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ABSTRACT 

This paper describes a method for reading messages enciphered by the 
Hagelin Cipher Machine. The method is purely statistical in nature and 
requires only a sufficient quantity of ciphertext. No use is made of probable 
words nor of known correspondence between cleartext and enciphered mes
sages. The internal settings of the machine are generated in the process so that 
further messages using those settings can be read with little additional labor. 

A computer program embodying this method requires between 300 and 
450 words of ciphertext to do its work and runs in about two minutes on a min
icomputer. 

\ 

This paper describes a method for reading messages enciphered using Boris Hagelin's 
cipher machine, in its commercial version called the C-48, but more widely known as the 
M-209 Converter from its U. S. Army Signal Corps designation. The method is almost purely 
statistical in nature. Its successful application requires only a sufficient quantity of ciphertext; 
the only assumption is that the cleartext is English or some other natural language. In particu
lar, no use is made of probable words nor of known correspondence between between cleartext 
and enciphered messages. An earlier paper by Morris [1] presented a method of reconstructing 
the complete internal settings of the machine, given only about 75 characters of corresponding 
cleartext and ciphertext. The algorithm described here requires considerably more ciphertext 
but no cleartext whatsoever. The general approach is thought to be representative of cryptana
lytic techniques actually used by professionals in the field. 

Although this paper is rather theoretical in tone, all of the ideas in it have been tried out 
in practice. The method has been put into the form of a computer program and been tested on 
a large number of sample messages. This paper is based on an unpublished manuscript by 
Reeds written in 1970; Ritchie and Morris obtained a copy of the Reeds manuscript and wrote 
the computer program in 1976. 

Machine Description 

A complete description of the operations of the machine was given by Morris [1]. and so 
only the most relevant facts will be repeated. Briefly, the machine produces a polyalphabetic 
substitution in which each of the 26 possible alphabets is a reversed standard alphabet (called a 
Beaufort alphabet) with an offset. The key that selects the alphabet is produced internally from 
a set of six wheels around which are a number of pin positions; the six wheels have, respectively, 
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26, 25, 23, 21, 19, and 17 pin positions. In each pin position, a pin may be either active or 
inactive, and a selector mechanism along the axis of the wheels selects an encrypting alphabet 
depending only (during a single message) on the pattern of active and inactive pins in the pin 
positions opposite the mechanism. As each cleartext letter is enciphered, each wheel advances 
by one pin position with respect to the selector mechanism. Because the numbers of pin posi
tions on the various wheels are relatively prime, the period is 26x25x23x2lxt9xl7 or 
101,405,850. On the other hand, the keying sequence is partially periodic in that each wheel 
returns to the same position every n letters, where n is the number of pin positions on its cir
cumference. It is this subtle regularity that Morris was able to exploit in [1], and it is also the 
basis for the attack described here. 

The method that the selector mechanism uses to translate the pin patterns into letters of 
the keying alphabet can be described as follows: There are 27 sextuples of O's and 1 's in the 
selector mechanism. Each sextuple is called a bar, the 1 's are called lugs, and the O's are called 
blanks. However, each bar has no more than two lugs (i.e. 1 's) on it. This means that there 
are only 22 different possible bar patterns; one of all O's, six consisting of only one 1 and five 
O's; and fifteen composed of two 1 's and four O's. (There are fifteen different ways of choosing 
pairs of objects from six objects in all.) To produce a letter of the keying sequence, each of the 
27 bars is compared with the pattern presented by the pin wheels. If, for a given bar, at !east 
one active pin hits a lug on the bar, then we say that that bar is engaged. The number of bars 
that are engaged is the displacement for that pin pattern; it can range from 0 to 27. This dis
placement is then reduced modulo 26, and converted into a Beaufort keying letter according to 
the scheme 0=a,1=b, ... , 25=z. 

An Intuitive Method 

The important fact is that the transformation produced by the machine is not statistically 
random. With almost any arrangement of internal settings, if a long message consisting only of . 
A's is fed in, the letter-frequency distribution of the ciphertext will not be flat, but will be 
skewed in some way. The exact shape does not matter, and in fact it depends in a complicated 
way on the internal settings; it is sufficient that it is non-random. If the input text Is not a 
sequence of identical letters, but is instead written in a natural language such as English, the 
output will still not have a perfectly flat frequency distribution, because the peaks and valleys in 
the letter distribution of the input will be reflected in very minor peaks and valleys in the distri
bution of the output. Although the departure from randomness is slight indeed, it is enough to 
permit an attack. 

Suppose we wish to determine the pin settings on a particular wheel, say the 17 wheel for 
definiteness. If the ciphertext is written in rows of 17 letters, each row below its predecessor, 
we observe that each column corresponds to a unique pin position on the wheel. That is, 
ciphertext characters numbered 1, 18, 35, ... , etc. correspond to the first point on this wheel; 
characters 2, 19, 36, and so forth, correspond to the second pin. Thus the columns may be 
divided into two groups depending on whether the corresponding pin is active or inactive. The 
statistics of the columns associated with inactive pins are like those of a machine set so that all 
pins on the 17 wheel are inactive. Conversely, the letter distribution in the columns associated 
with active pins is just that of a machine with all pins set on this wheel. Neither distribution is 
flat, and the two distributions are not identical. 

Sensitive statistical tests exist for determining whether two observed distributions are in 
fact drawn from the same population. By comparing the distributions of the pairs of columns, 
it is possible to classify the columns into two groups, one of which is associated with active pins 
and one with inactive pins. In the first stage of analysis, it is not possible to say which group is 
associated with active pins and which with inactive pins, but this does not matter. Various 
appropriate statistical tests are described and discussed in Good [2], Sinkov [3], Friedman [4], 
and in synoptic detail, in Kahn [5, pp.377-383]. 

We could proceed by comparing each pair of the 17 columns using one of these statistical 
tests. Pairs which appear to be similar could be put into the same class and the process 
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continued until each of the columns had been assigned to one of the two classes. The method 
to be described in the next section in rather sparse mathematical terms is merely a generaliza
tion of this intuitively obvious method of segregating the distributions into two classes depend
ing on the "distance" between them given by a sensitive statistical test. The method we 
describe does not concern itself with examining particular pairs of pins, but rather does the 
analysis all at once. 

The Mathematical Basis 

The basis of the method is simple. Let fo .. stand for the number of occurrences of cipher
text letter A with pin position i. Usually, A ranges from 1 to 26 (the number of letters in the 
alphabet), but, as explained below, can also range from 1 to 52 or more. At any rate, let the 
number of letters be L. Also, i ranges from 1 to N, where N may be one of the numbers 17, 
19, 21, 23, 25, or 26, depending on which wheel is being attacked. The intention is now to find 
two "ideal" frequency counts, associated with the two segregation classes of pins. Let the 
number of letters A in these two ideal frequency distributions be c.,._ and b-,..., respectively. Then, 
for each pin position i, ;;.,._ is either closely approximated by c~.. or by b~... Pin position i will be 
considered to fall into the segregation class that its actual distribution most closely matches. 
That is, if pin i belongs to the first class, ;;~.. will be close to c~..; if pin i belongs to the second 
segregation class, ;;~.. will be close to b~... To quantify this effect, the variable x; is introduced, 
where we intend that X; = 1 if pin i is in the first class, and X; = 0 if pin i is in the second class. 
The problem is then to find ideal frequency counts c~.. and b>.., as well as values of x;, so that;;~.. 
is closely approximated by the quantity 

· X;Cx + (1-x)b.,._. 

Note that if x; = 0, this expression reduces to b~..; if X;= 1, it reduces to c~... Because the 
"ideal" frequency distributions do not exist, the most we can hope for is to find the best frac
tional values of the X;. If, for example, we find that x 1 = .27, we might say that pin 1 is 27% 
like the first ideal segregation class, and 73% like the second class. We would most probably be 
correct in assigning pin position 1 to the second class. If, say, x2 = .48, we would have no 
grounds for assigning pin 2 to either class. 

The proposed method in effect finds the values of x;. b>.., and c~.. so that;;~.. is most closely 
approximated by x;c.,._ + (1-x) b~... Here "best approximated" is taken in the least-squares 
sense: the quantity <I> is minimized, where 

N L 
<I>= L l:{J;.,.,- [x;c~.. + (1-x)b.,._])2. (1) 

i-l A.=l 

For the cryptanalytic problem, it turns out to be unnecessary to recover the actual values 
of c.,._, b.,._, and x;; certain related quantities will do. Thus we will rewrite the expression for <1>. 
Let a.,._ = c.,._ -b.,._. Then <I> is given by 

N L 
<I>= L l:(J;.,.,-x;a~..-b~..) 2 • 

i-l A.-I 

Then, differentiating <I> with respect to b~.. and setting the result to 0, 

CJ<I> N !\b = -2l:(J;.,.,-x;a.,.,-b.,._) = 0. 
u A. ;-1 

and thus 
N N 

b.,._== L ;;.,.,IN- a.,._L xJN 
i-1 - i-l 

If we now let 
N 

K;x ... ;;.,._ - L /;.,._/ N • 
;-1 

(2) 

(3) 

(4) 
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we get: 

(5) 

Now let 
N 

Y1- X;- 'f_x/N 
j-1 

It is the quantities y it hat will actually be calculated. The y i are just the xi minus the average 
value of the .x's; unless this average value is known, the actual x, cannot be recovered. But 
since for the purposes of solving the cryptanalytical problem we care only about which X; are 
larger than average and which are smaller, this is a harmless loss of information. 

Now <t> is given by the formula 
N L 

cp ., L L (go, -y;ax)2 (6) 
i-1 A-1 

The problem of finding the y1 and the ax that minimize <t>, as given in equation (6), is well 
known; it is treated, for example, in Good [2]. As explained there, the choice of y1 that 
minimizes <t> is given by the eigenvector corresponding to the largest eigenvalue of the matrix 
r - h ij], where 

L 

"''ij - LgiAgjA 
A-1 

That is, the y1 we are looking for are solutions of the equation 
N 

(7) 

L'YiiYi = k Y; , (8) 
j-1 

where k has the largest possible value consistent with this equation. Equation (8) is an exam
ple of an eigenvector equation, a subject which has been extensively studied. There are standard, 
efficient procedures for the solution of these equations. 

So the recipe is: 
N 

a) Calculate g; x = /; x- 'f-/; xl N. 
j-1 

b) Calculate y u· using equation (7) above. 

c) Use a standard subroutine to solve the eigenvector equation (8) in order to find the eigen
vector corresponding to the largest eigenvalue. 

This procedure has a simple geometrical interpretation. If we regard a pin's frequency 
count as a point in an L-dimensional space, the eigenvector method solves the following 
geometrical problem: to find the line in this L-dimensional space for which the sum of the vari
ous squared distances of the points from the line is at a minimum. The sum of squared dis
tances is actually the quantity <I>; the position and direction of the line are determined by ax 
and b>-. Then one drops perpendiculars from each point to the line, and notes where the per
pendiculars hit the line. The positions of the hit points along the line are given by the values 
of the y1• 

If the N points (pin positions) separate cleanly into two groups in L-space, so will their 
projections along the line. We will consider a pin position ito fall into one class if the value of 
y1 is greater than average, and into the other class if y1 is less than average. At the same time it 
is possible to calculate a measure of the significance of this segregation by observing how 
closely clustered the points are. One simple way to do this is li.o scale the y 1 so they range in 
value from 0 to 1' and then to measure the root-mean-square deviation from the (scaled) 
mean. (The scaling is necessary because the method of generating y1 guarantees that the mean 
is 0 and the norm is 1). 
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An Improvement 

The possibility of segregating the pins on a particular wheel depends, as we have seen, on 
the fact that the randomizing effect of the other five wheels is not sufficient to wipe out the 
unevenness of the letter-frequency distribution of the input. Once the pins on one of the 
wheels have been segregated, we can use the information gained to reduce the randomizing 
effect and improve the sensitivity of the tests applied to the remaining wheels. Suppose we 
have segregated the pins on the first wheel and are about to attack the second. For each enci
phered letter, it is known whether it was encrypted with an active or inactive pin on the first 
wheel. Now we double the size of the alphabet by attaching to each letter an indication of its 
segregation set on the first wheel. Thus, for example, if the letter A is observed in the output 
it will be called Ao if it is associated with a pin position in one of the segregation sets of the first 
wheel, and A1 if it appears in the other. This technique in effect subtracts out the contribution 
of the first wheel and makes the calculations for the second wheel more reliable. It is true that 
there is some loss of information; by doubling the size of the alphabet we have halved the aver
age number of occurrences of each letter and rendered the distribution more subject to truly 
random perturbations. 

Of course, this procedure can be applied more than once; after the pins on two wheels 
have been segregated, the ciphertext alphabet can be quadrupled by marking each letter with 
one of the four possibilities for the associated pin positions on the two known wheels, and so 
on. 

The Pin Program 

The part of the decryption program that identifies pins operates according to the principles 
already described. It is iterative in the sense that it is willing to recalculate the pin segregation 
on a given wheel several times. The following example shows how this is useful. Suppose the 
pins on the first wheel, and then on the second have been segregated. Using the idea of 
alphabet-splitting described in the last section, it is. likely that the segregation of the first 
wheel's pins can be improved (made more nearly correct) if the calculation for the first wheel is 
repeated using the information gained from the segregation of the pins on the second wheel. 
The iteration is guided by an estimate of the correctness (significance) of the segregation on 
each wheel calculated from the appropriate eigenvector as described above. 

At each iteration, the program recalculates each wheel in turn. The four most significant 
wheels (other than the one being worked on) are used to generate a sixteen-fold splitting of the 
ciphertext alphabet. (The only reason for not using all five remaining wheels is that the 
amount of space required to handle all the alphabets would be excessive.) After each iteration 
over all six wheels, the sum of the significance measures is examined, and if it has increased 
since the last iteration, another iterati_on is performed; otherwise the pin settings are declared 
correct and the program moves on to the next stage. 

Identification of the Alphabets 

Once all the pins have been identified, it remains to solve the actual message and to 
determine the machine settings. Each ciphertext letter can be marked with a six-bit subscript 
according to the pattern of pin positions opposite the selector mechanism when the letter is 
enciphered. Each of the 64 possible subscripts uniquely determines one of the 26 possible 
Beaufort alphabets used to generate the ciphertext, and it is only necessary to determine which 
subscript designates which alphabet. 

The simplest idea that comes to mind is to observe that the letters enciphered with a par
ticular subscript have been subjected to simple substitution, so it should be possible just to 
match the output letter frequencies to each of the 26 alphabets and select the best match (based 
on some test), on the assumption that the input language was. say, English. The approach is 
attractive because it requires no assumptions whatever about the workings of the selector 
mechanism, and it actually does work, but it turns out that the combined effects of small sam
ple size (2048 characters divided by 64 subscripts gives only 32 letters per alphabet), and the 
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likelihood of a few errors in the pins to distort the situation, are enough to make a determina
tion by this method rather inaccurate. Our program actually does take this approach, and in the 
next section we show how the choice of alphabets is improved so as to make the output text 
more readable. 

The Lug Program 

In general, some of the 64 alphabets will be wrongly chosen. If most of the alphabets are 
correct, it will then be possible to make use of known characteristics of the selector mechanism 
to improve the results. In particular if only a few of the alphabets are incorrect, say no more 
than about 20% of them, then they can all be corrected. 

The selector mechanism has the property that if no pins are set, then the displacement is 
zero. Each of the 27 bars has either zero, one, or two lugs on it which are set. Therefore there 
are 22 possible configurations for a bar and we need only try tocount how many bars possess 
each configuration. The first step is to distinguish correctly which pins are set and which are 
not set, as this has not been correctly done up to now (and did not matter). For each of the six 
positions, we inspect each of the 32 pairs of displacements that differ only in the selected posi
tion. If this position tends generally to increase the displacement when its pin is set, then the 
alphabet is left alone; if it tends to decrease the displacement. then the settings in that position 
are reversed. Since there are 32 comparisons to be made, we make the determination on the 
basis of a majority vote. 

Next we choose a pair of positions, .and, keeping all other positions constant, there are 
four configurations of the two selected positions, namely, 00, 01, 10, and 11 (where O=off; 
I-on). If the four displacements are correct, then the function 

F(O, l)+F(l,O)-F(O,O)-F(l, 1) 

of the four displacements F(i,j) is the overlap between the two positions, i.e. the number of 
barS with their two lugs in these two positions. In fact we get 16 versions of this overlap and 
we let them vote; the most frequent version of the overlap is selected. The .process is repeated 
for each pair of positions. 

Next we compute for every position a tentative number of bars that have a lug only in 
that position, by using the overlaps just computed to correct each of the 32 relevant displace
ments. Again we let them vote and the most frequent result is chosen as the number of 
unshared bars at the current position. It doesn't matter how many bars there are with zero 
lugs, since they do not enter into the encryption process. 

Finally, we ignore the original displacements and re-create the displacements completely 
from scratch using the just-determined array of overlaps and the counts of unshared bars. 

Results 

The program was tested by using ciphertexts encrypted by a Hagelin machine with 30 
different internal settings. The settings were randomly chosen within the range of requirements 
believed to have been utilized by the Signal Corps during World War II. Only ten different 
cleartext passages were used, each one encrypted using three different internal settings. Each 
test was run several times, using initial sequences ranging in length from 1750 to 2750 charac
ters in length. Three levels of performance were observed. 

1) When the program made no headway, the output was gibberish. 

2) When the settings of the machine were broken in principle, the output was not easily 
readable but had sufficient patches of cleartext to be able to apply the methods of the 
Morris paper [1] and reconstruct the correct settings. 

3) The output was perfect or nearly so, with errors only every lO or 20 characters. (Pre-
cisely, no more than 2 pin errors). ' 

Of course classification 2) is a bit vague; it depends on how clever one is in pulling sense 
out of nonsense. An example of what we mean is given in the following few lines. This 
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example follows the convention adopted for the M-209 that blanks are represented by the letter 
'z'. The M-209 does not print the letter 'z' during decryption; a blank appears in its place. 

assumhng it therefore as am esuablished truth that 
uge several stater in base of disunionyor stch co 

mbinationt of tgem as might haqpen to be formedaou 
taof thd wreck og uhe henerak confedesady would be 
subjectatp thpse vibissitudet of pface amd war of 
fsiendshipaand enmit xithaeachaother whidh havfy 

falmen to the lpt ofyallaneighborioganatinns not u 

With a little imagination the text is readable at sight; more precisely, it is clear that the approxi
mately 75 correct characters needed to reconstruct the internal settings by the method of Morris 
[1) are easily available. 

The following table summarizes the results. 

length gibberish (%) readable (%) perfect (%) 

1500 97 0 3 
1750 77 13 10 
2000 53 20 27 
2250 23 3 73 
2500 17 0 83 
2750 0 0 100 

To some extent the table is pessimistic because two of the five messages decoded as "gibber
ish" when looking at 2500 characters were actually readable when only 2250 characters were 
used; so actually 90 percent of the 2500 character messages could be understood. Thus the 
amount of text required varies by a factor of about two, apparently depending on chance details 
of the machine settings and the nature of the cleartext. 

These results are for one particular version of the general method of attack and slightly 
different implementations could well perform better. No great amount of time was spent in try
ing to improve the results, and it is quite likely that they could be improved. The authors felt 
that once a program had been developed that was capable of reading and automatically produc
ing cleartext versions of encrypted messages of lengths less than 400 words, the point had been 
proved. 

It seems safe to say that any message over 1750 characters long (about 300 words) carries 
a substantial risk of being read, and that any message over about 2500 characters (about 420 
words) is almost sure to be readable. Messages of this length are somewhat longer than those 
that would be typical of front-line military traffic, but much, much shorter than diplomatic and 
peacetime military messages. Only one readable message is needed to determine the internal 
settings; when these are known, decryption of rather short messages using other keys is rather 
easy. Moreover, because digits and punctuation must be spelled out, the number of characters 
required for even short messages is inflated beyond what would be required for ordinary printed 
communication. Thus. one may say that use of this machine for messages much more lengthy 
than the traditional "attack at dawn" is unwise unless dawn is already at hand. The program 
takes about two minutes to produce a solution on a DEC PDP-11170. 
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