Hacking Team

Project X
Mass interception of encrypted connections
What?

SSL/TLS interception
TOR interception
...a thorny path
Common Issues

Public Key Pinning avoids rogue CA to sign certs
Common Issues

Google and Facebook actively search for rogue CA signed certs

(no more governmental signing: France, India)
Common Issues

HSTS enforces https on a variety of hardcoded website (no more SSL-stripped)
Common Issues

HTTPS Everywhere enforces https and could send rogue certificates to the EFF SSL Observatory
Common Issues

No solution for sniffing TOR available by now on the market
The Solution
How?

Place an in-line Active Probe in the ISP’s network
How?

Exploit the target transparently by injecting a browser-based exploit while he’s surfing the web (http)
How?

Insert a trusted root CA certificate(s) for MITM

Redirect first TOR hop
How?

Decrypt and Decode the traffic!
More in depth
Deployment phases

Identification
Inoculation/Marking
SSL MITM (only for SSL)
Decoding
Maintenance
Identification Phase

Uniquely identify a target on the internet (cookies, browser strings, etc.)

Create a profile for each target to know if it’s exploitable

Avoid exploiting the same target “too much”

Avoid exploiting a target with “problematic”
Inoculation Phase

HTTP man-in-the-middle (transparent proxy)

Browser based exploits (all platforms)

Local to root exploits (sandbox escape)

Methods to insert root CA cert(s) into the keystore

Methods to divert TOR first HOP
Marking Phase

Insert a “watermark” in target’s environment to uniquely identify “inoculated” targets during SSL connections.

Setting different TOR’s SOCKS password.
SSL MITM Phase

Transparent proxy performing SSL MITM only on “marked” targets

Serve the right certificate
Avoid exposing fake certs
Avoid checks to detect fake certs
Decoding Phase

A good partner with a consolidated decoding technology
Maintenance Phase

Automatic test to check if the certs are invalidated

(Customer side)
Maintenance Phase

Automatic check for exploits effectiveness

Automatic check for inoculation phase (HT side)
Challenges
Identification Phase

Targets using multiple browsers
Targets behind routers (NAT)
Targets behind a TCP Proxy
Targets changing IP address often
Inoculation Phase

Build or Buy exploits for several platforms

Write shellcodes to insert root CA certs

Write shellcodes to modify TOR environment
Marking Phase

Marking the target cipher suites list

Using client-side certificate

(both good but fragile)
Marking Phase

IP-to-Target Mapping
Less reliable
Same problems as Identification
Marking Phase

Mixed approach is possible
fake https image request
host file modification

Marking must survive browser/os upgrades!
SSL MITM Phase

Find an appliance to handle the inline traffic

(no single point of failure)
SSL MITM Phase

Pay attention to Extended Validation certificate

Pay attention to EFF SSL Observatory

Pay attention to Trust Assertion for Cert Keys (TACK)
Decoding Phase

Where do we send sniffed traffic??
Feasibility Matrix

<table>
<thead>
<tr>
<th></th>
<th>Windows</th>
<th>OSX</th>
<th>Linux</th>
<th>iOS</th>
<th>Android</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE</td>
<td>IE</td>
<td>Safari</td>
<td>Firefox</td>
<td>Safari</td>
<td>Browser</td>
</tr>
<tr>
<td>FF</td>
<td>FF</td>
<td>Chrome</td>
<td>Chrome</td>
<td>Chrome</td>
<td>Chrome</td>
</tr>
<tr>
<td>Chrome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Root</td>
<td></td>
<td></td>
<td>Not needed (per user)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finger (hello)</td>
<td>IE</td>
<td>FF</td>
<td>Safari</td>
<td>Firefox</td>
<td>Safari</td>
</tr>
<tr>
<td></td>
<td>Chrome</td>
<td>Chrome</td>
<td>Chrome</td>
<td>Chrome*</td>
<td>Chrome</td>
</tr>
<tr>
<td>Finger (client cert)</td>
<td>IE</td>
<td>FF</td>
<td>Safari</td>
<td>Firefox</td>
<td>Safari</td>
</tr>
<tr>
<td></td>
<td>Chrome</td>
<td>Chrome</td>
<td>Chrome</td>
<td>Chrome**</td>
<td>Chrome</td>
</tr>
</tbody>
</table>
Weak Points

Heavily relies on browser remote-to-root exploit availability

TOR manipulation is possible only through clear-text traffic

Browser/OS vendors may change parameters we use for identification
Weak Points

Certificate revocation leads to target loss

(impact reduced by using several certificates)

AV may detect our shellcodes

(...btw no target loss)

Mass deployment increases the risk of leaking

]HackingTeam[
And finally...
Strengths

Our solution bypasses certificate pinning since it uses a custom CA “manually” installed!!!

Our solution bypasses HSTS
Strengths

Our solution bypasses active MITM detection (France should have known it)

Our solution is the only way to intercept TOR traffic at the moment
Decisions
Hardware for the probes

iBypass TAP
General purpose server

Modifying an existing SSL appliance
Decoding the traffic

Once decrypted the traffic must be decoded:
Forwarding to an existing monitoring center using standard protocols
Create a turn-key solution with a “passive” partner
Resources
Time

First Minimal Demo: 2 months
First POC: 9 months
First Deployment: 15 months
Human

2 Exploit/Shellcode Developers
1 Network/Probe Developer
1 ISP SysAdmin (consultancy)
2 Backend/Logic Developers
1 Tester

In house but allocated
Future development
Other over-SSL protocols

Support for imaps, pops, etc.
RCS integration

Keep a DB of exploitable targets
Exploit them again to install RCS
Integration through the RCS Console
(...or HT Monitoring Center)
Layer 3 MITM

Just mangle the handshake and forward the rest of the connection to improve performances
SSL TLS key dump

Just save the SSL keys and pass it to an SSL offload decrypter for maximum performances
Technical details
General Architecture

Command & Control

Probe

Probe

Probe

Anon Net

[Hacking Team]
Command & Control

Ruby on Rails
HTML5 interface
Fault tolerant & scalable
Command & Control

Exploit repository (auto update from HT)
Attack rules (global or per probe)
Active/identified targets in realtime
Probes configuration / update
Anon network configuration
Global system monitoring
Anon Network

Used to forward connections to public addresses to the probes

Useful if we set a socks/proxy in the target and the target is nomadic
Probe Architecture

- Bypass TAP
- Switch
- Probe
- Bridge
- ADMIN
- TOR Proxy
- Forwarder
- Target Identifier & Hijacker
- Exploiter
- HTTP
- HTTPS
- SSL MITM Proxy

[Image: Hacking Team]