http://www.metzdowd.com/pipermail/cryptography/2008-October/014810.html

Bitcoin P2P e-cash paper

Satoshi Nakamoto satoshi at vistomail.com
Fri Oct 31 14:10:00 EDT 2008


I've been working on a new electronic cash system that's fully
peer-to-peer, with no trusted third party.

The paper is available at:
http://www.bitcoin.org/bitcoin.pdf

The main properties:
 Double-spending is prevented with a peer-to-peer network.
 No mint or other trusted parties.
 Participants can be anonymous.
 New coins are made from Hashcash style proof-of-work.
 The proof-of-work for new coin generation also powers the
    network to prevent double-spending.

Bitcoin: A Peer-to-Peer Electronic Cash System

Abstract.  A purely peer-to-peer version of electronic cash would
allow online payments to be sent directly from one party to another
without the burdens of going through a financial institution.
Digital signatures provide part of the solution, but the main
benefits are lost if a trusted party is still required to prevent
double-spending.  We propose a solution to the double-spending
problem using a peer-to-peer network.  The network timestamps
transactions by hashing them into an ongoing chain of hash-based
proof-of-work, forming a record that cannot be changed without
redoing the proof-of-work.  The longest chain not only serves as
proof of the sequence of events witnessed, but proof that it came
from the largest pool of CPU power.  As long as honest nodes control
the most CPU power on the network, they can generate the longest
chain and outpace any attackers.  The network itself requires
minimal structure.  Messages are broadcasted on a best effort basis,
and nodes can leave and rejoin the network at will, accepting the
longest proof-of-work chain as proof of what happened while they
were gone.

Full paper at:
http://www.bitcoin.org/bitcoin.pdf

Satoshi Nakamoto

---------------------------------------------------------------------
The Cryptography Mailing List
Unsubscribe by sending "unsubscribe cryptography" to majordomo at metzdowd.com



More information about the cryptography mailing list