
Cryptome

21 March 2010

Source:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.94.5861&rep=rep1&type=pdf

Related recent implementations:

http://cryptome.org/isp-spy/ibm-spy.pdf

http://cryptome.org/isp-spy/verint-spy.pdf

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.94.5861&rep=rep1&type=pdf
http://cryptome.org/isp-spy/ibm-spy.pdf
http://cryptome.org/isp-spy/verint-spy.pdf

 1

Using secure coprocessors for privacy preserving
collaborative data mining and analysis

Bishwaranjan Bhattacharjee,
Naoki Abe,

Kenneth Goldman
IBM T.J.Watson Research Center

{bhatta,nabe,kgoldman}

@us.ibm.com

Bianca Zadrozny,
Universidade Federal Fluminense

bianca@ic.uff.br

Chid Apte,
IBM T.J.Watson Research Center

apte@us.ibm.com

Vamsavardhana R. Chillakuru,
Marysabel del Carpio

IBM

{vamsic,marysabel}

@us.ibm.com

ABSTRACT

Secure coprocessors have traditionally been used as a keystone of
a security subsystem, eliminating the need to protect the rest of
the subsystem with physical security measures. With
technological advances and hardware miniaturization they have
become increasingly powerful. This opens up the possibility of
using them for non traditional use. This paper describes a solution
for privacy preserving data sharing and mining using
cryptographically secure but resource limited coprocessors. It uses
memory light data mining methodologies along with a light
weight database engine with federation capability, running on a
coprocessor. The data to be shared resides with the enterprises
that want to collaborate. This system will allow multiple
enterprises, which are generally not allowed to share data, to do so
solely for the purpose of detecting particular types of anomalies
and for generating alerts. We also present results from
experiments which demonstrate the value of such collaborations.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Data mining

General Terms

Algorithms, Design, Security, Legal Aspects

Keywords

Privacy, Data Mining, Federation, Collaboration.

1. INTRODUCTION
An issue that has gained importance recently is the ability to cope
with the contradictions between security and privacy on one hand
and the requirement to share data across multiple enterprises on
the other. This kind of collaboration helps in the detection of
relevant trends and anomalies in the data. The requirement to
collaborate is often mandated by legislations. For example in the

USA, the Patriot Act [1] requires banks to analyze customer
transaction data for anti-money laundering and other purposes. On
the other hand, the Graham-Leach-Bailey Act [2] prohibits, in
many cases, the sharing of data for any other purposes. This
requirement could even extend to interactions between two lines
of business (LOBs) in a company in some cases. Similarly in the
field of health care, doctors and insurance companies need to
protect the privacy of patient data, while the health care
community as a whole can gain if that data can be pooled and
analyzed for common good.

In this paper, we present a solution for privacy preserving data
sharing and mining for such application areas. This solution
allows the data to reside with the enterprises themselves and be
processed in a federated setup in secure but resource constrained
coprocessors like the IBM PCIXCC[3]. The transmission of data
to the coprocessors is encrypted and is thus protected from
eavesdroppers. Also, since the coprocessor is secure, the data
which is decrypted and processed inside is protected from those
sharing the data and any third party administering the solution.
Further the data can also be joined, mined and analyzed in its
original plain text. To facilitate mining in resource constrained
coprocessors, we have developed and embedded memory light
data mining methodologies. These provide the needed ability to
detect trends and anomalies in shared data sets. They are run on
data managed by a light weight database engine (like IBM
Cloudscape[4]) with secure federation extensions.

A possible application area is Anti Money Laundering (AML) in
an inter bank service center for due diligence. Money Laundering
generally involves money transfer from one account to another,
often spanning financial establishments. For this to be detected,
these financial establishments would have to collaborate and try to
determine suspicious patterns in the transactions. However, they
are also concerned about the privacy of their data. A solution for
sharing and mining of data while maintaining privacy would help
in these cases.

Another application area is credit rating in an intra bank service
center with multiple LOBs. Here we have two contradicting
imperatives, namely, analyzing the data from multiple LOBs to
know customers better and to keep in mind that there are
legislations which limit LOBs from sharing data depending on the
line of business.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Proceedings of the Second International Workshop on Data

Management on New Hardware (DaMoN 2006), June 25, 2006,
Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-466-9/06/25…$5.00.

 2

The current state of the art in this field involves joining and
mining over encrypted data on conventional machines. Examples
include [5],[6],[7]. Queries over encrypted data have limitations
for inequality joins, range queries and other operations. Methods
to overcome them (like order preserving encryption) don’t give
the level of protection needed [8]. Encryption also causes
problems for subsequent mining, since it generally does not
preserve classes of distributions over numerical fields. Further
there is no clear mechanism for fine grained access control of data
thus generated, although some like [5], have role based access
control for whole data sets.

In contrast, in this solution, the data is processed in plain text in
the secure coprocessors as well as in the data sources, and thus
does not have the limitations of the above scheme. Further, an
enterprise is given access to the results relevant to it. For example
in the case of banks sharing data for AML, a bank will come to
know of only those transactions deemed suspicious to which that
bank was a party and not all transactions in that category.

It should be noted that there is a crucial difference between our
approach and processing over plain text in a conventional
machine in a secure facility. The latter is used in [9]. This scheme
is feasible only when one entity is making its data available for
analysis. Here the entity modifies the results of queries to protect
privacy. However when two or more independent parties share
data, one has to trust the party administering the solution. This
trust often does not go well with the privacy and secrecy rules that
govern how sensitive information needs to be handled and thus
this scheme would not work in that scenario. Our solution does
not need the party administering the solution to be trusted and
would work in a hostile environment.

Another approach to be contrasted with ours is the approach to
privacy protection based on data perturbation. While this is an
intriguing idea that introduced the topic of privacy in data mining,
this approach comes with an intrinsic trade-off between predictive
accuracy and privacy protection [10]. Also if there is a need to
join data from multiple sources, data perturbation on the join
columns would make it very problematic.

Another relevant work is [11], which dealt with secure sharing of
data from multiple sources with access control on the IBM 4758
secure coprocessor. However in this case the data was in the form
of flat files and all application logic was hand coded including any
joins that needed to be done.

The rest of the paper is organized into the following sections. In
section 2 we describe the IBM PCIXCC processor and its current
and possible future usage. In section 3 we describe the
architecture of the proposed solution. In section 4 we describe the
light weight data mining methodologies which were developed. In
section 5 we describe the database issues that arose and needed to
be addressed. In section 6 we present experimental results which
demonstrate the value of the work and finally in section 7 we
provide concluding remarks and discuss future directions.

2. THE IBM PCIXCC PROCESSOR
The PCIXCC hardware is implemented in the form of a PCI-X
adaptor card, with a secure module containing all security-related
components. Figure 1 shows a photograph of the PCIXCC and
Figure 2 depicts a block diagram of the card that includes the
components in the secure module and those attached to the

motherboard. The module is designed to meet the stringent
security requirements of the FIPS 140-2 standard at its strongest
level - level 4[12]. The internal components include a processor
subsystem consisting of an IBM PowerPC 405GPr processor
operating at 266 MHz, with 64 MB of dynamic random-access
memory (DRAM) and 16 MB of flash-erasable programmable
read-only memory (flash EPROM) for persistent data storage.
Integrated peripheral devices on the processor chip include both
Ethernet and serial port interfaces. There is also a high speed
hardware cryptographic accelerator. Multiple PCIXCC cards can
be used in a parallel system to tackle a given problem together.

Figure 1: The PCIXCC

Figure 2: PCIXCC block diagram

The hardware cryptographic accelerator chip in the PCIXCC
provides fast hardware implementation of the essential
cryptographic algorithms used by the card. It supports the DES,
and TDES symmetric encryption algorithms and the SHA-1 and
MD5 secure hashing algorithms. In addition, the DES
implementation includes both single-DES and TDES MAC
support, conforming to ANSI X9.9 and ANSI X9.19. It also
incorporates a public-key unit with modular math functions that
are used to provide algorithms such as RSA.

The PowerPC 405GPr [25] used in the PCIXCC, is a low power
consuming, 32-bit RISC processor targeted at and quite popular in
embedded applications. Figure 3 shows a block diagram of the

 3

processor. It incorporates a PowerPC 405 processor core, 16KB
of separate Instruction and Data caches, 4KB on-chip memory, a
PCI interface, an SDRAM controller, a 64-bit on-chip
CoreConnect bus, a Fast Ethernet controller and other on-chip
peripheral support. The 405 CPU operates on instructions in a
five stage pipeline consisting of a fetch, decode, execute,
writeback and load write-back stage. Its low power consumption
of 0.72 W at 266 MHz translates to low heat produced. This is an
important design consideration since the PCIXCC is completely
encapsulated in a temper responding cover as can be seen in
Figure 1. And so heat dissipation is an issue.

Figure 3: PowerPC 405GPr functional block diagram�

The software stack on the PCIXCC is implemented as a layered
design with a bootstrap loader at the lowest level and an
application program at the highest level in the hierarchy. The
application program is loaded into the flash EPROM after a
security audit. The card uses an embedded Linux operating system
that provides a subset of the features normally found in desktop or
server Linux systems including shared library support, C and C++
run-time support, thread support and software floating-point
support. More details about the PCIXCC can be found in [3].

Traditionally these types of secure coprocessors have been used as
the keystone of a security sub-system, eliminating the need to
protect the rest of the sub-system with physical security measures.
For example, the PCIXCC is used in the IBM z990 mainframe for
secure key cryptography. However these types of secure
processors are becoming more and more powerful. Figure 4 shows
the hardware trends for IBM secure processors over the years.
Compared to its predecessor, the 4758 [13], the PCIXCC has 10
times more main memory, 2.5 times the processor clock speed,
approx 9 times the Dhrystone 2.1 MIPS rating and better external
connectivity via Ethernet. Further it runs a standard operating
system like Linux in contrast to the CP/Q that the 4758 runs.

It is to be noted that the PCIXCC is still underpowered compared
to current database servers. Floating point support is in software
emulation only. Despite these, the PCIXCC certainly has
characteristics which compare with a server node of yesteryears
like the thin2 node in an IBM SP2 [14]. The thin2 node in a SP2,
has been used in the past for TPCH benchmarks and commercial
database workloads in conjunction with DB2 Parallel Edition
[15]. It ran a 66 MHz POWER2 with an approximate Dhrystone
2.1 MIPS of 124, supported the AIX OS, anything from 64MB to
512MB of main memory and connection using Ethernet or optical

switch. In comparison, the PCIXCC runs on 266 MHz with an
approximate Dhrystone 2.1 MIPS of 404, supports 80MB of main
memory, Ethernet connections and a Linux OS.

1989 1996 2000 2003

Year

0

50

100

150

200

250

300

Clock (MHz) Memory (MB)

4 7 5 5
(8 0 1 8 6) 4 7 5 8

(8 0 4 8 6)

P C IX C C
(P P C 4 0 5 G P r)

4 7 5 8
(8 0 4 8 6)

Figure 4: IBM Secure Processor hardware trends

These factors open up the possibility of using the new secure
processors as semi independent processors for other applications.
Such applications would require the security this hardware
provides, would generate insights not available otherwise and
could live with query performance power which might not be state
of the art but is within the operating range for creating useful
applications. This is the area of exploration of this project and
solution.

3. ARCHITECTURE OF THE SOLUTION
Figure 5 and 6 give an outline of the solution. In our solution, the
secure coprocessors are the main processing units rather than
being slaved to a big server. They use the server to which they are
connected as a file server. One could have multiple secure
processors working in parallel to solve a given problem with one
or more of them acting as coordinators. The enterprises sharing
data would retain the data with them in relational tables, but are
expected to allow their transmission to the database server in the
secure processors in encrypted form. This is done using the
industry standard Secure Socket Layer (SSL) protocol [26]. At the
secure processor, this data will be decrypted, joined and processed
with data from other enterprises. The overall architecture is
basically a federated architecture with the secure processor being
the federator and the enterprises acting as the data sources. In our
current prototype we use one coprocessor but we believe that in
principle the architecture can be extended to multiple secure
processors working in parallel.

Enterprise 1 Enterprise N.

Data transfered in

encrypted form

using SSL

Encrypted
NFS mounted
file system

 Secure
Processor

Encrypted
NFS mounted
file system

 Secure
Processor

Encrypted
NFS mounted
file system

 Secure
Processor

Encrypted
NFS mounted
file system

 Secure
Processor

Encrypted
NFS mounted
file system

 Secure
Processor

��������

����� ����� ����� ����� �����

Figure 5: Proposed Solution Architecture

 4

The SSL protocol provides security with a private and reliable
connection. Symmetric cryptographic algorithms (e.g., DES [27])
are used for data encryption. The exact algorithm is decided
during the process of an initial handshake. Message transport
includes a message identity check using a keyed MAC. This is
computed using secure hash functions (e.g., SHA [28], MD5 [29]
etc). Most of the algorithms mentioned are supported in the
special cryptography accelerator in the secure processor. This will
help to significantly speed up the execution of the SSL protocol.

In our prototype, each table that is being shared by the enterprises
is represented by a Virtual Table Interface (VTI) at the secure
processor. Queries on the secure processor are run on these VTIs.
The VTIs in turn make Secure JDBC calls to connect to the
enterprises, get the data in encrypted form, decrypt it and pass it
on to the query processing functionality of the Cloudscape
database server. More details can be found in section 5.

Once the data is available, it has to be mined to determine
patterns. Generic data mining algorithms tend to be memory
intensive and using them would be difficult on the resource
constrained processor. A key challenge we have undertaken in
this project is the development of light weight data mining
algorithms. They take much less memory to run and are very
easily parallelizable. More details can be found in section 4.

For access control of the mined data and its results, we plan to use
a version of the Matchbox access control mechanism described in
[11]. Here, information providers, users and third parties use
digitally co-signed contracts that enforce the sharing restrictions.
These access control mechanisms would be over and above what
is available at a database level.

Also the database engine as well as the mining application might
generate temporary data which will have to be stored locally on
the file system. This data needs to be secured. To this end we
propose to enhance the file system to an encrypted file system. To
speed up encryption/decryption of contents, it will tap the special
cryptographic chip in the secure processor. These file systems can
be NFS mounted into the secure processor from a file server
connected via the PCI bus. Note that any index created on local
tables on this file system would be created on plaintext and its
pages encrypted before storing. It would not be an index on
encrypted data.

Enterprise 1 Enterprise N

.

Data transfered in encrypted form using SSL

Encrypted NFS

mounted file

system

 IBM PCIXCC Secure Processor

 Light Weight Data Mining

 Federation Using VTIs

Memory Light

 DB2

 Matchbox Access Control

Secure

 JDBC

SecureProxy

 @ firewall

firewall

firewall
firewall

Unsecure communication

Figure 6: Solution Architecture for Current Prototype

4. MEMORY LIGHT DATA MINING
The memory light data mining [16] we embedded in our secure
federated mining system consist of two functionalities: cost-
sensitive classification and outlier detection. Here, we describe
the cost-sensitive classification algorithm we employed, as well as
empirical evaluation of the method’s performance on a benchmark
data set.

4.1 Cost-sensitive classification

Cost-sensitive learning refers to the problem of learning
classifiers in which non-uniform costs are associated with
different types of misclassifications. For many data mining
problems of practical importance, it is essential to take this aspect
into account. Examples of such applications include credit rating,
fraud detection, churn analysis, and targeted marketing. For
example, frauds are so rare that straightforward application of
classification for fraud detection can result in a classifier that
always predicts the most common class (non-fraud), but when
they occur, frauds are a magnitude more costly and thus it is
important to classify them correctly.

A formulation of the cost sensitive learning problem is by the use
of a cost matrix C(i,j,x). This specifies how much cost is incurred
when misclassifying a label j as i depending on an instance (or
example) x [17]. The goal of a cost-sensitive learning method is to
minimize the expected cost. For binary labels, C(i,j,x), can be
reduced to a simpler formulation in terms of an importance
number per example [18]. This is possible by associating a single
number indicating the importance of an example (x,j), given by
C(1,j,x) - C(0,j,x). This conversion allows us to formulate the
problem, in which we assume that examples are drawn
independently from a distribution D with domain X × Y × C
where X is the input space to a classifier, Y is a (binary) output
space and C is the set of possible importance weights (extra cost)
associated with mislabeling that example. The goal is to learn a
classifier h: X�Y which minimizes the expected cost, Ex,y,c � D[c
�I(h(x) � y)] given training data of the form: (x,y,c) , where I(�) is
the indicator function that has value 1 in case its argument is true
and 0 otherwise.

A basic folk theorem, which was proven in [17] states that if we
have examples drawn from the distribution modified with
multiplicative factors proportional to cost: D’(x,y,c) � c �D(x,y,c)
then optimal error rate classifiers for D’ are optimal cost
minimizers for data drawn from D .

Proposition

 For all distributions, D, there exists a constant N = Ex,y,c ~ D[c]
such that for all classifiers, h: Ex,y,c ~ D’ [I(h(x) � y)] = (1/N) Ex,y,c ~

D [c � I(h(x) � y)], where we used D’ to denote D’(x,y,c) �
(c/(Ex,y,c ~ D[c]))�D(x,y,c).

4.2 A Memory-Light Method of Cost-sensitive

Learning

The ``folk'' theorem mentioned above suggests an obvious method
of converting from one distribution of examples to another to
obtain a cost-sensitive learner by re-weighting the example
distribution. Since straightforward sampling methods such as
resampling with replacement do not work well in this case, we

 5

make use of a sampling scheme called rejection sampling [19].
This allows us to draw samples independently from the
distribution D’, given samples drawn independently from D. In
rejection sampling, samples from D’ are drawn by first drawing
samples from D, and then keeping the sample with probability
proportional to D’/D . Here, we have D’/D � c , so we accept an
example with probability c/Z , where Z is some constant chosen
so that max (x,y,c)\in S c � Z . Note that rejection sampling results in
a set S' which is generally smaller than S .

Using cost-proportionate rejection sampling, just introduced, to
create a set S' and then using a learning algorithm A(S') is
guaranteed to produce an approximately cost-minimizing
classifier, as long as the learning algorithm A achieves
approximate minimization of classification error.

From the same original training sample, different runs of cost-
proportionate rejection sampling will produce different training
samples. Furthermore, the fact that rejection sampling produces
very small samples means that the computational time required for
learning a classifier is generally much smaller.

We take advantage of these properties to devise an ensemble
learning algorithm called “costing” based on repeatedly
performing rejection sampling from S to produce multiple sample
sets S1',...,Sm', and then learning a classifier for each set. The
output classifier is the average over all learned classifiers.

Costing(Learner A , Sample Set S , count t , normalization
constant Z)

1. For i=1 to t do

 1.1. S'= rejection sample from S with probability c/Z.

 1.2. Let hi � A(S')

2. Output h(x)= sign(�i=1
t hi (x))

Figure 7: The ``Costing'' algorithm.

Note that despite the extra computational cost of averaging, the
overall computational time of costing is generally much smaller
than for a learning algorithm using sample set S (with or without
weights). In particular, this is the case if the component learning
algorithm being employed has a running time that is superlinear in
the number of examples, which is generally the case.

Also a major advantage with this scheme is that the iterations
could run in parallel on a set of processing units. Each unit could
independently learn a subset of classifiers from t and then these
classifiers could be averaged at one processing unit.

4.3 Empirical evaluation using a benchmark

We show empirical results using a real-world dataset from the
direct marketing domain used in the KDD-98 competition [20]. It
contains data on people who have made donations in the past to a
particular charity, and the decision-making task is to choose
which donors to mail solicitations for donation, with the goal of
maximizing the total profit obtained in the mailing campaign.
The dataset is divided in a fixed way into a training set and a test
set, each of size approximately 96,000.

Figure 8 shows the results of applying costing on the KDD-98
dataset, using Quinlan’s C4.5 decision tree algorithm [21] as the
base learner. The graph plots the profits achieved by the obtained

mailing rules, as a function of the number of iterations. In this
experiment, each resampled set has only about 600 examples,
because the importance of the examples varies from 0.68 to
199.32 and there are few ``important'' examples. With t=200, our
method yields profits around 15,000 dollars, which is exceptional
performance for this dataset. (For example, the KDD cup 98
competition achieved 14,712 dollars [22].)

KDD cup 98 winner

Figure 8: Profits obtained by Costing applied on C4.5, as a

function of the number of sampling iterations.

These results are particularly remarkable from the point of view of
reduction in memory requirement: only hundreds of examples
need to be processed in iteration, as compared to the original data
size of approximately 100 thousand. Even with this drastic
reduction in memory requirement, costing manages to achieve
state-of-the-art predictive performance.

5. DATABASE CHALLENGES
The current prototype is centered on Cloudscape as the database
engine [4] running in the secure processor. Cloudscape is IBM’s
Java based small footprint database server and is used as a data
federator in this case. To get Cloudscape working on the
PCIXCC, the software stack was first enhanced to support a Java
Virtual Machine called J9 on which Cloudscape could run.

Cloudscape provides a construct for federation called Virtual
Table Interface (VTI). These are used to access external data
sources. Internally the VTIs make Java Data Base Connectivity
(JDBC) calls to connect and get data from these data sources. For
secure federation, additional functionality had to be built into the
VTIs to handle SSL connections with the data sources. This
functionality is known as Secure JDBC. It was developed as part
of the project on the Java Common Client (JCC) driver of the
DB2 family. This was done using the IBM Java Secure Socket
Extension (JSSE) library on top of the Java Runtime Environment
(JRE).

Some of the database server engines which might be used at the
data stores do not support secure JDBC or secure Client/Server
communications. An example is DB2 LUW V8. To tackle this, we
developed a proxy server which could be used between the secure
processor and the actual data server. This proxy could sit on the
firewall of the enterprise and would be able to manage
communication between the secure processor and the data server.
Figure 6 shows a possible configuration with these proxy servers.

Once these infrastructure issues were taken care of, the key
challenge from the database point of view is how to efficiently run

 6

the database operations while maintaining security and privacy.
This is an instance of data federation where the data sources
cannot talk to each other directly and the federator is resource
constrained. Since the data sources controlled by the enterprises
would be in plaintext, all conventional database optimization
techniques would be applicable there including indexes,
materialized views etc.

From the federator, as much of the computation and predicates as
possible should be pushed down to the data sources. Equality
joins could be best handled by a variation of Sort Merge join. In
Sort Merge join the data would come in sorted on the join
columns to the federator from the data sources. The resource
constrained federator would just need to join the sorted streams.
Inequality joins can be handled by a Nested Loop join variation
where one extracts tuples from the outer and uses the join column
values to generate queries for the inner data source. For both join
types one needs to keep privacy and security issues in mind while
implementing the join algorithms.

For the memory light data mining application, two database issues
are important. The first is sampling. This could be pushed down
to the data sources. The most relevant sampling technique is Key
Value Sampling. This is not supported on some commercial
database engines. In place of that one could materialize the join
columns in the coprocessor and generate queries driven by
samples from it.

Another issue is exploiting multiple secure processors. One could
divide the data mining iterations among the processors for
parallelism as explained in Sec. 5. But in general, a query could
be processed by multiple processors by assuming a logical hash
partition of a table residing on the data sources is going to be
processed by a processor. For example, with n secure processors,
one could assume records with join column jn, will be processed
at node k if k = (jn%n). This could be implemented by additional
predicates on the VTIs. The resulting mini joins could then be
fused and processed at a coordinator secure coprocessor.

6. EXPERIMENTAL EVALUATION:

CREDIT RATING IN A FEDERATED

SETUP
To demonstrate the effectiveness of our solution, we ran an
experiment on our prototype using the credit rating data set from
the PKDD-99 Discovery Challenge [23]. It has relational tables
that contain customer data on banking transactions and credit card
transactions, as well as loan default information. We set up our
experiments so that the loan data is stored in a database on one
machine, whereas the banking and credit card data resides on
another machine connected through a network as shown in Figure
9. This setup corresponds to the real world scenario in a company
with two lines of businesses, namely banking and loan
departments, own their respective customer data in separate
computing environments. Regulations may restrict them from
freely sharing their data, except for the purpose of due diligence,
namely in making sure that the banks know the customers well
enough to avoid awarding loans to high risk customers.

To this end, using secure federation, we first join data from
multiple databases for various accounts of an individual. Then we
convert the information to a feature vector. An example feature
vector would be <sum of loans outstanding, sum of current

account balances, current income>. On this, we apply memory
light data mining to generate the credit risk rating rules.

 D atabase 1 : LO B 1

D a tabase 2 : LO B 2

 Figure 9: The PKDD-99 Discover Challenge data set in a

federated set up.

The data mining code issued 8 different types of queries on the
VTIs. Seven of the query types had two or multi way equality
joins on data owned separately by the departments. The breakup
of time spent in the queries is shown in Figure 10. For the large,
multi table join queries (Q1, Q2, Q3), the overhead of
encryption/decryption during SSL was ~ 21% and for the single
table query (Q8) it was about ~70%. This is minor compared to
the overheads of the scheme using commutative encryption
mentioned in [7]. Using the hardware cryptographic accelerator in
the PCIXCC would bring down this overhead significantly. Also,
all the queries could be very easily parallelized to run on multiple
secure coprocessors using the schemes described in section 6.

.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Secure JDBC Overhead Query Processing

Figure 10: Breakup of time in the various query sets

The results of the experiment as indicated in Figure 11 are quite
intriguing. As a baseline we note that awarding a loan to every
customer results in loss of about CZK 2,000,000. If we use a
state-of-the-art, cost-insensitive classification method of applying
bagging over C4.5 [21, 24] to obtain rules for awarding loans, it
results in an improved loss of about CZK 500,000. In contrast
when we used our memory-light data mining method (costing)
implemented in a secure federated environment, its rules achieved
a profit of CZK 600,000. This is remarkable, especially since the
comparison method, i.e. bagging over C4.5, is not memory-light,
requiring over a hundred times more sample size in an iteration.

Decision Making Method Profit/Loss (In CZK)

�����������	
���
� ��

������������������

�����������	������ ��

����������������

�
������	���������� ���������������������

Figure 11: Performance comparison for the experiment

 7

The predictive performance of our method is due to our ability to
join the separate data from the loan and the banking departments.
This is visible in one of the output decision trees shown in figure
12. This decision tree is obtained by combining the accounts and
credit card information (e.g. features like min_balance6 and credit
card) from the banking and credit card departments, and the past
loan default information from the loan department.

�����	
������
�
����

����
����

�����	
������
�
���

�

��������
��
�
��
����
�
����
����

�

��������
��
�
������

�

����
����

�

��������
��
�
����

�
����
����

�

��������
��
�
���

�

�

 ���!
�
���"
#�
$%&"'(
�
)��*+
����
����

�

�

 ���!
�
���"
,
$%&"'(
�

�

�

�

-.�!
�
���%
#�
(/%&&'"
�
����
����

�

�

�

-.�!
�
���%
,
(/%&&'"
�
)��*+
����
����

Figure 12: A sample decision tree reached in the experiment

7. CONCLUSION
Secure processors are becoming increasingly powerful with better
hardware miniaturization. This opens up the possibility to use
them for non traditional uses. In this paper we have proposed a
privacy preserving data mining and sharing architecture based on
secure processors which will allow multiple entities to collaborate
and gain insights from their shared data. We have discussed some
of the key challenges and ways to tackle them. We have also
demonstrated the usefulness of the architecture with an example.
Future enhancements include building the framework to tap
multiple secure processors; memory light, privacy preserving, join
methods for inequality joins; pushing down sampling to the data
sources by queries and validation in a customer scenario.

8. REFERENCES
[1] Patriot Act, http://thomas.loc.gov/cgi-

bin/bdquery/z?d107:h.r.03162.

[2] Graham-Leach-Bailey Act,http://www.ftc.gov/privacy/glbact.

[3] T.W. Arnold, L.P. Van Doorn,”The IBM PCIXCC : A new
cryptographic coprocessor for the IBM eServer”, IBM
Journal of Research and Development, Vol 48, May 2004

[4] Cloudscape, http://www-
306.ibm.com/software/data/cloudscape.

[5] D.P. Hansen, C. Daly, K. Harrap, J. Jacquet, M. O’Dwyer, C.
Pang, J. Ryan-Brown, “Health Data Integration (HDI):
Research Software to Commercial Product”, Australian
Software Engineering Conference , 2005

[6] Entity Analytics Solutions,
http://www.ibm.com/software/data/db2/eas

[7] R. Agrawal, D. Asonov, R. Srikant, “Enabling Sovereign
Information Sharing Using Web Services”, Proceedings of
the SIGMOD 2004

[8] M. Kantarcioglu, C. Clifton, “Security issues in querying
encrypted data”, Technical Report TR-04-013,Purdue
University, 2004

[9] Privacy Preserving Analytics, CSIRO Annual Report 2004-5
and CSIRO “PPA for Health Data” brochure

[10] C. Clifton, W. Du, M. Atallah, “ITR: Distributed Data
Mining to Protect Information Privacy”, Purdue University

[11] K. Goldman, E. Valdez: ”Matchbox: Secure Data Sharing”,
IEEE Internet Computing, 8(6) 2004, pp 18-24.

[12] FIPS Standards, http://csrc.nist.gov/cryptval/140-2.htm

[13] IBM 4758, http://www-
.ibm.com/security/cryptocards/pcicc/overview.shtml

[14] T. Agarwala, J.L.Martin, J.H.Mirza, D.C.Sadler, D.M.Dias,
M. Snir,”SP2 system architecture”, IBM System Journal,
Volume 34, No. 2, 1995

[15] C.K. Baru, G. Fecteau, A. Goyal, H. Hsiao, A. Jhingran, S.
Padmanabhan, G.P. Copeland, W.G. Wilson,”DB2 Parallel
Edition”, IBM Systems Journal, Vol. 34, No. 2, 1995

[16] N. Abe, C. Apte, B. Bhattacharjee, K. Goldman, J. Langford,
B. Zadrozny, "Sampling Approach to Resource Light Data
Mining", SIAM Workshop on Data Mining in Resource
Constrained Environments 2004

[17] B. Zadrozny and C. Elkan, “Learning and making decisions
when costs and probabilities are both unknown”,
Proceedings of the Seventh International Conference on
Knowledge Discovery and Data Mining, pp 204-213, 2001.

[18] B. Zadrozny, J. Langford and N. Abe, “Cost-sensitive
learning by cost-proportionate example weighting”,
Proceedings of the Third IEEE International Conference on
Data Mining, pp 435-442, 2003

[19] J. von Neumann, “Various techniques used in connection
with random digits”, Applied Mathematics Series, 12, pp 36-
38, National Bureau of Standards, 1951.

[20] S.S. Bay,“UCI KDD Archive”, Department of Information
and Computer Sciences, University of California, Irvine,
http://kdd.ics.uci.edu/, 2000.

[21] J. Quinlan, “C4.5: Programs for Machine Learning”, Morgan
Kaufmann, San Mateo, CA, 1993

[22] KDD-cup-98 Results,
http://www.kdnuggets.com/meetings/kdd98/kdd-cup-98-
results.html.

[23] PKDD’99 Discovery Challenge: A collaborative effort in
knowledge discovery from databases,
http://lisp.vse.cz/pkdd99/chall.htm.

[24] L. Breiman, Bagging Predictors, Machine Learning, 24,
pp123-140, 1996

[25] PPC 405GPr Embedded Processor Data Sheet, AMCC, 2005
[26] A. Freier, P. Karlton, P. Kocher, “The SSL Protocol, Version

3.0”,Transport layer Security Working Group, 1996,
http://wp.netscape.com/eng/ssl3

[27] ANSI X3.106, “American National Standard for Information
Systems-Data Link Encryption”, American National
Standards Institute, 1983

[28] R. Rivest, “The MD5 Message Digest Algorithm”, April
1992

[29] FIPS Standards, http://www.itl.nist.gov/fipspubs/fip180-
1.htm

