WS 117L
SENTRY SYLLABUS

SECRET

LOCKHEED AIRCRAFT CORPORATION
MISSILE SYSTEMS DIVISION
SUNNYVALE, CALIFORNIA
FOREWORD

The chart and photograph reproductions which comprise this report are pertinent to a presentation made to Mr. Roy W. Johnson, Director, Advanced Research Projects Agency, and members of his staff. Essentially, the presentation was given in two parts.

Part I . . . a detailed technical briefing on the Sentry Weapon System 117L as currently programmed or proposed, and

Part II . . . a discussion of advanced component requirements and possible system applications to other programs.

Information pertinent to the system is presented herein. The presentation was given at the Pentagon on 14 and 15 August 1958.
L/ARPA BRIEFING
14-15 August 1953
Pentagon, Room 3E144

Thursday 14 August

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0900</td>
<td>Introduction - Mission Concept</td>
<td>Lt. Col. Lee Battle</td>
</tr>
<tr>
<td>0910</td>
<td>Sentry System Program</td>
<td>J. H. Carter</td>
</tr>
<tr>
<td>0925</td>
<td>System Development Plan</td>
<td>F. W. O'Green</td>
</tr>
<tr>
<td>0940</td>
<td>Present Status</td>
<td>R. D. King</td>
</tr>
<tr>
<td></td>
<td>Support Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Facilities and GSE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recovery</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operations Control Plan</td>
<td></td>
</tr>
<tr>
<td>1020</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>1040</td>
<td>Subsystems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Airframe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propulsion</td>
<td>F. W. O'Green</td>
</tr>
<tr>
<td></td>
<td>Guidance and Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power</td>
<td>C. W. Burrell</td>
</tr>
<tr>
<td>1200</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>1300</td>
<td>Visual, Biomedical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ferret</td>
<td>F. W. O'Green</td>
</tr>
<tr>
<td></td>
<td>Infrared</td>
<td>P. D. Doersam</td>
</tr>
<tr>
<td></td>
<td>Communications</td>
<td>J. J. Knopow</td>
</tr>
<tr>
<td></td>
<td>Data Control</td>
<td>J. G. Schaub</td>
</tr>
<tr>
<td>1430</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>1450</td>
<td>Film: Progress Report No. 7</td>
<td></td>
</tr>
<tr>
<td>1510</td>
<td>Questions</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>Brochure</td>
<td></td>
</tr>
<tr>
<td>1615</td>
<td>Conclude</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Topic</td>
<td>Presenter</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>0900</td>
<td>Advanced Components</td>
<td>C. W. Burrell</td>
</tr>
<tr>
<td>0930</td>
<td>TV Sensing</td>
<td>Peter C. Goldmark</td>
</tr>
<tr>
<td>1000</td>
<td>Ferret</td>
<td>P. D. Doersam</td>
</tr>
<tr>
<td>1015</td>
<td>Infrared Detection & Tracking</td>
<td>J. J. Knopow</td>
</tr>
<tr>
<td>1035</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>1055</td>
<td>Data Storage</td>
<td>J. P. Nash</td>
</tr>
<tr>
<td>1125</td>
<td>Propulsion</td>
<td>J. E. Laurance</td>
</tr>
<tr>
<td>1200</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>1300</td>
<td>Other Applications of the Sentry System</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Satellite Tracking</td>
<td>J. Jenkins</td>
</tr>
<tr>
<td></td>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>1330</td>
<td>Weather</td>
<td>E. V. Stearns</td>
</tr>
<tr>
<td>1345</td>
<td>Scientific Measurements</td>
<td>F. S. Johnson</td>
</tr>
<tr>
<td>1400</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>1420</td>
<td>MIS</td>
<td>J. W. Brandon</td>
</tr>
<tr>
<td>1440</td>
<td>A:CBM</td>
<td>S. H. Browne</td>
</tr>
<tr>
<td>1500</td>
<td>Summary</td>
<td>J. H. Carter</td>
</tr>
<tr>
<td>1520</td>
<td>Conclude</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

CHART REPRODUCTIONS:

<table>
<thead>
<tr>
<th>Chart No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P142(3)</td>
<td>Advanced Reconnaissance Vehicle</td>
</tr>
<tr>
<td>P14(4)</td>
<td>Advanced Reconnaissance System Evolution</td>
</tr>
<tr>
<td>P799</td>
<td>Sentry Operational Objectives</td>
</tr>
<tr>
<td>P250(3)</td>
<td>WS117L Program Objectives</td>
</tr>
<tr>
<td>P257(5)</td>
<td>WS117L Development Program</td>
</tr>
<tr>
<td>P102(5)</td>
<td>Sentry Facilities</td>
</tr>
<tr>
<td>P800</td>
<td>Sentry Payload - Defined</td>
</tr>
<tr>
<td>P238(3)</td>
<td>The Sentry Subsystems</td>
</tr>
<tr>
<td>P283(5)</td>
<td>WS117L R&D Organization</td>
</tr>
<tr>
<td>P566</td>
<td>WS117L Airframe and Propulsion</td>
</tr>
<tr>
<td>P567</td>
<td>WS117L Payload</td>
</tr>
<tr>
<td>P568</td>
<td>WS117L Ground Support Equipment</td>
</tr>
<tr>
<td>P565</td>
<td>Lockheed Facilities for WS117L</td>
</tr>
<tr>
<td>P235(1)</td>
<td>WS117L Trajectory to Orbit</td>
</tr>
<tr>
<td>P229(1)</td>
<td>WS117L Orbital Test Vehicle Design Parameters</td>
</tr>
<tr>
<td></td>
<td>- Booster Stage</td>
</tr>
<tr>
<td>P228(1)</td>
<td>WS117L Orbital Test Vehicle Design Parameters</td>
</tr>
<tr>
<td></td>
<td>- Sustainer Stage</td>
</tr>
<tr>
<td>P792</td>
<td>Altitude vs. Payload - Sentry/Thor</td>
</tr>
<tr>
<td>P791</td>
<td>Altitude vs. Payload - Sentry/Atlas</td>
</tr>
<tr>
<td>P171(3)</td>
<td>WS117L Ground Traces of 83° Orbits</td>
</tr>
</tbody>
</table>
P232(2) WS117L Vehicle System
P468;1) WS117L Structural Breakdown
P422(2) WS117L Propulsion System
P315(2) WS117L Auxiliary Power Supply.
P162 Advanced Auxiliary Power Systems
P335(1) WS117L System APU Life Limitations
P763 Guidance and Control System
 - Typical Sentry Ascent (Thor - Prog. 24)
P166;4) Guidance and Control System
 - Typical Sentry Ascent (Atlas - Prog. 25)
P707;1) Sentry Ascent Boost Phase
 - Guidance and Control Functioning Components
P708;1) Sentry Coast Phase
 - Guidance and Control Functioning Components
P164;1) Steady-State Orbital Control System
P262(3) WS117L Satellite Vehicle Weight Analysis
P400 WS117L Visual Reconnaissance System
P175(4) WS117L Ferret Subsystem - Project Structure
P182;3) Airborne Reception
P204(3) CBM Attack Alarm
P609;1) CBM Attack Alarm System
 - Satellite Power Requirements vs. Supply
P620;1) CBM Attack Alarm System
 - Vehicle Payload
P617(2) CBM Attack Alarm System
 - Operational Ground Base Requirements
P509(2) Station Locations - Thor
P513(3) Station Locations - Atlas
P163(2) G-S Communications Intercept Station
P540 Orbiting Object - Traffic Intelligence
P654 WS117L Data Control - Reconnaissance Mission
P653 WS117L Data Control - Reconnaissance Mission Assignment
P652(1) WS117L Data Control - Data Indexing
P465 WS117L/SM-75 Program Objectives
P591(4) Flight Missions and Objectives
P639 WS117L Recovery Orbits
P621(2) WS117L Recovery Operations
P577 WS117L Capsule Recovery
P544(1) WS117L Biomedical Vehicle
P475 WS117L Aeromedical Recovery Configurations
P503 WS117L Useful Payload vs. Altitude
P546 Satellite Weather Missions
P376(1) WS117L Weather Surveillance
P545 Types of Weather Data
P374 Possible Scientific Experiments

PHOTOGRAPH REPRODUCTIONS:

Photo No.
P3017 Flight Test Vehicles Nos. 1 and 2 in Mod & Checkout - LMSD Palo Alto
P3018 Flight Test Vehicles Nos. 1 and 2 in Mod & Checkout - LMSD Palo Alto
P3022 Flight Test Vehicle No. 2 in Mod & Checkout
 - LMSD Palo Alto

P3021 Flight Test Vehicle No. 2 in Mod & Checkout
 - LMSD Palo Alto

P3039 Model XLR Engines - JP4 and UDMH

P3043 UDMH Propellant Tank

P2862 Horizon Scanner

P2864 Horizon Scanner

P3046 Systems Checkout Complex (excluding LACE U ..)

P3047 LACE Unit (Systems Checkout Complex)
ADVANCED RECONNAISSANCE SYSTEM EVOLUTION

BASIC ROCKETRY RESEARCH PHASE

USAF PROJECT RAND SATELLITE FEASIBILITY STUDIES

1.5 MILLION

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

SATTELITE FEASIBILITY DETERMINED

RAND ISSUES SATELLITE UTILITY REPORT

GOR PUBLISHED (MAR '55)

RAND RECOMMENDS SATELLITE RECONNAISSANCE DEVELOPMENT PROGRAM

DX PRIORITY

LETTER CONTRACT AWARDED TO LOCKHEED (OCT '56)

DEVELOPMENT DIRECTIVE PUBLISHED (AUG '56)
SENTRY OPERATIONAL OBJECTIVES

VISUAL RECONNAISSANCE
- MAPPING OF USSR AND SATELLITES
- STRATEGIC WARNING INDICATIONS
 - WEAPONS AND BASES IN BEING
 - MILITARY LOGISTICS
 - INDUSTRIAL WAR CAPABILITIES
- NUCLEAR DETONATION DETECTION
- WEATHER OBSERVATION

ELECTRONIC RECONNAISSANCE
- DETECT & OBTAIN INFORMATION ON ELECTRONIC EMITTERS IN AREAS OF USSR & SATELLITES NOT NOW AVAILABLE

INFRARED RECONNAISSANCE
- ICBM ATTACK WARNING

COMMUNICATIONS
- SATELLITE LINKS FOR SECURE & RAPID GLOBAL COMMUNICATIONS

SECRET

P 799 8/8/58
WD-58-05183

SECRET
WS 117L Program Objectives

Program Title

Major Development Objectives

<table>
<thead>
<tr>
<th>Program Title</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. ENGINEERING PROTOTYPE DEVELOPMENT & TESTS</td>
<td>PLACE STABILIZED SATELLITES ON ORBIT AT 200 S.L. ALTITUDE</td>
</tr>
<tr>
<td></td>
<td>TEST RECOGNITION PAYLOAD AND GENERAL SYSTEM OPERATIONS</td>
</tr>
<tr>
<td>II. PIONEER VISUAL RECONNAISSANCE</td>
<td>PROVIDE SMALL SCALES PHOTOGRAPHIC COVERAGE OF USER</td>
</tr>
<tr>
<td></td>
<td>SATELLITE-SCALE FILM PROCESSING; VIDEO TRANSMISSION OF PHOTO IMAGES</td>
</tr>
<tr>
<td></td>
<td>100 X 100 MILE PHOTO STRIP PER PASS AVERAGE</td>
</tr>
<tr>
<td></td>
<td>100 FT. RESOLUTION</td>
</tr>
<tr>
<td></td>
<td>1 MILE TARGET LOCATION ACCURACY</td>
</tr>
<tr>
<td>II.A. EARLY ACHIEVEMENT OF ORBITAL CAPABILITY TEST CAPSULE RECOVERY SYSTEM</td>
<td>PLACE SATELLITES ON POLAR ORBIT. INCORPORATE RECOVERABLE CAPSULE IN SELECTED SATELLITES FOR BIOMEDICAL RESEARCH PURPOSES</td>
</tr>
<tr>
<td>III. PIONEER FERRET RECONNAISSANCE</td>
<td>INTERCEPT USER ELECTROMAGNETIC EMISSIONS IN THE 30-10,000 KCS SPECTRUM</td>
</tr>
<tr>
<td></td>
<td>RECEIVE AND MEASURE BASIC SIGNAL PARAMETERS; 50-100 MILE LOCATION ACCURACY</td>
</tr>
<tr>
<td></td>
<td>DETECTION SIGNALS FROM UNKNOWN SIGNALS</td>
</tr>
<tr>
<td></td>
<td>PROVIDE GUIDANCE FOR DESIGN OF ADVANCED FERRET EQUIPMENT</td>
</tr>
<tr>
<td>IV. ADVANCED VISUAL RECONNAISSANCE</td>
<td>PROVIDE HIGH RESOLUTION PHOTOGRAPHS OF SPECIFIC GROUND TARGETS</td>
</tr>
<tr>
<td></td>
<td>17 MILE WIDTH PERapixel</td>
</tr>
<tr>
<td></td>
<td>10 FT. RESOLUTION</td>
</tr>
<tr>
<td></td>
<td>1/2 MILE TARGET LOCATION ACCURACY</td>
</tr>
<tr>
<td>V. ADVANCED FERRET RECONNAISSANCE</td>
<td>MORE ACCURATELY DETERMINE PARAMETERS OF ELECTRONIC SIGNALS</td>
</tr>
<tr>
<td></td>
<td>FREQUENCY RANGE: 30-4,000 KCS</td>
</tr>
<tr>
<td>VI. VISUAL SURVEILLANCE</td>
<td>SIMILAR TO PROGRAM IV, BUT USING:</td>
</tr>
<tr>
<td></td>
<td>LONG DURATION POWER SUPPLY</td>
</tr>
<tr>
<td></td>
<td>MULTIPLE VEHICLE</td>
</tr>
<tr>
<td></td>
<td>HIGHER RESOLUTION</td>
</tr>
<tr>
<td></td>
<td>HIGH SPEED GROUND TRANSMISSION OF DATA</td>
</tr>
<tr>
<td></td>
<td>POSSIBLY SUBSTITUTE TV WITH TAPE RECORDING FOR FILM</td>
</tr>
<tr>
<td>VII. INFRARED SURVEILLANCE</td>
<td>PROVIDE SATELLITE SYSTEM TO PUBLISH INSTANTANEOUS WARNING OF AN ICBM ATTACK</td>
</tr>
<tr>
<td></td>
<td>LATER SATELLITE SYSTEM TO PROVIDE PRECISION ICBM DETECTION & PREDICTION DATA</td>
</tr>
<tr>
<td>VIII. FERRET SURVEILLANCE</td>
<td>SIMILAR TO PROGRAM V, BUT USING:</td>
</tr>
<tr>
<td></td>
<td>MULTIPLE FUNCTIONS AND FLEXIBILITY</td>
</tr>
<tr>
<td></td>
<td>DEPLOYS MULTIPLE VEHICLE</td>
</tr>
<tr>
<td></td>
<td>LONG DURATION POWER SUPPLY</td>
</tr>
<tr>
<td></td>
<td>IMMUNITY OF HOSTILITIES WARNING</td>
</tr>
</tbody>
</table>

P-250 (2) | 2/17/58 |
WD-58-02776
This sktoonsoof eosholos lafonnatioa offoollog HA. soflooal &hose of fbo MOW Stabss willo lb. obsoolag of lb. Espionage Laws. Me IE.US.C., Sae. 713 and 714. Its traostalssloo or Kwropolallos of ib sootools is any enamor ft ao onosaborlsod poison is proltibisod by law.
SENTRY PAYLOAD-DEFINED

RECONNAISSANCE MISSIONS:
- ALL SENSING, PROCESSING & STORAGE EQUIPMENT
- ALL RELATED AUXILIARY POWER SYSTEM EQUIPMENT
- ALL RELATED COMMUNICATIONS EQUIPMENT

BIOASTRONAUTIC RECOVERY MISSIONS:
- RECOVERY CAPSULE & ROCKET
- CAPSULE CARGO
THE SENTRY SUBSYSTEMS

- Subsystem A: Airframe
- Subsystem B: Propulsion
- Subsystem C: Auxiliary Power
- Subsystem D: Guidance & Control
- Subsystem E: Visual Subsystems
- Subsystem F: Ferret
- Subsystem G: Infrared
- Subsystem H: Communications
- DCA: Data Control & Analysis

This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws, 18 U.S.C. Secs. 793 and 794. Its transmission or communication to any unauthorized person is prohibited by law.
WS117L R&D ORGANIZATION

LOCKHEED AIRCRAFT CORP. MISSILE SYSTEMS DIVISION
WEAPON SYSTEM CONTRACTOR

SECRET

PRINCIPAL SUBCONTRACTORS

PROPUSSION
- BOEING AIRCRAFT CORP.
- AEROGST-JEIAL-CORP.

AUXILIARY POWER
- SOMERSET CORR.
- EAGLE-PICHER CO.
- ENGINEERED MAGNETICS
- HOFFMAN ELECTRONICS CORP.
- BEECHCRAFT R&D INC

GUIDANCE & CONTROL
- DETROIT CONTROLS CORP
- REEVES INSTRUMENT CORP
- MINNEAPOLIS-HONEYWELL REGULATOR CORP
- BENDIX AVIATION CORP

VISUAL RECONN
- EASTMAN KODAK CO.
- COLUMBIA BROADCASTING SYS.
- EPICA INC.
- AMPEX CORP

FERRET
- AIRBORNE INSTRUMENTS LAB. INC.
- HALLER, RAYMOND & BROWN INC

INFRARED RECONN.
- EASTMAN KODAK CO.
- BAIRD ATOMIC CO.
- AEROGST-JEIAL-CORP.
- GENERAL MILLS INC.

GROUND-SPACE COMM.
- PHILCO CORP
- REEVES INSTRUMENT CORP RADIATION INC.
- LOCKHEED AIRCRAFT SERVICES INC.
- HUGHES AIRCRAFT CO.
- TEXAS INSTRUMENT CORP

TEST MGMT & OPERATIONS
- AEROGST-JEIAL-CORP.
- RALPH M. PARSONS CO

GROUND SUPPORT EQUIP
- OTIS ELEVATOR CO.
- CONSOLIDATED AVIONICS CORP
- BEMCO, INC.
- STANDARD MFG. CO. INC.
- HUFFORD CORP

BIO MEDICAL CAPSULE
- GENERAL ELECTRIC CO.
- ALL AMERICAN ENGINEERING CO

ASSOCIATE CONTRACTORS

BOOSTERS
- DOUGLAS A/C CORP (SM-75)
- CONVAIR ASTRONAUTICS (SM-65)

GUIDANCE & CONTROL
- INSTRUMENTATION LAB., MIT
- GENERAL ELECTRIC CO.

AUXILIARY POWER
- THE MARTIN CO.
- ATOMICS INTERNATIONAL

DATA PROCESSING
- RAMO-WOOLBRIDGE CORP

P223 (S)*55 84/58
WD-53-02543

SECRET
LOCKHEED FACILITIES FOR WS 117L

VAN NUYS
AIRFRAME FABRICATION

SUNNYVALE
COMPONENT ASSEMBLY

PALO ALTO
PROJECT MGMT. SYSTEM DESIGN
VEHICLE MOD. & CHECKOUT

SANTA CRUZ
HAZARDOUS TEST FACILITY

NOTE: BURBANK C-1—COMPONENT MFG. & TEST

P 565 SD 6/2/59
WD-58 03455
This document contains information that is classified as a national defense of the United States within the meaning of the Espionage Laws, 18 U.S.C. Secs. 793 and 794. The unauthorized disclosure of its existence to any unclassified person is prohibited by law.
ALTITUDE VS. PAYLOAD-SENTRY/THOR

SINGLE BURN

ORBITING ALTITUDE - N. MI.

250

200

150

100

50

USEFUL PAYLOAD - LBS

100

200

300

400

500

600

P 792
WD-58-08183
8/8/58
This document contains information affecting the national defense of the United States and is classified as SECRET. Its transmission or revelation, without the authority of the Secretary of Defense, is prohibited by law.
Sentry Auxiliary Power Supply

Development Program

- **Conventional Primary Batteries**
 - Silver Peroxide

- **High Energy Battery**
 - Hydrogen-Oxygen

- **Solar Voltaic Converter**
 - Silicon Boron Diffused p-n Junction

- **Nuclear Thermomechanical**
 - Radioisotope Heat Source

Energy Yield

<table>
<thead>
<tr>
<th>Energy Yield</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>750 Watt Hrs/Lb.</td>
<td>Commercially Available</td>
<td>Low Energy Yield</td>
</tr>
<tr>
<td>600 Watt Hrs. Per Lb.</td>
<td>High Energy Yield</td>
<td>Not Developed</td>
</tr>
<tr>
<td>200 Watt Cont.</td>
<td>Operates Indefinitely</td>
<td>Req's Development</td>
</tr>
<tr>
<td>600 Lb.</td>
<td></td>
<td>Temp Control</td>
</tr>
<tr>
<td>500 Watt</td>
<td></td>
<td>Meteorite Damage</td>
</tr>
<tr>
<td>800 Lb. + Shield</td>
<td>Long Life</td>
<td>Heavy Shield Required</td>
</tr>
<tr>
<td>50 Days</td>
<td>Long Life</td>
<td></td>
</tr>
<tr>
<td>9 Kw</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 Lb. + Shield</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life: 1 Year</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P315 (2) 65°F 3/13/58

ADVANCED AUXILIARY POWER SYSTEMS

SECRET

SOLAR

CHARACTERISTICS

(a) 16% CONVERSION EFFICIENCY
 (10-12 WATTS/FT²)

(b) NICKEL CADMIUM SECONDARY BATTERY
 OF 95 WATTS-HRS/LB
 ~ 2500 CYCLE LIFE

(c) POWER SYSTEM LIFE
 LIMITED BY BATTERY
 AND/OR METALLIC EMISSION

(d) TWILIGHT ORBIT ADVANTAGE:
 CONCURRENT DESTRUCTION AT
 NORMAL INCIDENCE, NO VACUUM
 TUBE, EXPERIMENTAL BATTERY, HIGHER EFFICIENCY

NUCLEAR REACTOR

CHARACTERISTICS

(a) SKIN CONTINUOUSLY
(b) LONG DISSOLUTION (~ 1 YEAR)
(c) SHIELDING REQUIRED
 (8 IN. SEPARATION)
(d) PAYLOAD COMPATIBILITY
 PROBLEMS

ISOTOPE

CHARACTERISTICS

(a) 500 WATTS AT 60 DAYS

(b) 250 WATTS AT 340 DAYS

(c) TUBE FILAMENTS PROVIDE
 PARASITIC RESISTIVE
 LOAD FOR EXCESS POWER
 IN EARLY VEHICLE LIFE
 DURING COAST PERIODS

(d) SHIELDING REQUIRED

(e) TOTAL WEIGHT WITH
 SHIELD 700-800 POUNDS

CHEMICAL

POWER SOURCE

CHARACTERISTICS

(a) LIFE LIMITED BY
 MONOFUEL SUPPLY

(b) EXHAUST PRODUCTS
 USEFUL FOR ORBIT
 ECCENTRICITY
 CONTROL

(c) POWER LEVEL
 EASILY
 CONTROLLABLE
WS-117L SYSTEM APU LIFE LIMITATIONS

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>DAYS OF OPERATION</th>
<th>SYSTEM RELIABILITY LIMITED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>VISUAL</td>
<td>25 kW-HR/DAY</td>
<td></td>
</tr>
<tr>
<td>FERRET</td>
<td>2.2 kW-HR/DAY</td>
<td></td>
</tr>
<tr>
<td>LR</td>
<td>1.9 kW-HR/DAY</td>
<td></td>
</tr>
</tbody>
</table>

SYSTEM LIMITATIONS:
- PRIMARY BATTERY FLT PIONEER
- HIGH ENERGY FUEL CELL BATTERY FLT 10-15
- SOLAR PHOTOVOLTAIC APU FLT 16
- NUCLEAR APU LIFE FOR ALL SYSTEMS
 - RADIO ISOTOPE 60-180 DAYS
 - NUCLEAR REACTOR 60-360 DAYS

LESS TELEMETERING
GUIDANCE & CONTROL SYSTEM

TYPICAL SENTRY ASCENT (ATLAS-PROG I)
SECRET

SENTRY ASCENT BOOST PHASE

GUIDANCE & CONTROL FUNCTIONING COMPONENTS

BODY AXIS SYSTEM

ROLL

117L VEHICLE

PITCH

YAW

ATLAS BOOSTER

ATLAS-GE RADIO INERTIAL

THOR-PROGRAMMED AUTOPilot

VEHICLE REF. AXIS

BOOSTER THRUST

\[\frac{c_y}{c_x} \times A_p = \text{ANGLE BETWEEN ATLAS THRUST AXIS} \& \text{VEHICLE REF. AXIS} \]

\[A_p = \text{GYRO GIMBAL ANGLE} \]
Sentry Coast Phase
Guidance & Control Functioning Components

1. Horizon Scanner Roll Error Signal
2. Yaw Angle Reset
3. Horizon Scanner Pitch Error Signal
4. Program Pitch Rate

Programmer Commands
- Gyro Package Ref. Attitude
- Gas Jets via Autopilot
- Align Vehicle Attitude to Gyro Ref. Attitude.
"PASSIVE" GRAVITATIONAL RESTORING TORQUE (T) PROPORTIONAL TO THE DIFFERENTIAL GRAVITY FIELD AS
\[T = R_1 (\bar{g}_1 - \bar{g}_2) = R_1 \sin 2\theta = R_1 \theta \]

\[K_3 (PITCH) = \frac{0.056 \text{ oz-in.}}{\text{deg}} \]

\[K_4 (ROLL) = \frac{4000 \text{ dyne-cm-deg}}{\text{deg}} \]

"ACTIVE" DAMPING OF "B" OSCILLATIONS BY RATE GYROS, TRANSFER FUNCTION ELECTRONICS & TORQUE REACTION WHEELS

PAYLOAD

ENGINE

VEHICLE VELOCITY

K_3

ROLL (X') AXIS

\[\frac{\bar{g}_1}{s + T_x} \]

YAW (Z') AXIS

\[\frac{\bar{g}_1}{s + T_y} \]

VERTICAL (Z) AXIS

PITCH (Y) AXIS

INPUT AXIS

INPUT AXIS

ROLL RATE GYRO

INPUT AXIS

PITCH RATE GYRO

ELECTRONICS

PITCH WHEEL

YAW WHEEL
WSI17L SENTRY VEHICLE WEIGHT

<table>
<thead>
<tr>
<th>Component</th>
<th>PROGRAM IIA (lbs)</th>
<th>PROGRAM I (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEHICLE PAYLOAD (includes primary payload § A.R.S. telemetry, § communications)</td>
<td>573</td>
<td>3197</td>
</tr>
<tr>
<td>STRUCTURE GROUP (includes airframe § equipment supt. structure)</td>
<td>402</td>
<td>554</td>
</tr>
<tr>
<td>PROPULSION GROUP (includes engine, propellant tanks, press system § ullage rockets)</td>
<td>593</td>
<td>593</td>
</tr>
<tr>
<td>CONTROLS GROUP (includes ascent § orbital controls)</td>
<td>160</td>
<td>123</td>
</tr>
<tr>
<td>GUIDANCE GROUP (includes ascent § orbital guidance)</td>
<td>100</td>
<td>140</td>
</tr>
<tr>
<td>VEHICLE WEIGHT EMPTY</td>
<td>1828</td>
<td>4607</td>
</tr>
<tr>
<td>PROPELLANTS</td>
<td>6624</td>
<td>4693</td>
</tr>
<tr>
<td>BOOSTER PAYLOAD</td>
<td>8452</td>
<td>9300</td>
</tr>
<tr>
<td>VEHICLE WEIGHT ON ORBIT</td>
<td>1776</td>
<td>4466</td>
</tr>
</tbody>
</table>

1. UDMH-1RFNA ENGINE § LAUNCHED FROM CAMP COOKE - THOR BOOSTED NOM. CIRCULAR ORBIT
 ALTITUDE = 180 STATUTE MILES

2. UDMH-1RFNA ENGINE § LAUNCHED FROM AFMTC - ATLAS BOOSTED NOM. CIRCULAR ORBIT
 ALTITUDE = 360 STATUTE MILES
WS-117L VISUAL RECONNAISSANCE SYSTEM

SECRET

TECHNICAL SUMMARY

<table>
<thead>
<tr>
<th></th>
<th>PIONEER</th>
<th>ADVANCED</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOCAL LENGTH</td>
<td>6"</td>
<td>36"</td>
</tr>
<tr>
<td>LENS SPEED</td>
<td>F 2.8</td>
<td>F 2.8</td>
</tr>
<tr>
<td>DURATION</td>
<td>9 DAYS</td>
<td>30 DAYS</td>
</tr>
<tr>
<td>STRIP ON GROUND - WIDTH</td>
<td>100 MIl.</td>
<td>17 MIl.</td>
</tr>
<tr>
<td>STRIP ON GROUND - LENGTH</td>
<td>2000 MIl.</td>
<td>360 MIl.</td>
</tr>
<tr>
<td>AREA COVERED</td>
<td>1.07 x 10^7 SQ. MI.</td>
<td>8.9 x 10^6 SQ. MI.</td>
</tr>
<tr>
<td>CAMERA Wt.</td>
<td>300 Lb.</td>
<td>400 Lb.(EST.)</td>
</tr>
<tr>
<td>INCIDES FILM & PROCESSOR</td>
<td>3.4 Lb.</td>
<td>11.4 Lb.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELECTRICAL POWER REQUIREMENTS</th>
<th>PIONEER</th>
<th>ADVANCED</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEAK</td>
<td>300 WATTS</td>
<td>300 WATTS</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>660 WATT HR/DAY</td>
<td>660 WATT HR/DAY</td>
</tr>
</tbody>
</table>

| **SCALE ON VEHICLE FILM** | 1:3,168,000 | 1:528,000 |
| **RESOLUTION ON GROUND** | AT LOW (2:1) CONTRAST 100 FT. | 20 FT. |

FILM USED: MICROFILE EASTMAN F5740-6
FILM RESOLUTION: 250 L/mm HIGH CONTRAST
> 100 L/mm LOW CONTRAST

GROUND ENLARGEMENT 53:1 FOR USE

SECRET
This document contains information relating to the national defense of the United States in the sense of the Espionage Act of 1917, 18 U.S.C., Sec. 793. Its reproduction or the revelation of its contents in any manner to an unauthorized person is prohibited by law.

Airborne Reception

Priority Bands
1. 2,500-3,200 MC/SEC
2. 9,000-10,000 MC/SEC
3. (a) 59-100 MC/SEC
 (b) 100-200 MC/SEC
 (c) 200-400 MC/SEC
 (d) 400-600 MC/SEC

Monitoring of all bands in the 50-18000 MC/SEC spectrum.
ICBM ATTACK ALARM

SATELLITE POLAR ORBIT ALT.
APPROX. 1000 NAUTICAL MILES

GROUND READ-OUT STATIONS

(THULE)
(FARIBANKS, AL)
(NORTH SCOTLAND)

INSTANTANEOUS DIRECT READ-OUT
TO GROUND STATION

ADC HQ
(COLD SPRING)

GCE AGENCIES

USAP HQ
(WASH., D.C.)

ICBM INSTALL.

INTELLIGENCE AGENCIES
Proposed ICBM Attack Alarm System

Satellite Power Requirements vs. Supply

<table>
<thead>
<tr>
<th>Power Requirements</th>
<th>Solar Power Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIT</td>
<td>WATT HR/DAY</td>
</tr>
<tr>
<td>TRANSMITTER</td>
<td>171</td>
</tr>
<tr>
<td>RECEIVER</td>
<td>117</td>
</tr>
<tr>
<td>DECODER</td>
<td>176</td>
</tr>
<tr>
<td>TIMER & PROGRAMMER</td>
<td>120</td>
</tr>
<tr>
<td>SUBSYSTEM "G"</td>
<td>180</td>
</tr>
<tr>
<td>ATTITUDE DAMPING Syst.</td>
<td>240</td>
</tr>
<tr>
<td>YAW STAB. GYRO WHEEL</td>
<td>96</td>
</tr>
<tr>
<td>TOTAL REQMT</td>
<td>1100</td>
</tr>
</tbody>
</table>

Comments:

- **80 FT² SOLAR CELLS REQUIRED AT 1000 N. MI. ALTITUDE ON NOON ORBIT**
- **OVERALL PERFORMANCE FACTOR: 33%**
ICBM Attack Alarm System

Vehicle Payload

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Infrared** | Bouwers Concentric Optical System
7-Inch Aperture; 1.3 Aperture Ratio
Uncooled Lead-Sulphide Detectors
Modulating Reticle Mounted on Rotating Scanner Frame
Transistorized Infrared Signal Amplifiers |
| **Communications** | Transmitter & Modulators
Command Receiver
Decoder
Timer/Programmer
4 Quadrant Receiving Antennas
Transmitter Antenna |
| **Aux. Power** | Solar Energy Collector Cells
400 Cycle Inverter
2000 Cycle Inverter
28V DC Regulator
Nickel-Cadmium Battery |

SECRET
PROPOSED ICBM ATTACK ALARM SYSTEM

OPERATIONAL GROUND BASE REQUIREMENTS

1. LAUNCH SITE - COOKE AIR FORCE BASE
 • LAUNCH PADS: THREE
 • GRND. SUPP. EQUIP: THREE SETS
 • ASSEMBLY HANGARS: ONE

2. TRACKING STATIONS - NORTHEAST, NORTHWEST, & SOUTH CENTRAL
 • SAME UHF INSTALLATIONS AS PROGRAMS I, II, & III
 (IF VHF IS UTILIZED, ADDITIONAL EQUIPMENT REQUIRED)

3. READ OUT STATIONS - THULE, GREENLAND; FAIRBANKS, ALS; N. SCOTLAND
 • THREE 60 FT. TRACKING ANTENNAS FOR IR DATA & TELEMETRY RECEPTION.
 • THREE DATA LINK & THREE TELEMETRY RECEIVERS.
 • TWO DIRECTION FINDERS & TWO COMMAND TRANSMITTERS WITH ANTENNAS.
 • THREE SETS OF DISPLAY CONSOLES & CONTROL CONSOLES.
 • MASTER CONTROL CONSOLE, DATA RECEIVERS, ORBIT TRACKING PROGRAMMER.
This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18, U.S.C., Sec. 793 and 794. Its transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law.
WS117L DATA CONTROL

RECONNAISSANCE MISSION ASSIGNMENT

1. IDENTIFICATION
2. PRIORITY
3. TYPE OF RECONNAISSANCE
4. AREA TO BE COVERED
5. TIME SPAN

WS117L TECHNICAL OPERATIONS CONTROL

MISSION STATUS
WS-117L/SM-75 PROGRAM OBJECTIVES

SECRET

PRIMARY

• LAUNCH OF WS-117L/SM-75 COMBINATION
• ACHIEVEMENT OF ORBIT
• DEVELOPMENT WS-117L AIRBORNE & GROUND SYSTEMS
• DEVELOPMENT OF GROUND/SPACE COMMUNICATIONS

SECONDARY

• RECOVERY
• AEROMEDICAL MEASUREMENTS
• G. R. D. MEASUREMENTS
Flight Missions & Objectives

Program II A

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>225</td>
<td>1275 VERT.</td>
<td></td>
<td>JP4/IRFNA</td>
<td>14.85:1</td>
<td></td>
<td>Phase A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Engineering Tests</td>
</tr>
<tr>
<td>2</td>
<td>190</td>
<td>1359</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Phase A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Engineering Tests</td>
</tr>
<tr>
<td>3-4</td>
<td>145</td>
<td>1547 HORIZ. 195°</td>
<td></td>
<td>ALBEDO FLI3</td>
<td></td>
<td></td>
<td>Bio-Medical</td>
</tr>
<tr>
<td></td>
<td>145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Capsule 195°</td>
<td>Experiment</td>
</tr>
<tr>
<td></td>
<td>(N=125 S.M.E = .02)</td>
<td>(165° LAUNCH AZIMUTH)</td>
<td></td>
<td>Density FLI4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-7-9</td>
<td>240</td>
<td>1458</td>
<td></td>
<td>GRD. ALBEDO</td>
<td></td>
<td></td>
<td>Phase B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DENSITY COSMIC RAY</td>
<td></td>
<td></td>
<td>Engineering Tests</td>
</tr>
<tr>
<td>6-8</td>
<td>160</td>
<td>1649</td>
<td>250 LBS.</td>
<td>CAPSULE</td>
<td></td>
<td></td>
<td>Bio-Medical</td>
</tr>
<tr>
<td>10 THRU 160</td>
<td>1649</td>
<td>250 LBS.</td>
<td>CAPSULE</td>
<td></td>
<td></td>
<td></td>
<td>Experiment</td>
</tr>
</tbody>
</table>

Phase A: Engineering Tests
Phase B: Engineering Tests
Bio-Medical Experiment
The document contains information affecting the national defense of the United States, and the unauthorized disclosure of its contents, in any manner, is prohibited by law.
Sentry Recovery Operations

This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Tit'13, U.S.C., Sec. 793 and 794. Its transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law.
This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws. Title 18, U.S.C., Sec. 793 and 794. Its transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law.
WS-117L BIO MED. VEHICLE

195 LB. - JP4
279 LB. - UDMH

73'10"

60°

19'5"

1429 LB. - EMPTY

7309 LB. - THOR-PAYLOAD

44.45"

27.45"

-33.13"

SECRET
WSI 7L USEFUL PAYLOAD WEIGHT VS ALT.

PROPOSED MAN IN SPACE PROG.

GROSS PAYLOAD WT.
ALLOWABLE CAPSULE WT.

GROSS PAYLOAD INCLUDES:
- DESTRUCT: 25
- CONTROLS: 175
- APU: 45
- GUIDANCE: 140
- TELEMETER & APU: 60
- RETRO ROCKET: 181

SUB-TOTAL: 728

CAPSULE VARIABLE AS SHOWN
ABOVE, APPROX. 2300 TO 3300
GROSS WT. VARIABLE AS SHOWN

NOTE:
1. AFMTC LAUNCH
2. 28° ORBIT

ALTITUDE S. MILES

LBS.

5000
4000
3000
2000
1000
0

100 150 200 250 300 350 400
SATELLITE WEATHER MISSIONS

SCIENTIFIC RESEARCH
DETERMINE MEANS FOR UTILIZING SATELLITE DATA
CORRELATE DATA OVER LARGE AREAS OF EARTH
PERFORM STUDIES ON WEATHER CONTROL

STORM PATROL
DETECT PRESENCE OF MAJOR STORM CENTERS
PERFORM TIMELY TRACKING AND WARNING

DOMESTIC WEATHER FORECASTING
AUGMENT PRESENT SYSTEM OF STATIONS
PROVIDE ADDITIONAL COVERAGE

MILITARY MISSIONS
WEATHER DATA FOR OPERATIONAL MISSIONS
INTELLIGENCE INFORMATION
WS-117L TECHNICAL SCHEDULING
SENTRY WEATHER SURVEILLANCE

SECTIONS
- PHOTOGRAPHY
- RADIOMETER
- RADAR

STATUS MOSAIC AT WEATHER CENTER

AFFORDS SYNOPTIC RECORD
- CLOUD TYPE
- CLOUD COVER
- CLOUD VELOCITY
- CLOUD ALBEDO
- TERRESTRIAL RADIATION SPECTRUM
- TERRESTRIAL HEAT BALANCE

1000 MILES

LOCKHEED AIRCRAFT CORPORATION
MISSILE SYSTEMS DIVISION

This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18, U.S.C., Sec. 793 and 794. Its transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law.
TYPES OF WEATHER DATA

CONFIDENTIAL

MILITARY AND DOMESTIC

PRESENT METHODS

TEMPERATURE
PRESSURE
HUMIDITY
WIND VELOCITY
RECENT WEATHER HISTORY

SATELLITE DATA

VISUAL
CLOUDS-SEMI QUANTITATIVE
 1. EXISTENCE
 2. WIND VELOCITY
 3. WIND SHEARS
 4. VERTICAL STRUCT
 5. WATER Vapor
 6. AIR STABILITY
 7. LEE CLOUDS OVER MOUNTAINS
 8. FRONTAL CLOUDS

RADIO METRIC
ALBEDO
OZONE CONCENTRATIONS
SOLAR RADIATIONS

RADAR
PRECIPITATION
ALBEDO
POSSIBLE SCIENTIFIC EXPERIMENTS

UTILIZING WS-117L VEHICLE

<table>
<thead>
<tr>
<th>DRAG</th>
<th>LARGE PAYLOAD</th>
<th>DATA STORAGE & WIDE-BAND TRANSMISSION</th>
<th>LARGE POWER (LONG LIFE)</th>
<th>POLAR ORBIT</th>
<th>CONTROLLED ATTITUDE</th>
<th>INTER-SATELLITE COMM.</th>
<th>COINCIDENCE-TYPE EXPERIMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLAR UV, X-RAYS, & TOTAL RADIATION</td>
<td></td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td></td>
</tr>
<tr>
<td>PRIMARY AND ALBEDO COSMIC RAYS</td>
<td>•</td>
<td>△</td>
<td>△</td>
<td>•</td>
<td>△</td>
<td>△</td>
<td></td>
</tr>
<tr>
<td>AURORAL PARTICLES AND X-RAYS</td>
<td>•</td>
<td>△</td>
<td>△</td>
<td>•</td>
<td>△</td>
<td>△</td>
<td></td>
</tr>
<tr>
<td>MICROMETEORITES</td>
<td>•</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td></td>
</tr>
<tr>
<td>MAGNETIC FIELD</td>
<td>•</td>
<td>△</td>
<td>△</td>
<td>•</td>
<td>△</td>
<td>△</td>
<td></td>
</tr>
<tr>
<td>EARTH RADIATION</td>
<td>•</td>
<td>△</td>
<td>△</td>
<td>•</td>
<td>△</td>
<td>△</td>
<td></td>
</tr>
<tr>
<td>ALBEDO AND CLOUD COVER</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td></td>
</tr>
<tr>
<td>LIGHT ION DETECTOR</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>•</td>
<td>△</td>
<td>△</td>
<td></td>
</tr>
<tr>
<td>ION SPECTROMETER</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td></td>
</tr>
<tr>
<td>MICROMETEORITE VELOCITIES</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td></td>
</tr>
<tr>
<td>LYMAN-ALPHA TELESCOPE</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>•</td>
<td>△</td>
<td>△</td>
<td></td>
</tr>
<tr>
<td>ATOMIC CLOCK</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td></td>
</tr>
<tr>
<td>ELECTRON DENSITY IN IONOSPHERE</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td></td>
</tr>
<tr>
<td>DENSITY AND TEMPERATURE IN ORBIT</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td></td>
</tr>
</tbody>
</table>

- △ NOT NECESSARY FOR THE MEASUREMENT
- △ USEFUL FOR THE MEASUREMENT
- △ ADDS GREATLY TO VALUE OF MEASUREMENT
This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18, U.S.C., Sec. 793 and 794. Its transmission or the revelation of its contents in any manner to an unauthorised person is prohibited by law.
This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18, U.S.C., Secs. 793 and 794. Its transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law.
This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18, U.S.C., Sec. 793 and 794. Its transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law.