>
</tr>
<tr>
<td>Financial Services industry records</td>
<td>Laid down in the FSA Handbook</td>
</tr>
<tr>
<td>Health & Safety Accident Records</td>
<td>3 years</td>
</tr>
<tr>
<td>Medical Records</td>
<td>For certain hazardous industries: 40 – 50 years</td>
</tr>
<tr>
<td>Tests on potentially hazardous equipment</td>
<td>5 years after most recent test</td>
</tr>
<tr>
<td>Records relating to children</td>
<td>Until the child reaches 21</td>
</tr>
<tr>
<td>Records relating to retirement benefits</td>
<td>6 years from the end of the scheme</td>
</tr>
<tr>
<td>Statutory maternity and sick pay benefits</td>
<td>3 years after the end of the tax year to which the benefits relate</td>
</tr>
<tr>
<td>Salary and wages</td>
<td>6 years</td>
</tr>
</tbody>
</table>
There are many additional requirements for specific industries, including money laundering questionnaires for financial services businesses and “data retention” for telecommunications companies.

Further advice is available from Business Link (www.businesslink.gov.uk) and HMRC (www.hmrc.gov.uk). A number of solicitors, public authorities and others also provide outline guidance on their websites or in print publications. But the safest route for non-statutory retention is the survey-based method indicated in Section 5 above.

Standards for storing electronic records

In addition to guidance on the handling of computer-related evidence further “good practice” advice can be found in the International Standard on Records Management – ISO 15489 and the related British Standard BS10008:2008.

ISO 15489 is for any organisation that needs to ensure that its records (both paper and electronic) are properly maintained, easily accessible and correctly documented from creation right through to ultimate disposal, be it archiving, imaging or destruction. The standard ensures that disposal is carried out in a transparent manner according to pre-determined criteria. ISO 15489, which emerged from work done by the British Standards Institute (BSI) in the 1990s (Code of Practice on 'Legal Admissibility and Evidential Weight of Information Stored Electronically'- BSI PD0008), is directly aimed at organisations that need to reassure customers and clients that they maintain accurate, detailed records according to a stated policy, for example, the health, financial services and state-funded sectors.

In its earliest form the Standard addressed a technology known variously as document management systems or electronic records management. Many organisations were scanning important paper documents – mortgages, insurance policies, cheques, etc. – and placing them on optical media (in the mid-1990s this was on so-called Write Once Read Many - WORM media) so that they could be stored and retrieved efficiently and economically. The immediate problem was to take proper steps to ensure that the results would be regarded as both reliable and admissible in court. BSI PD0008 provided high-level guidance and the detail came in a workbook, PD0009.

The updated and international version appeared in 2001 as ISO 15489. The Standard provides a descriptive benchmark that organisations can use to assess their

82 Code of Practice for Legal Reliability and Evidential Weight of Information Stored Electronically, available at: http://www.bsi-global.com/ICT/Legal/bip0008.xalter

83 See http://www.bsi-global.com/ICT/Legal/bip0009.xalter

Part 1 provides a high-level framework for record-keeping and specifically addresses the benefits of records management, regulatory considerations affecting its operation and the importance of assigning of responsibilities for record-keeping. It also discusses high-level records, management requirements, the design of record-keeping systems and the actual processes involved in records management, such as record capture, retention, storage, access, etc. For example, conventional “computer security” and audit practices are important components because it is essential to be able to demonstrate beyond doubt that data has not been altered at any stage. Part 1 concludes with a discussion of records management audit operations and training requirements for all staff of an organisation.

Part 2 provides practical and more detailed guidance about how to implement the framework outlined in Part 1. For example, it provides specific detail about the development of records management policy and responsibility statements. Part 2 also provides practical guidance about the development of records processes and controls and specifically addresses the development of key record-keeping instruments such as thesauri, disposal authorities and security and access classification schemes. It then discusses the use of these tools to capture, register, classify, store, provide access to and otherwise manage records. Further, Part 2 provides specific guidance about the establishment of monitoring, auditing and training programmes to promote and effectively implement records management within an organisation.

BS10008, which is specific to the UK, appeared in November 2008. It claims that compliance “ensures that any electronic information required as evidence of a business transaction is afforded the maximum evidential weight. The process is based on the specification of requirements for planning, implementing, operating, monitoring and improving the organization’s information management systems”. It is a consolidation and updating of the work commenced under PD0008.85

Compliance with a national or international standard, even the production of a certificate of compliance, does not automatically make records produced from such a system admissible, but it does provide a great deal of comfort. BS10008 is specifically referred to in the Code of Practice issued under s. 46 of the Freedom of Information Act 2000, which lays down rules for all public bodies that are likely to be called upon to produce their records. (Appendix 2 lists out some of the main types of digital evidence and the problems likely to be encountered when seeking to acquire and preserve them.)

85 http://www.bsigroup.com/en/Shop/Publication-Detail/?pid=00000000030172973#5
Appendix 10: Additional Resources

Statistics and Forecasts About the Future of Cybercrime

Many published surveys can be dismissed because the survey sample is too small or unrepresentative or the exercise is methodologically suspect and designed mostly to sell product. However, the following detailed studies are worth examining, though with some scepticism:

- **Audit Commission ICT Fraud and Abuse Survey** – http://www.auditcommission.gov.uk/

Risk Management and Information Security

The international standard for Information Security Management is ISO 17799, which is based on BS 7799, available from http://www.bsonline.bsiglobal.com/server/index.jsp.

CPNI publishes a guidance document, *Risk Management and accreditation of information systems*, which is also HMG Infosec Standard No 2. It is available for download from http://www.cpni.gov.uk/docs/re-20050804-00653.pdf

Computer Security and Incident Response Teams

Evidence collection is likely to be an aspect of other corporate activities. It could be one of the functions of a Computer Security and Incident Response Team (CSIRT).

A CSIRT is a service organisation that is responsible for receiving, reviewing and responding to computer security incident reports and activity. Its services are usually performed for a defined constituency that could be a parent entity such as a corporation, government or educational organisation, region or country, research network or paid client.

Part of a CSIRT’s function can be compared in concept to a fire department. When a fire occurs, the fire department is called into action. They go to the scene, review the
damage, analyse the fire pattern and determine the course of action to take. They then contain the fire and extinguish it. This is similar to the reactive functions of a CSIRT.

A CSIRT will receive requests for assistance and reports of threats, attack, scans, misuse of resources or unauthorised access to data and information assets. They will analyse the report, determining what they think is happening and the course of action to take to mitigate the situation and resolve the problem.

Just as a fire department can be proactive by providing fire-prevention training, instructing families in the best manner to exit a burning building safely and promoting the installation of smoke alarms and the purchase of fire escape ladders, a CSIRT may also perform a proactive role. This may include providing security awareness training, security consulting, configuration maintenance and producing technical documents and advisories.

Guidance for “First Responders” can be found at:
http://www.ncjrs.gov/pdffiles1/nij/187736.pdf

Computer Forensic Analysis Tools

The following are some of the better-known products. It is not possible to make effective use of them without proper training. Because of the rate of change in ICT, products can rapidly become obsolete unless there are frequent new versions. Most experienced digital forensic investigators will use a variety of tools.

Disk imaging and analysis

- EnCase (http://www.guidancesoftware.com)
- AccessData FTK (http://www.accessdata.com)
- X-ways Forensics (http://www.x-ways.net/forensics/)
- ProDiscover (http://www.techpathways.com)
- Sleuthkit and Autopsy (http://www.sleuthkit.org/)
- SMART (http://www.asrdata.com/index.html)
- Ilook (Law enforcement only) http://www.ilook-forensics.org/
- Blackbag (for Apple Mac) (http://www.blackbagtech.com/products.html)
- MacForensicsLab http://www.macforensicslab.com/
- Paraben (also for PDAs) (http://www.paraben-forensics.com/)
- Tucofs – website listing many tools (http://www.tucofs.com/tucofs.htm)
- Open Source tools (http://www.opensourceforensics.org/)

A Google or other search on “computer forensics” and “forensic computing” will yield many websites, articles, courses, training schemes and conferences.
Glossary of Terms Used in Digital Evidence

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ActiveX</td>
<td>A Microsoft programming device used on websites, for example to create fillable forms or animations</td>
</tr>
<tr>
<td>application</td>
<td>A computer program</td>
</tr>
<tr>
<td>attachment</td>
<td>A file of any kind linked to an email, newsgroup posting, etc. The attachment may usually be in any of a number of formats</td>
</tr>
<tr>
<td>audit trail</td>
<td>A record of activities in chronological form</td>
</tr>
<tr>
<td>backdoor</td>
<td>A facility, in either software or hardware, which enables security and authentication mechanisms to be circumvented</td>
</tr>
<tr>
<td>back-up</td>
<td>A regular process to create additional copies of essential data and programs, or indeed entire systems. Back-up may be either complete or partial and, on each occasion, may be complete or incremental</td>
</tr>
<tr>
<td>BIOS</td>
<td>Basic Input–Output System. More colloquially BIOS refers to the hardware chip on a computer that runs on start-up and “looks for” a disk with a full operating system. The BIOS contains the system clock and may contain details of additional hardware installed on the computer. Although they are not identical, sometimes also referred to as CMOS (see CMOS)</td>
</tr>
<tr>
<td>Bot / botnet</td>
<td>A robot program used to perform a particular function, for example, to keep a transmission channel artificially open or to send out rogue commands. A bot army or botnet is a collection of bots on different computers working in concert. Innocent third-party computers taken over in this way are referred to as zombies. May be used for “phishing” or denial of service (DOS) attacks</td>
</tr>
<tr>
<td>browser</td>
<td>A program used to view the worldwide web, such as Internet Explorer, Netscape, Mozilla, Firefox, Opera, Safari</td>
</tr>
<tr>
<td>(or web browser)</td>
<td>Explorer, Netscape, Mozilla, Firefox, Opera, Safari</td>
</tr>
<tr>
<td>brute force</td>
<td>A common technique to break a password system by writing a program to throw large numbers of potential passwords exhaustively at a computer in the hope of eventually finding the correct one</td>
</tr>
<tr>
<td>cache</td>
<td>A holding area for temporary files, often used to speed up regular computer processes. The best known example is the Internet cache which contains recently viewed webpages and pictures</td>
</tr>
<tr>
<td>CERT</td>
<td>Computer Emergency Response Team</td>
</tr>
<tr>
<td>chatroom</td>
<td>An Internet facility to enable participants to talk online by typing on the keyboard. It occurs in real-time (see newsgroups)</td>
</tr>
<tr>
<td>CMOS clock</td>
<td>A battery-driven device which is the main source for the day and time data associated with each file (see BIOS)</td>
</tr>
<tr>
<td>communications data</td>
<td>In English law, “communication” is information about who is connected to who, when and for how long, but not including the content of the communication. Traffic data is a subset (see Traffic Data).</td>
</tr>
<tr>
<td>configuration file</td>
<td>A file normally hidden on a computer that affects the specific way in which an individual program, hardware accessory or...</td>
</tr>
</tbody>
</table>
entire computer works. On Windows machines, it is often identified by the extension ".ini" (INI files)

cookie
A small text file installed and stored on a computer by a website so that it can track a user’s activities and welcome them on a return visit

cryptography
Method used to hide the contents of a file, etc. (see Encryption, Steganography)

CSIRT
Computer Security Incident Response Team

day and time stamps
Day and time information from an on-board computer clock. All modern operating systems associate with each file a series of day and time stamps, although there are variations.

denial of service (DOS) attack
An attack on an Internet site which involves sending large numbers of messages to that site to overwhelm and prevent it from operating properly

dictionary attack
A common technique to break a password system by writing a program to throw large numbers of “likely” potential passwords at a computer

digital fingerprint
A technique for uniquely identifying identical files (see hash)

directory
A hierarchical system of organising files in places where they can be easily found on a computer hard disk (also known as folders)

disclosure
The legal process by which information is fairly made available to opposing counsel and which is subject to a number of rules and obligations (known as “discovery” in the US).

disk acquisition
A process to make an accurate exact copy or “image” of a hard disk, CDROM, USB stick or other data memory device, creating an intermediate file which can be examined using specialist tools and from which clones of the original can be created

distributed denial of service (DDOS) attack
Using large numbers of computers to attack and overwhelm a target computer (see denial of service (DOS) attack)

DNS
Domain Name Server. An essential element of the Internet – a constantly updated collection of computers that translates the name of a computer into its IP address

DNS poisoning
Attacking a DNS so that requests to one website are redirected to another rogue site

dongle
Hardware device, usually connected to a USB or printer port, sometimes used to provide encryption protection to computers, without the dongle the disk can’t be “read”. Also used as a counter-piracy measure – the dongle is required to make a particular high-value program “run”.

DOS (1)
Disk Operating System. Windows, Unix, Linux, MacOS, Solaris, OS/2 and VMS are all operating systems for various items of computer hardware.

DOS (2)
MS-DOS, the Microsoft disk operating system which was common before Windows 95

dynamic IP address
An IP address assigned on an as-needed basis. Over a period of time an individual may use several IP addresses from the same range within the user’s Internet Service Provider (ISP) (see IP address)
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>email server</td>
<td>A computer that manages the distribution and reception of email on behalf of a community of users, holding mail until an individual is ready to download it.</td>
</tr>
<tr>
<td>EnCase</td>
<td>Popular forensic computing suite which is capable of imaging a hard disk and then analysing it.</td>
</tr>
<tr>
<td>encryption</td>
<td>The translation of files, data, pictures, etc. into a form in which it can only be read/viewed by those authorised to do so. Encryption requires an algorithm (generic method) a key which is only known to participants. In conventional encryption the same key is used by both sender and recipient. Encryption, together with an appropriate management system, can also be used to authenticate documents.</td>
</tr>
<tr>
<td>ESI</td>
<td>Electronically Stored Information</td>
</tr>
<tr>
<td>expert evidence</td>
<td>In English law, opinion evidence from someone whom the court has decided to accept as an expert (see technical evidence).</td>
</tr>
<tr>
<td>false positive</td>
<td>Where a system has raised an alarm which on inspection turns out to be misplaced.</td>
</tr>
<tr>
<td>FAT, FAT32</td>
<td>The Microsoft disk operating system used in MS-DOS and Windows 95, 98, etc. The FAT table contains information about the specific physical locations on disk of files (which may be fragmented) and is also the source of date and time stamp data (see NTFS).</td>
</tr>
<tr>
<td>file compression</td>
<td>A technique for reducing the size of a file to make it smaller to transmit or store. In “lossless” compression, no original data is lost but many compression schemes involve an “acceptable” level of loss. ZIP, RAR, tar and Stuffit are general-purpose file compression schemes, MP3 is particular to sound files (see ZIP).</td>
</tr>
<tr>
<td>file-sharing program</td>
<td>A system to enable many people to share files. These files may have an “illegal” element because they violate copyright or are indecent. In order to participate in a file-sharing system, a user may require specialist client software.</td>
</tr>
<tr>
<td>file signature</td>
<td>A specific series of computer characters at the start of the internal structure (or format) of a file which helps computer applications identify the file.</td>
</tr>
<tr>
<td>firewall</td>
<td>Security device for internet-connected computers that is able to limit inbound and outbound traffic. The best firewalls are separate hardware units, although software firewalls exist and can provide a degree of protection.</td>
</tr>
<tr>
<td>folder</td>
<td>See directory.</td>
</tr>
<tr>
<td>format (1)</td>
<td>of a disk – the creation of an internal structure so that it can hold files. Reformating consists of replacing an existing scheme with a new one, which renders the old files difficult to read and recover without the use of advanced techniques.</td>
</tr>
<tr>
<td>format (2)</td>
<td>of a file – each computer application creates and reads files with a specific internal structure, known as format.</td>
</tr>
<tr>
<td>FRP</td>
<td>Forensic Readiness Program</td>
</tr>
<tr>
<td>GSM tracking</td>
<td>Service which pinpoints the location of an individual or vehicle via signals exchanged between a mobile phone handset and base stations.</td>
</tr>
<tr>
<td>Gb</td>
<td>Gigabyte. A unit of capacity of data or memory (1 Gb = 1024 Mb)</td>
</tr>
<tr>
<td>hash</td>
<td>See digital fingerprint</td>
</tr>
<tr>
<td>hash analysis/ hash libraries</td>
<td>Libraries exist of digital fingerprints for well-known files, for example those associated with popular operating systems and programs and offensive material. They can be used to scan hard disks rapidly to eliminate files of no interest or to look for files of particular significance</td>
</tr>
<tr>
<td>hot-firing</td>
<td>The process by which a clone of an original file is placed in suitable hardware so that what the original user saw can be viewed. The usual result is that data on the hard disk becomes altered and re-cloning may be necessary during an extended examination</td>
</tr>
<tr>
<td>HTML</td>
<td>Hypertext Mark-up Language. The language used for creating webpages containing not only content but formatting and other instructions. Many browsers contain a “View Source” option so that code can be viewed easily.</td>
</tr>
<tr>
<td>HTTP</td>
<td>Hypertext Transmission Protocol. The protocol of the World Wide Web. HTTPS is a secure version used for e-commerce transactions, etc.</td>
</tr>
<tr>
<td>IDS</td>
<td>Intrusion detection system – in effect, a burglar alarm for computer systems</td>
</tr>
<tr>
<td>image (1)</td>
<td>A file containing a photograph or a picture</td>
</tr>
<tr>
<td>image (2)</td>
<td>The process of making an entire copy of data media such as a hard disk. Some “imaging” programs” are designed to aid data recovery or to support the needs of a large organisation</td>
</tr>
<tr>
<td>Interception</td>
<td>In telephony and networks: the process of acquiring the content of a communication.</td>
</tr>
<tr>
<td>Internet Relay Chat (IRC)</td>
<td>The international protocol for online chatting. Other web interfaces can be used (see chatroom)</td>
</tr>
<tr>
<td>IP address</td>
<td>A uniquely identifiable, machine readable, number for each computer or host, on the Internet, that can be used by the Internet Protocol to transmit and receive traffic. Servers, websites and other computers permanently connected to the Internet always have the same, static IP address. Many ISPs allocate users an IP address on an as needed basis – this is known as a ‘dynamic IP address’ as it can change within a range set by the ISP. Over a period of time an individual may have used several IP addresses from within one range.</td>
</tr>
<tr>
<td>IP spoofing</td>
<td>A technique for altering or compromising an IP address so that it appears be a third party</td>
</tr>
<tr>
<td>ISP</td>
<td>Internet Service Provider. A business or other organisation that links individual users to the Internet and that also provides other associated services such as email management and web space</td>
</tr>
<tr>
<td>Java</td>
<td>A programming language frequently used on websites, for example to create online forms or animations</td>
</tr>
<tr>
<td>jumper</td>
<td>A small connector on a hardware device such as a motherboard or disk drive. The connector links one or more protruding pins and makes the hardware behave differently, for example, to order which of two hard disks has priority – “master” or “slave”</td>
</tr>
</tbody>
</table>
Kb Kilobytes. Unit of capacity of data or memory (1024 Kb = 1 Mb)
keystroke monitor/keystroke recorder A covert program which captures every keystroke that a computer user makes so that they can be examined later. Hardware-based keyloggers exist as well; they are usually physically very small and are placed in-line to a computer’s keyboard; PS/2 and USB connection versions are available. Keyloggers can be used to identify passwords and the software versions may be part of a Trojan. But keyloggers may also be deployed for investigatory surveillance purposes.

Linux Popular operating system, part of the Unix family. They are typically released in working “distributions” or “disos” such as SUSE, Red Hat, Ubuntu, Debian, etc.

logic bomb Rogue program with a delayed effect which causes damage to data. It may be triggered by time or some external event.

macro An automated sequence of computer commands.

Mb Megabyte. Unit of capacity of data or memory (1024 Kb = 1 Mb)
meta-data Literally, data about data. Some regular computer files contain hidden additional information which can be viewed.

newsgroups Internet-based discussion groups, one of the oldest Internet “institutions”, where participants post messages for later viewing. It can be used to publish attached files (also known as Usenet).

NTFS The Microsoft Disk Operating System used in Windows NT, 2000, XP and subsequent operating systems. A replacement for FAT and FAT32. The MFT (Master File Table) contains information about the specific physical locations on disk of files (which may be fragmented) and is also the source of date and time stamp data.

Open Source Computer programs which are written on a “community” basis and are usable without restriction (also known as “freeware”). They may need to be adapted to work well in specific circumstances.

P2P Peer-to-Peer. Among other things a distributed network architecture whereby fragments of a file are made shared and made available to many users, this speeding up the process of file acquisition. P2P file-sharing takes many specific forms and although the technology has many legal uses, P2P networks have also been widely used for the distribution of pirated videos, games and software.

packet The quantity of data sent over a network. Both for efficiency and to allow for error-checking, files are split up into packets for transmission and then re-assembled in the correct order on reception. “Packet switching” is a data transmission technique to maximise the efficient use of physical cables, satellite links, etc.

packet filtering A technique for listening on a data transmission and selecting packets according to particular criteria.

packet sniffer The device that listens for data transmission (see packet filtering).

partition A means of dividing a hard disk so that it presents itself to the operating system as one or more hard disks (e.g. C:, D:, etc.). The technique separates programs from data files and makes back-up
easier; it makes one or more operating systems available on the computer; and it maintains an area containing recovery files. Partitions can also be hidden.

payload
The “bomb” or result of a logic bomb or virus

PCMH
Pleas and Case Management Hearing. An increasingly important procedure in the English criminal justice system where, prior to a trial, discussions take place about its length, numbers of witnesses, arrangements for experts, dates, etc.

phishing
Creating temporary fake websites to incite visitors to release sensitive information for fraudulent purposes. Usually, users are lured to the fake websites via emails purporting to come from legitimate sources such as banks.

phreaking
The abuse of telephone and similar systems.

pop-up
Subsidiary windows which appear on the screen during Internet use. These may contain detail related to the main window or for advertising.

port
Exit and entry points to a computer system. Internet communications protocols designate a number of ports to a computer system; certain ports always have the same function (port 80 is used for websites, for example). All ports on a computer which are not going to be used should be closed off (see *firewall*).

port scanner
A program which looks for “open” ports – in malicious scanning, leading to computer intrusion and possible abuse.

protocol
A set of rules enabling computers and electronic devices to exchange data, etc. in an agreed, pre-defined way.

proxy
A device or program that performs an operation while hiding the details from outside scrutiny. A proxy server acts as an intermediary for requests from clients seeking services from substantive servers.

PKI
Public Key Cryptography - a more sophisticated version, where there are large numbers of participants to a system, different (paired) keys are used for encryption and decryption – public key cryptography. Encryption, together with an appropriate management system, can also be used to authenticate documents.

RADIUS
Remote Authentication Dial In User Service – a log maintained by many ISPs to record who had the use of a specific dynamic IP address at a given time.

registry
In modern Windows systems, a normally hidden part of the operating system that holds important configuration and other data.

restore point
In Windows operating systems, a facility by which copies of key files are taken periodically so that in the event of a computer crash, the computer can be restored to an earlier stable state. Forensically restore points can be used to achieve limited historic views of a computer. More recent Windows operating systems use the more extensive VSS (qv).

root
The operating system at its most fundamental level of control.

root kit
A series of rogue programs used to take control of an operating system.
SATA	Serial Advanced Technology Attachment. The main means by which a hard disk is attached to a computer motherboard – the cable is usually coloured red
serialing	An ascending unique serial number assigned in situations where a system is recording transactions, so that any attempt at transaction deletion can be seen
server	A program that sits on a network (including the Internet) waiting to respond to requests (see *email server* and *web server*)
spidering	A technique for capturing a website – the program identifies all the internal links on a page and follows them through. Spidering can only capture fixed pages, not ones which are dynamically created
steganography	A technique for hiding data in an apparently innocent file
streaming	A streaming service allows a computer file to be watched while it is still being delivered, as opposed to having to wait till an entire file has been downloaded. Much “live” television and many audio services use streaming.
swap file	When a computer runs out of memory on its motherboard during use it will “swap” data to the hard disk. The swap file sometimes contains a record of recent activity on the computer
Tb	Terabyte. Unit of capacity of data or memory (1 Tb = 1024 Gb)
TCP/IP	Transmission Control Protocol / Internet Protocol. The set of networking protocols used on the Internet and on some private networks
technical evidence	Evidence which is the result of a specific technical procedure or investigation; “expert evidence”, on the other hand, as far as the courts are concerned, can include the opinion of the witness
thumbdrive	A small portable hard disk drive, usually with a Universal Serial Bus adaptor
Tracert (traceroute)	A program used to identify all the links between a computer and the one to which it is connected
Traffic Data	In telephony and networks: who called whom, when and for how long. Mobile phone traffic data also contains location information based on the cellsites to which a phone has been registered. Traffic data does not include the contents of the communication
Trojan defence	A claim by a defendant that they are not responsible for activities apparently associated with their computer. The counter to the Trojan defence is to search the defendant’s computer for signs of a rogue program (see *Trojan horse*)
Trojan horse	A hidden program which covertly opens a port on an Internet-connected computer, enabling the contents of that computer to be viewed and altered and the whole computer to be remotely controlled. To work, the Trojan needs a “server”, which is installed on the target computer; and a “client”, which the perpetrator uses to send out commands
Unallocated space	Files or fragments of files that do not have an associated entry in an index on the hard disk but are still physically present. Very often they have missing or incomplete date or time stamps. Also known as material from unallocated clusters.
Unix Family of operating systems which includes GNU-Linux, Solaris, BSD Unix and many others

URL Universal Resource Locator – the address of a site or file on the world wide web

USB Universal Serial Bus. A very widely used method for connecting external devices to computers, eg printers, scanners, memory sticks, external hard disks. The most common standard at the moment is USB2. The earlier and much slower USB is now obsolete and the even faster USB3 is beginning to appear

user profiles On more sophisticated computer operating systems, a profile of each user with their own desktops, programs, etc, accessed via a separate username and password. The most important user profile is that of the Administrator, who may have complete control of and access to the computer.

Virtual Machine A VM is a technique by which what appears to be a complete computer is in fact running as a task on a larger computer. In regular use in large organisations and at some ISPs, VMs offer advantages in management and overall costs. A variation of the technique used in forensic investigations in which an image of a seized computer is mounted as a VM so that it is possible for the investigator to view the seized computer running more-or-less as the original user would have seen it.

virus A self-replicating malicious program. There are many specific definitions that distinguish a virus from a worm (see worm)

VSS Volume Shadow Service, or Volume Shadow Copy: Security feature within Windows 7 and related operating systems whereby a backup of a key disk partition is maintained for security purposes. In forensic examination it is possible to use the FSS to view a hard disk at several past stages.

war-driving The technique of driving around in a motor vehicle looking for open, unprotected wireless networks

web server A program holding webpages that will be sent on specific request

whois An internet facility to find out who owns an IP address or website

worm A self-replicating malicious program (see virus)

write-protect A hardware or software device used to prevent inadvertent alteration of an original disk

ZIP A file compression program. A zip file contains one or more compressed files

ZIP disk Larger capacity removable disk medium, now almost obsolete

zombie A third-party computer utilised in a distributed denial of service (DDOS) attack (see Denial of service (DOS))
For more information on IAAC please contact:

Information Assurance Advisory Council (IAAC)
North Star House
North Star Avenue
Swindon SN2 1FA
United Kingdom
T:+44(0)1793417453
E: info@iaac.org.uk

www.iaac.org.uk