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ABSTRACT 

Secure coprocessors have traditionally been used as a keystone of 
a security subsystem, eliminating the need to protect the rest of 
the subsystem with physical security measures. With 
technological advances and hardware miniaturization they have 
become increasingly powerful. This opens up the possibility of 
using them for non traditional use. This paper describes a solution 
for privacy preserving data sharing and mining using 
cryptographically secure but resource limited coprocessors. It uses 
memory light data mining methodologies along with a light 
weight database engine with federation capability, running on a 
coprocessor. The data to be shared resides with the enterprises 
that want to collaborate. This system will allow multiple 
enterprises, which are generally not allowed to share data, to do so 
solely for the purpose of detecting particular types of anomalies 
and for generating alerts. We also present results from 
experiments which demonstrate the value of such collaborations.   

Categories and Subject Descriptors 

H.2.8 [Database Applications]: Data mining  

General Terms 

Algorithms, Design, Security, Legal Aspects 

Keywords 

Privacy, Data Mining, Federation, Collaboration. 

1. INTRODUCTION 
An issue that has gained importance recently is the ability to cope 
with the contradictions between security and privacy on one hand 
and the requirement to share data across multiple enterprises on 
the other. This kind of collaboration helps in the detection of 
relevant trends and anomalies in the data. The requirement to 
collaborate is often mandated by legislations. For example in the 

USA, the Patriot Act [1] requires banks to analyze customer 
transaction data for anti-money laundering and other purposes. On 
the other hand, the Graham-Leach-Bailey Act [2] prohibits, in 
many cases, the sharing of data for any other purposes. This 
requirement could even extend to interactions between two lines 
of business (LOBs) in a company in some cases. Similarly in the 
field of health care, doctors and insurance companies need to 
protect the privacy of patient data, while the health care 
community as a whole can gain if that data can be pooled and 
analyzed for common good. 

In this paper, we present a solution for privacy preserving data 
sharing and mining for such application areas. This solution 
allows the data to reside with the enterprises themselves and be 
processed in a federated setup in secure but resource constrained 
coprocessors like the IBM PCIXCC[3]. The transmission of data 
to the coprocessors is encrypted and is thus protected from 
eavesdroppers. Also, since the coprocessor is secure, the data 
which is decrypted and processed inside is protected from those 
sharing the data and any third party administering the solution. 
Further the data can also be joined, mined and analyzed in its 
original plain text. To facilitate mining in resource constrained 
coprocessors, we have developed and embedded memory light 
data mining methodologies. These provide the needed ability to 
detect trends and anomalies in shared data sets. They are run on 
data managed by a light weight database engine (like IBM 
Cloudscape[4]) with secure federation extensions.   

A possible application area is Anti Money Laundering (AML) in 
an inter bank service center for due diligence. Money Laundering 
generally involves money transfer from one account to another, 
often spanning financial establishments.  For this to be detected, 
these financial establishments would have to collaborate and try to 
determine suspicious patterns in the transactions. However, they 
are also concerned about the privacy of their data.  A solution for 
sharing and mining of data while maintaining privacy would help 
in these cases. 

Another application area is credit rating in an intra bank service 
center with multiple LOBs. Here we have two contradicting 
imperatives, namely, analyzing the data from multiple LOBs to 
know customers better and to keep in mind that there are 
legislations which limit LOBs from sharing data depending on the 
line of business.  
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The current state of the art in this field involves joining and 
mining over encrypted data on conventional machines. Examples 
include [5],[6],[7]. Queries over encrypted data have limitations 
for inequality joins, range queries and other operations. Methods 
to overcome them (like order preserving encryption) don’t give 
the level of protection needed [8]. Encryption also causes 
problems for subsequent mining, since it generally does not 
preserve classes of distributions over numerical fields.  Further 
there is no clear mechanism for fine grained access control of data 
thus generated, although some like [5], have role based access 
control for whole data sets.  

In contrast, in this solution, the data is processed in plain text in 
the secure coprocessors as well as in the data sources, and thus 
does not have the limitations of the above scheme. Further, an 
enterprise is given access to the results relevant to it. For example 
in the case of banks sharing data for AML, a bank will come to 
know of only those transactions deemed suspicious to which that 
bank was a party and not all transactions in that category.   

It should be noted that there is a crucial difference between our 
approach and processing over plain text in a conventional 
machine in a secure facility. The latter is used in [9]. This scheme 
is feasible only when one entity is making its data available for 
analysis. Here the entity modifies the results of queries to protect 
privacy. However when two or more independent parties share   
data, one has to trust the party administering the solution. This 
trust often does not go well with the privacy and secrecy rules that 
govern how sensitive information needs to be handled and thus 
this scheme would not work in that scenario.  Our solution does 
not need the party administering the solution to be trusted and 
would work in a hostile environment. 

Another approach to be contrasted with ours is the approach to 
privacy protection based on data perturbation. While this is an 
intriguing idea that introduced the topic of privacy in data mining, 
this approach comes with an intrinsic trade-off between predictive 
accuracy and privacy protection [10]. Also if there is a need to 
join data from multiple sources, data perturbation on the join 
columns would make it very problematic.  

Another relevant work is [11], which dealt with secure sharing of 
data from multiple sources with access control on the IBM 4758 
secure coprocessor. However in this case the data was in the form 
of flat files and all application logic was hand coded including any 
joins that needed to be done. 

The rest of the paper is organized into the following sections. In 
section 2 we describe the IBM PCIXCC processor and its current 
and possible future usage. In section 3 we describe the 
architecture of the proposed solution. In section 4 we describe the 
light weight data mining methodologies which were developed. In 
section 5 we describe the database issues that arose and needed to 
be addressed. In section 6 we present experimental results which 
demonstrate the value of the work and finally in section 7 we 
provide concluding remarks and discuss future directions.  

2. THE IBM PCIXCC PROCESSOR 
The PCIXCC hardware is implemented in the form of a PCI-X 
adaptor card, with a secure module containing all security-related 
components. Figure 1 shows a photograph of the PCIXCC and 
Figure 2 depicts a block diagram of the card that includes the 
components in the secure module and those attached to the 

motherboard. The module is designed to meet the stringent 
security requirements of the FIPS 140-2 standard at its strongest 
level - level 4[12]. The internal components include a processor 
subsystem consisting of an IBM PowerPC 405GPr processor 
operating at 266 MHz, with 64 MB of dynamic random-access 
memory (DRAM) and 16 MB of flash-erasable programmable 
read-only memory (flash EPROM) for persistent data storage. 
Integrated peripheral devices on the processor chip include both 
Ethernet and serial port interfaces. There is also a high speed 
hardware cryptographic accelerator. Multiple PCIXCC cards can 
be used in a parallel system to tackle a given problem together. 

 

Figure 1: The PCIXCC 

 

Figure 2: PCIXCC block diagram  

The hardware cryptographic accelerator chip in the PCIXCC 
provides fast hardware implementation of the essential 
cryptographic algorithms used by the card. It supports the DES, 
and TDES symmetric encryption algorithms and the SHA-1 and 
MD5 secure hashing algorithms. In addition, the DES 
implementation includes both single-DES and TDES MAC 
support, conforming to ANSI X9.9 and ANSI X9.19.  It also 
incorporates a public-key unit with modular math functions that 
are used to provide algorithms such as RSA.  

The PowerPC 405GPr [25] used in the PCIXCC, is a low power 
consuming, 32-bit RISC processor targeted at and quite popular in 
embedded applications. Figure 3 shows a block diagram of the 
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processor.  It incorporates a PowerPC 405 processor core, 16KB 
of separate Instruction and Data caches, 4KB on-chip memory, a 
PCI interface, an SDRAM controller, a 64-bit on-chip 
CoreConnect bus, a Fast Ethernet controller and other on-chip 
peripheral support.  The 405 CPU operates on instructions in a 
five stage pipeline consisting of a fetch, decode, execute, 
writeback and load write-back stage.  Its low power consumption 
of 0.72 W at 266 MHz translates to low heat produced.  This is an 
important design consideration since the PCIXCC is completely 
encapsulated in a temper responding cover as can be seen in 
Figure 1.  And so heat dissipation is an issue.  

 

Figure 3: PowerPC 405GPr functional block diagram�

The software stack on the PCIXCC is implemented as a layered 
design with a bootstrap loader at the lowest level and an 
application program at the highest level in the hierarchy. The 
application program is loaded into the flash EPROM after a 
security audit. The card uses an embedded Linux operating system 
that provides a subset of the features normally found in desktop or 
server Linux systems including shared library support, C and C++ 
run-time support, thread support and software floating-point 
support. More details about the PCIXCC can be found in [3]. 

Traditionally these types of secure coprocessors have been used as 
the keystone of a security sub-system, eliminating the need to 
protect the rest of the sub-system with physical security measures. 
For example, the PCIXCC is used in the IBM z990 mainframe for 
secure key cryptography. However these types of secure 
processors are becoming more and more powerful. Figure 4 shows 
the hardware trends for IBM secure processors over the years. 
Compared to its predecessor, the 4758 [13], the PCIXCC has 10 
times more main memory, 2.5 times the processor clock speed, 
approx 9 times the Dhrystone 2.1 MIPS rating and better external 
connectivity via Ethernet. Further it runs a standard operating 
system like Linux in contrast to the CP/Q that the 4758 runs.   

It is to be noted that the PCIXCC is still underpowered compared 
to current database servers. Floating point support is in software 
emulation only. Despite these, the PCIXCC certainly has 
characteristics which compare with a server node of yesteryears 
like the thin2 node in an IBM SP2 [14]. The thin2 node in a SP2, 
has been used in the past for TPCH benchmarks and commercial 
database workloads in conjunction with DB2 Parallel Edition 
[15]. It ran a 66 MHz POWER2  with an approximate Dhrystone 
2.1 MIPS of 124, supported the AIX OS, anything from 64MB to 
512MB of main memory and connection using Ethernet or optical 

switch. In comparison, the PCIXCC runs on 266 MHz with an 
approximate Dhrystone 2.1 MIPS of 404, supports 80MB of main 
memory, Ethernet connections and a Linux OS. 
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Figure 4: IBM Secure Processor hardware trends 

These factors open up the possibility of using the new secure 
processors as semi independent processors for other applications. 
Such applications would require the security this hardware 
provides, would generate insights not available otherwise and 
could live with query performance power which might not be state 
of the art but is within the operating range for creating useful 
applications. This is the area of exploration of this project and 
solution. 

3. ARCHITECTURE OF THE SOLUTION 
Figure 5 and 6 give an outline of the solution.  In our solution, the 
secure coprocessors are the main processing units rather than 
being slaved to a big server. They use the server to which they are 
connected as a file server.  One could have multiple secure 
processors working in parallel to solve a given problem with one 
or more of them acting as coordinators. The enterprises sharing 
data would retain the data with them in relational tables, but are 
expected to allow their transmission to the database server in the 
secure processors in encrypted form. This is done using the 
industry standard Secure Socket Layer (SSL) protocol [26]. At the 
secure processor, this data will be decrypted, joined and processed 
with data from other enterprises. The overall architecture is 
basically a federated architecture with the secure processor being 
the federator and the enterprises acting as the data sources. In our 
current prototype we use one coprocessor but we believe that in 
principle the architecture can be extended to multiple secure 
processors working in parallel. 
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file system
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 Secure 
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��������
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Figure 5: Proposed Solution Architecture 
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The SSL protocol provides security with a private and reliable 
connection. Symmetric cryptographic algorithms (e.g., DES [27]) 
are used for data encryption. The exact algorithm is decided 
during the process of an initial handshake. Message transport 
includes a message identity check using a keyed MAC.  This is 
computed using secure hash functions (e.g., SHA [28], MD5 [29] 
etc).  Most of the algorithms mentioned are supported in the 
special cryptography accelerator in the secure processor. This will 
help to significantly speed up the execution of the SSL protocol.   

In our prototype, each table that is being shared by the enterprises 
is represented by a Virtual Table Interface (VTI) at the secure 
processor. Queries on the secure processor are run on these VTIs.  
The VTIs in turn make Secure JDBC calls to connect to the 
enterprises, get the data in encrypted form, decrypt it and pass it 
on to the query processing functionality of the Cloudscape 
database server. More details can be found in section 5.    

Once the data is available, it has to be mined to determine 
patterns. Generic data mining algorithms tend to be memory 
intensive and using them would be difficult on the resource 
constrained processor.  A key challenge we have undertaken in 
this project is the development of light weight data mining 
algorithms. They take much less memory to run and are very 
easily parallelizable. More details can be found in section 4. 

For access control of the mined data and its results, we plan to use 
a version of the Matchbox access control mechanism described in 
[11].  Here, information providers, users and third parties use 
digitally co-signed contracts that enforce the sharing restrictions. 
These access control mechanisms would be over and above what 
is available at a database level.  

Also the database engine as well as the mining application might 
generate temporary data which will have to be stored locally on 
the file system. This data needs to be secured.  To this end we 
propose to enhance the file system to an encrypted file system.  To 
speed up encryption/decryption of contents, it will tap the special 
cryptographic chip in the secure processor. These file systems can 
be NFS mounted into the secure processor from a file server 
connected via the PCI bus.  Note that any index created on local 
tables on this file system would be created on plaintext and its 
pages encrypted before storing.  It would not be an index on 
encrypted data. 

 

Enterprise 1 Enterprise N

. . . . . . .

Data transfered in encrypted form using SSL

Encrypted NFS 

mounted file 

system

          IBM PCIXCC Secure Processor

        Light Weight Data Mining

        Federation Using VTIs

Memory Light

       DB2

           Matchbox Access Control

Secure 

 JDBC 

SecureProxy 

  @ firewall

firewall

firewall
firewall

Unsecure communication

Figure 6: Solution Architecture for Current Prototype  

4. MEMORY LIGHT DATA MINING  
The memory light data mining [16] we embedded in our secure 
federated mining system consist of two functionalities: cost-
sensitive classification and outlier detection. Here, we describe 
the cost-sensitive classification algorithm we employed, as well as 
empirical evaluation of the method’s performance on a benchmark 
data set.  

4.1 Cost-sensitive classification  

Cost-sensitive learning refers to the problem of learning 
classifiers in which non-uniform costs are associated with 
different types of misclassifications.  For many data mining 
problems of practical importance, it is essential to take this aspect 
into account.  Examples of such applications include credit rating, 
fraud detection, churn analysis, and targeted marketing.  For 
example, frauds are so rare that straightforward application of 
classification for fraud detection can result in a classifier that 
always predicts the most common class (non-fraud), but when 
they occur, frauds are a magnitude more costly and thus it is 
important to classify them correctly.  

A formulation of the cost sensitive learning problem is by the use 
of a cost matrix C(i,j,x). This specifies how much cost is incurred 
when misclassifying a label j as i depending on an instance (or 
example) x [17]. The goal of a cost-sensitive learning method is to 
minimize the expected cost.  For binary labels, C(i,j,x), can be 
reduced to a simpler formulation in terms of an importance 
number per example [18]. This is possible by associating a single 
number indicating the importance of an example (x,j), given by 
C(1,j,x) - C(0,j,x). This conversion allows us to formulate the 
problem, in which we assume that examples are drawn 
independently from a distribution  D  with domain  X × Y × C  
where  X  is the input space to a classifier,   Y  is a (binary) output 
space and  C is the set of possible importance weights (extra cost) 
associated with mislabeling that example.  The goal is to learn a 
classifier  h: X�Y  which minimizes the expected cost, Ex,y,c � D[c 
�I(h(x) �  y)] given training data of the form:  (x,y,c) , where I(�) is 
the indicator function that has value 1 in case its argument is true 
and 0 otherwise. 

A basic folk theorem, which was proven in [17] states that if we 
have examples drawn from the distribution modified with 
multiplicative factors proportional to cost: D’(x,y,c) � c �D(x,y,c) 
then optimal error rate classifiers for D’ are optimal cost 
minimizers for data drawn from  D . 

Proposition  

    For all distributions, D, there exists a constant N = Ex,y,c ~ D[c] 
such that for all classifiers, h:  Ex,y,c ~ D’ [I(h(x) � y)] = (1/N) Ex,y,c ~ 

D [c � I(h(x) � y)], where we used D’ to denote D’(x,y,c) � 
(c/(Ex,y,c ~ D[c]))�D(x,y,c).  

4.2 A Memory-Light Method of Cost-sensitive 

Learning 

The ``folk'' theorem mentioned above suggests an obvious method 
of converting from one distribution of examples to another to 
obtain a cost-sensitive learner by re-weighting the example 
distribution. Since straightforward sampling methods such as 
resampling with replacement do not work well in this case, we 
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make use of a sampling scheme called rejection sampling [19]. 
This allows us to draw samples independently from the 
distribution D’, given samples drawn independently from D.  In 
rejection sampling, samples from  D’  are drawn by first drawing 
samples from  D, and then keeping the sample with probability 
proportional to  D’/D .  Here, we have  D’/D � c , so we accept an 
example with probability  c/Z , where  Z  is some constant chosen 
so that  max (x,y,c)\in S c � Z .  Note that rejection sampling results in 
a set  S'  which is generally smaller than  S .  

Using cost-proportionate rejection sampling,  just introduced, to 
create a set S' and then using a learning algorithm A(S') is 
guaranteed to produce an  approximately cost-minimizing 
classifier, as long as the learning algorithm  A  achieves 
approximate minimization of classification error. 

From the same original training sample, different runs of cost-
proportionate rejection sampling will produce different training 
samples. Furthermore, the fact that rejection sampling produces 
very small samples means that the computational time required for 
learning a classifier is generally much smaller. 

We take advantage of these properties to devise an ensemble 
learning algorithm  called “costing” based on repeatedly 
performing rejection sampling from S to produce multiple sample 
sets S1',...,Sm', and then learning a classifier for each set. The 
output classifier is the average over all learned classifiers. 

Costing(Learner  A , Sample Set  S , count  t , normalization 
constant  Z)  

1. For  i=1  to  t  do  

  1.1.  S'=  rejection sample from  S  with probability c/Z.  

  1.2. Let  hi � A(S')  

2. Output  h(x)= sign( �i=1
t hi (x))  

Figure 7: The ``Costing'' algorithm.  

Note that despite the extra computational cost of averaging, the 
overall computational time of costing is generally much smaller 
than for a learning algorithm using sample set S (with or without 
weights). In particular, this is the case if the component learning 
algorithm being employed has a running time that is superlinear in 
the number of examples, which is generally the case.  

Also a major advantage with this scheme is that the iterations 
could run in parallel on a set of processing units. Each unit could 
independently learn a subset of classifiers from t and then these 
classifiers could be averaged at one processing unit.  

4.3  Empirical evaluation using a benchmark  

We show empirical results using a real-world dataset from the 
direct marketing domain used in the KDD-98 competition [20].  It 
contains data on people who have made donations in the past to a 
particular charity, and the decision-making task is to choose 
which donors to mail solicitations for donation, with the goal of 
maximizing the total profit obtained in the mailing campaign.  
The dataset is divided in a fixed way into a training set and a test 
set, each of size approximately 96,000. 

Figure 8 shows the results of applying costing on the KDD-98 
dataset, using Quinlan’s C4.5 decision tree algorithm [21] as the 
base learner. The graph plots the profits achieved by the obtained 

mailing rules, as a function of the number of iterations.  In this 
experiment, each resampled set has only about 600 examples, 
because the importance of the examples varies from 0.68 to 
199.32 and there are few ``important'' examples. With t=200, our 
method yields profits around 15,000 dollars, which is exceptional 
performance for this dataset. (For example, the KDD cup 98 
competition achieved 14,712 dollars [22].)  

KDD cup 98 winner

Figure 8:  Profits obtained by Costing applied on C4.5, as a 

function of the number of sampling iterations.  

These results are particularly remarkable from the point of view of 
reduction in memory requirement: only hundreds of examples 
need to be processed in iteration, as compared to the original data 
size of approximately 100 thousand.  Even with this drastic 
reduction in memory requirement, costing manages to achieve 
state-of-the-art predictive performance.  

5. DATABASE CHALLENGES  
The current prototype is centered on Cloudscape as the database 
engine [4] running in the secure processor. Cloudscape is IBM’s 
Java based small footprint database server and is used as a data 
federator in this case.  To get Cloudscape working on the 
PCIXCC, the software stack was first enhanced to support a Java 
Virtual Machine called J9 on which Cloudscape could run.  

Cloudscape provides a construct for federation called Virtual 
Table Interface (VTI). These are used to access external data 
sources. Internally the VTIs make Java Data Base Connectivity 
(JDBC) calls to connect and get data from these data sources.  For 
secure federation, additional functionality had to be built into the 
VTIs to handle SSL connections with the data sources.  This 
functionality is known as Secure JDBC. It was developed as part 
of the project on the Java Common Client (JCC) driver of the 
DB2 family. This was done using the IBM Java Secure Socket 
Extension (JSSE) library on top of the Java Runtime Environment 
(JRE).  

Some of the database server engines which might be used at the 
data stores do not support secure JDBC or secure Client/Server 
communications. An example is DB2 LUW V8. To tackle this, we 
developed a proxy server which could be used between the secure 
processor and the actual data server. This proxy could sit on the 
firewall of the enterprise and would be able to manage 
communication between the secure processor and the data server. 
Figure 6 shows a possible configuration with these proxy servers. 

Once these infrastructure issues were taken care of, the key 
challenge from the database point of view is how to efficiently run 
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the database operations while maintaining security and privacy.  
This is an instance of data federation where the data sources 
cannot talk to each other directly and the federator is resource 
constrained. Since the data sources controlled by the enterprises 
would be in plaintext, all conventional database optimization 
techniques would be applicable there including indexes, 
materialized views etc.   

From the federator, as much of the computation and predicates as 
possible should be pushed down to the data sources. Equality 
joins could be best handled by a variation of Sort Merge join. In 
Sort Merge join the data would come in sorted on the join 
columns to the federator from the data sources.  The   resource 
constrained federator would just need to join the sorted streams. 
Inequality joins can be handled by a Nested Loop join variation 
where one extracts tuples from the outer and uses the join column 
values to generate queries for the inner data source. For both join 
types one needs to keep privacy and security issues in mind while 
implementing the join algorithms.  

For the memory light data mining application, two database issues 
are important. The first is sampling. This could be pushed down 
to the data sources.  The most relevant sampling technique is Key 
Value Sampling. This is not supported on some commercial 
database engines. In place of that one could materialize the join 
columns in the coprocessor and generate queries driven by 
samples from it. 

Another issue is exploiting multiple secure processors. One could 
divide the data mining iterations among the processors for 
parallelism as explained in Sec. 5.  But in general, a query could 
be processed by multiple processors by assuming a logical hash 
partition of a table residing on the data sources is going to be 
processed by a processor. For example, with n secure processors, 
one could assume records with join column jn, will be processed 
at node k  if  k = (jn%n). This could be implemented by additional 
predicates on the VTIs.   The resulting mini joins could then be 
fused and processed at a coordinator secure coprocessor.   

6. EXPERIMENTAL EVALUATION:  

CREDIT RATING IN A FEDERATED 

SETUP 
To demonstrate the effectiveness of our solution, we ran an 
experiment on our prototype using the credit rating data set from 
the PKDD-99 Discovery Challenge [23].  It has relational tables 
that contain customer data on banking transactions and credit card 
transactions, as well as loan default information.  We set up our 
experiments so that the loan data is stored in a database on one 
machine, whereas the banking and credit card data resides on 
another machine connected through a network as shown in Figure 
9. This setup corresponds to the real world scenario in a company 
with two lines of businesses, namely banking and loan 
departments, own their respective customer data in separate 
computing environments. Regulations may restrict them from 
freely sharing their data, except for the purpose of due diligence, 
namely in making sure that the banks know the customers well 
enough to avoid awarding loans to high risk customers.  

To this end, using secure federation, we first join data from 
multiple databases for various accounts of an individual. Then we 
convert the information to a feature vector. An example feature 
vector would be <sum of loans outstanding, sum of current 

account balances, current income>.  On this, we apply memory 
light data mining to generate the credit risk rating rules. 

 
 D atabase  1  : LO B 1

D a tabase  2  : LO B  2

 

   Figure 9: The PKDD-99 Discover Challenge data set in a 

federated set up. 

The data mining code issued 8 different types of queries on the 
VTIs.  Seven of the query types had two or multi way equality 
joins on data owned separately by the departments.  The breakup 
of time spent in the queries is shown in Figure 10.  For the large, 
multi table join queries (Q1, Q2, Q3), the overhead of 
encryption/decryption during SSL was ~ 21% and for the single 
table query (Q8)   it was about ~70%.  This is minor compared to 
the overheads of the scheme using commutative encryption 
mentioned in [7]. Using the hardware cryptographic accelerator in 
the PCIXCC would bring down this overhead significantly.  Also, 
all the queries could be very easily parallelized to run on multiple 
secure coprocessors using the schemes described in section 6. 
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Figure 10:  Breakup of time in the various query sets 

The results of the experiment as indicated in Figure 11 are quite 
intriguing.  As a baseline we note that awarding a loan to every 
customer results in loss of about CZK 2,000,000. If we use a 
state-of-the-art, cost-insensitive classification method of applying 
bagging over C4.5 [21, 24] to obtain rules for awarding loans, it 
results in an improved loss of about CZK 500,000.  In contrast 
when we used our memory-light data mining method (costing) 
implemented in a secure federated environment, its rules achieved 
a profit of CZK 600,000.  This is remarkable, especially since the 
comparison method, i.e. bagging over C4.5, is not memory-light, 
requiring over a hundred times more sample size in an iteration.  

 

Decision Making Method  Profit/Loss  (In CZK) 

�����������	
���
� ��

������������������

�����������	������ ��

����������������

�
������	���������� ���������������������

Figure 11:  Performance comparison for the experiment 
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The predictive performance of our method is due to our ability to 
join the separate data from the loan and the banking departments. 
This is visible in one of the output decision trees shown in figure 
12. This decision tree is obtained by combining the accounts and 
credit card information (e.g. features like min_balance6 and credit 
card) from the banking and credit card departments, and the past 
loan default information  from the loan department. 
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Figure 12: A sample decision tree reached in the experiment 

7. CONCLUSION  
Secure processors are becoming increasingly powerful with better 
hardware miniaturization. This opens up the possibility to use 
them for non traditional uses. In this paper we have proposed a 
privacy preserving data mining and sharing architecture based on 
secure processors which will allow multiple entities to collaborate 
and gain insights from their shared data. We have discussed some 
of the key challenges and ways to tackle them. We have also 
demonstrated the usefulness of the architecture with an example. 
Future enhancements include building the framework to tap 
multiple secure processors; memory light, privacy preserving, join 
methods for inequality joins; pushing down sampling to the data 
sources by queries and validation in a customer scenario. 
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