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Abstract

We present a theoretical model for breaking various cryptographic schemes by taking advantage of
random hardware faults. We show how to attack certain implementations of RSA and Rabin signatures.
We also show how various authentication protocols, such as Fiat-Shamir and Schnorr, can be broken using
hardware faults.

1 Introduction

Direct attacks on the famous RSA cryptosystem seem to require that one factor the modulus. Therefore, it is
interesting to ask whether there are attacks that avoid this. The answer is yes: the first was the recent attack
based on timing [2]. It was observed that a few bits could be obtained from the time that operations took. This
would allow one to break the system without factoring.

We have a new type of attack that also avoids directly factoring the modulus. We essentially use the fact that
from time to time the hardware performing the computations may introduce errors. There are several models
that may enable a malicious adversary to collect and possibly cause faults. We give a high level description:

Transient faults Consider a certification authority (CA) that is constantly generating certificates and sending
them out to clients. Due to random transient hardware faults the CA might generate faulty certificates
on rare occasions. If a faulty certificate is ever sent to a client, that client will be able to break the CA’s
system and generate fake certificates. Note that on various systems, a client is alerted when a faulty
certificate is received.

Latent faults Latent faults are hardware or software bugs that are difficult to catch. As an example, consider
the Intel floating point division bug. Such bugs may also cause a CA to generate faulty certificates from
time to time.

Induced faults When an adversary has physical access to a device she may try to purposely induce hardware
faults. For instance, one may attempt to attack a tamper-resistant device by deliberately causing it to
malfunction. The erroneous values computed by the device enable the adversary to extract the secret
stored on it.
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We consider a fault model in which faults are transient. That is, the hardware fault only affects the current
data, but not subsequent data. For instance, a bit stored in a register might spontaneously flip. Or a certain
gate may spontaneously produce an incorrect value. Note that the change is totally silent: the hardware and the
system have no clue that the change has taken place. We assume that the probability of such faults is small so
that only a small number of them occur during the computation.

Our attack is effective against several cryptographic schemes such as the RSA system and Rabin signa-
tures [5]. The attack also applies to several authentication schemes such as Fiat-Shamir [3] and Schnorr [6]. As
expected, the attack itself depends on the exact implementation of each of these schemes. For an implementation
of RSA based on the chinese remainder theorem we show that given one faulty version of an RSA signature
one can efficiently factor the RSA modulus with high probability. The same approach can also be used to break
Rabin’s signature scheme. Hardware faults can be used to break other implementations of the RSA system
though many more faulty values are required.

In Section 4 we show that the Fiat-Shamir identification scheme [3] is vulnerable to our hardware faults
attack. Given a few faulty values an adversary can completely recover the private key of the party trying to
authenticate itself. In Section 5 we obtain the same result for Schnorr’s identification protocol [6]. Both schemes
are suitable for use on smart cards.

It is important to emphasize that the attack described in this paper is currently theoretical. It has not yet been
experimented with in the lab. The purpose of these results is to demonstrate the danger that hardware faults
pose to various cryptographic protocols. The conclusion one may draw from these results is the importance of
verifying the correctness of a computation for security reasons. For instance, a smart card using RSA to
generate signatures should check that the correct signature has indeed been produced. The same applies to a
certification authority using RSA to generate certificates. In protocols where the device has to keep some state
(such as in identification protocols) our results show the importance of protecting the registers storing the state
information by adding error detection bits (e.g. CRC). We discuss these points in more detail at the end of the
paper.

2 Chinese remainder based implementations

2.1 The RSA system

In this section we consider a system using RSA to generate signatures in a naive way. Let N = pq be a product
of two large prime integers. To sign a message x using RSA the system computes xs (mod N ) where s is a
secret exponent. Here the message x is assumed to be an integer in the range 1 to N (usually one first hashes the
message to an integer in that range). The security of the system relies on the fact that factoring the modulusN is
hard. In fact, if the factors of N are known then one can easily break the system, i.e., sign arbitrary documents
without prior knowledge of the secret exponent.

The computationally expensive part of signing using RSA is the modular exponentiation of the input x. For
efficiency some implementations exponentiate as follows: using repeated squaring they first compute E1 = xs

(mod p) and E2 = xs (mod q). They then use the Chinese remainder theorem to compute the signature
E = xs (mod N ). We explain this last step in more detail. Let a; b be two precomputed integers satisfying:(

a � 1 (mod p)
a � 0 (mod q)

and

(
b � 0 (mod p)
b � 1 (mod q)

Such integers always exist and can be easily found given p and q. It now follows that

E = aE1 + bE2 (mod N )
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Thus, the signatureE is computed by forming a linear combination ofE1 andE2. This exponentiationalgorithm
is more efficient than using repeated squaring modulo N since the numbers involved are smaller.

2.2 RSA’s vulnerability to hardware faults

Our simple attack on RSA signatures using the above implementation enables us to factor the modulusN . Once
the modulus is factored the system is considered to be broken. Our attack is based on obtaining two signatures
of the same message. One signature is the correct one; the other is a faulty signature. At the end of the section
we describe an improvement due to Arjen Lenstra [4] that factors the modulus using just a single faulty signature
of a known message M .

Let M be a message and let E = M s mod N be the correct signature of the message. Let Ê be a faulty
signature. Recall that E and Ê are computed as

E = aE1 + bE2 (mod N ) and Ê = aÊ1 + bÊ2 (mod N )

Suppose that by some miraculous event a hardware fault occurs only during the computation of one of Ê1; Ê2.
WLOG, suppose a hardware fault occurs during the computation of Ê1 but no fault occurs during the computation
of Ê2, i.e. Ê2 = E2. Observe that

E � Ê = (aE1 + bE2)� (aÊ1 + bÊ2) = a(E1 � ê1)

Now, if E1 � Ê1 is not divisible by p then

gcd(E � Ê; N ) = gcd(a(E1 � Ê1); N ) = q

and so N can be easily factored. Notice that if the factors of N are originally chosen at random then it is
extremely unlikely that p divides E1 � Ê1. After all, E1 � Ê1 can have at most logN factors.

To summarize, using one faulty signature and one correct one the modulus used in the RSA system can
be efficiently factored. We note that the above attack works under a very general fault model. It makes no
difference what type of fault or how many faults occur in the computation of E1. All we rely on is the fact that
faults occur in the computation modulo only one of the primes.

Arjen Lenstra [4] observed that, in fact, one faulty signature of a known message M is sufficient. Let
E = M s mod N . Let Ê be a faulty signature obtained under the same fault as above, that is E � Ê mod q but
E 6� Ê mod p. It now follows that

gcd(M � Êe; N ) = q

where e is the public exponent used to verify the signature, i.e. Ee = M mod N . Thus, using the fact that
the message M is known it became possible to factor the modulus given only one faulty signature. This is
of interest since most implementations of RSA signatures avoid signing the same message twice using some
padding technique. Lenstra’s improvement shows that as long as the entire signed message is known, even such
RSA/CRT systems are vulnerable to the hardware faults attack.

The attack on chinese remainder theorem implementations applies to other cryptosystems as well. For
instance, the same attack applies to Rabin’s signature scheme [5]. A Rabin signature of a number x mod N

is the modular square root of x. The extraction of square roots modulo a composite makes use of CRT and is
therefore vulnerable to the attack described above.
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3 Register faults

>From here on our attacks are based on a specific fault model which we call register faults. Consider
a tamper-resistant device. We view the device as composed of some circuitry and a small amount of memory.
The circuitry is responsible for performing the arithmetic operations. The memory (registers plus a small on
chip RAM) is used to store temporary values.

Our fault model assumes that the circuitry contains no faults. On the other hand, a value stored in a register
may be corrupted. With low probability, one (or a few) of the bits of the value stored in some register may flip.
We will need this event to occur with sufficiently low probability so that there is some likelihood of the fault
occurring exactly once throughout the computation. As before, all errors are transient and the hardware has no
clue that the change has taken place.

4 The Fiat-Shamir identification scheme

The Fiat-Shamir [3] identification scheme is an efficient method enabling one party, Alice, to authenticate it’s
identity to another party, Bob. They first agree on an n-bit modulus N which is a product of two large primes
and a security parameter t. Alice’s secret key is a set of invertible elements s1; : : : ; st mod N . Her public key
is the square of these numbers v1 = s2

1; : : : ; vt = s2
t (mod N ). To authenticate herself to Bob they engage in

the following protocol:

1. Alice picks a random r and sends r2 mod N to Bob.

2. Bob picks a random subset S � f1; : : : ; tg and sends the subset to Alice.

3. Alice computes y = r �
Q

i2S si mod N and sends y to Bob.

4. Bob verifies Alice’s identity by checking that y2 = r2 �
Q

i2S vi (mod N ) .

We show that by using hardware faults one can recover Alice’s secret keys s1; : : : ; st. For the purpose
of authentication one may implement Alice’s role in a tamper resistant device. The device contains the secret
information and is used by Alice to authenticate herself to various parties. We show that using register faults
one can extract the secret s from the device. We use register faults that occur while the device is waiting for a
challenge from the outside world.

Theorem 4.1 Given t faulty runs of the protocol one can recover the secret s with
probability at least half using O(n2t) arithmetic operations.

Proof Suppose that due to a miraculous fault, one of the bits of the register holding the value r is flipped
while the device is waiting for Bob to send it the set S. In this case, Bob receives the correct value r2 mod N ,
however y is computed incorrectly by the device. Due to the fault, the device outputs:

ŷ = (r + E) �
Y
i2S

si

where E is the value added to the register as a result of the fault. Observe that since Bob knows the valueQ
i2S vi he can compute

(r + E)2 =
ŷ2Q
i2S vi

(mod N )
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Since E is a binary number of low weight (i.e. a power of 2 or a sum of a few powers of 2), Bob can guess this
value. If E is guessed correctly then Bob can recover r since

(r + E)2 � r2 = 2E � r + E2 (mod N )

and this linear equation in r can be easily solved. Bob’s ability to discover the secret random value r is the main
observation which enables him to break the system. Using the value of r and E Bob can compute:

Y
i2S

si =
ŷ

r + E
(mod N )

To summarize, Bob can compute the value
Q

i2S si by guessing the fault value E and using the formula:

Y
i2S

si =
2E � ŷ

ŷ2Q
i2S

vi
� r2 + E2

(mod N )

We now argue that Bob can verify that the fault value E was guessed correctly. Let T be the hypothesized
value of

Q
i2S si obtained from the above formula. To verify this value Bob interacts with the device under

normal conditions so that the device works properly. The point is that Bob uses the same set S which he used
when the device generated the fault. The device will now correctly produce two values (r0)2 and y0 = r0 �

Q
i2S si.

Now Bob simply checks that (y0)2 = (r0)2 � T2. Usually there is only one low-weight value E satisfying the
relation. In such a case Bob correctly obtains the value of

Q
i2S si.

Even in the unlikely event of two values E;E0 satisfying the relation, Bob can still break the system.
Observe that the relation (y0)2 = (r0)2 �T2 implies that T2 =

Q
i2S s

2
i . If there are two low-weight values E;E0

generating two values T; T 0; T 6= T 0 satisfying the relation then clearly T2 = (T 0)2 mod N . If T 6= �T 0 mod N

then Bob can already factor N . Suppose T = �T 0 mod N . Then since one of T or T 0 must equal
Q

i2S si (one
of E;E0 is the correct fault value) it follows that Bob now knows

Q
i2S si mod N up to sign. For our purposes

this is good enough.

The testing method above enables Bob to check whether a certain value of E is the correct one. Since E
is a low binary weight integer Bob can try all possible values for E. For instance, if we assume the fault is a
single bit flip then there are only n possible values for E (since in this case E = 2k for some 1 � k � n). By
testing all possible values for E until the correct one is found Bob can compute

Q
i2S si.

Observe that once Bob has a method for computing
Q

i2S si for various sets S of his choice, he can easily
find s1; : : : ; st. The simplest approach is for Bob to construct

Q
i2S si for singleton sets, i.e. sets S containing a

single element. If S = fkg then
Q

i2S si = sk and hence the si’s are immediately found. However, it is possible
that the device might refuse to accept singleton sets S. In this case Bob can still find the si’s as follows. We
represent a setS � f1; : : : ; tg by its characteristic vector U 2 f0; 1gt, i.e. Ui = 1 if i 2 S andUi = 0 otherwise.
Bob picks sets S1; : : : ; St such that the corresponding set of characteristic vectors U1; : : : ; Ut form a t� t full
rank matrix over Z2. Bob then uses the method described above to construct the values Ti =

Q
i2Si

si for each
of the sets S1; : : : ; St. To determine s1 Bob constructs elements a1; : : : ; at 2 f0; 1g such that

a1U1 + : : : + atUt = (1; 0; 0; : : : ; 0) (mod 2)

These elements can be efficiently constructed since the vectors U1; : : : ; Ut are linearly independent over Z2.
When all computations are done over the integers we obtain that

a1U1 + : : : + atUt = (2b1 + 1; 2b2; 2b3; : : : ; 2bt)
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for some known integers b1; : : : ; bt. Bob can now compute s1 using the formula

s1 =
T
a1
1 � � �T

at
t

v
b1
1 � � �v

bt
t

(mod N )

Recall that the values vi = s2
i (mod N ) are publicly available. The values s2; : : : ; st can be constructed using

the same procedure.

The procedure above made use of t faults and took O(n2t) arithmetic operations. 2

We emphasize that the faults occur while the device is waiting for a challenge from the outside world.
Consequently, the adversary knows at exactly what time the register faults must be induced.

4.1 A modification of the Fiat-Shamir scheme

One may suspect that our attack on the Fiat-Shamir scheme is successful due to the fact that the scheme is based
on squaring. Recall that Bob was able to compute the random value r chosen by the device since he was given
r2 and (r +E)2 where E is the fault value. One may try to modify the scheme and use higher powers. We show
that our techniques can be used to break this modified scheme as well.

The modified scheme uses some publicly known exponente instead of squaring. As before, Alice’s secret key
is a set of invertible elements s1; : : : ; st mod N . Her public key the set of numbers v1 = se1; : : : ; vt = set mod N .
To authenticate herself to Bob they engage in the following protocol:

1. Alice picks a random r and sends re mod N to Bob.

2. Bob picks a random subset S � f1; : : : ; tg and sends the subset to Alice.

3. Alice computes y = r �
Q

i2S si mod N and sends y to Bob.

4. Bob verifies Alice’s identity by checking that ye = re �
Q

i2S vi (mod N ) .

When e = 2 this protocol reduces to the original Fiat-Shamir protocol. Using the methods described in the
previous section Bob can obtain the values L1 = re mod N and L2 = (r + E)e mod N . As before we may
assume that Bob guessed the value of E correctly. Given these two values Bob can recover r by observing that
r is a common root of the two polynomials

xe = L1 (mod N ) and (x + E)e = L2 (mod N )

Furthermore, r is very likely to be the only common root of the two polynomials. Consequently, when the
exponent e is polynomial in n Bob can recover r by computing the GCD of the two polynomials. Once Bob
has a method for computing r he can recover the secrets s1; : : : ; st as discussed in the previous section.

We note that the system can be broken even when a large exponent e < N is used, by using a much larger
collection of faults. We give the details in the final version of the paper.

5 Attacking Schnorr’s identification scheme

The security of Schnorr’s identification scheme [6] is based on the hardness of computing discrete log modulo
a prime. Alice and Bob first agree on a prime p and a generator g of Z�

p . Alice chooses a secret integer s
and publishes y = gs mod p as her public key. To authenticate herself to Bob, Alice engages in the following
protocol:
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1. Alice picks a random integer r 2 [0; p) and sends z = gr mod p to Bob.

2. Bob picks a random integer t 2 [0; T ] and sends t to Alice. Here T < p is some upper bound chosen
ahead of time.

3. Alice sends u = r + t � s mod p� 1 to Bob.

4. Bob verifies that gu = z � yt mod p.

For the purpose of authentication one may implement Alice’s role in a tamper resistant device. The device
contains the secret information s and is used by Alice to authenticate herself to various parties. We show that
using register faults one can extract the secret s from the device.

Theorem 5.1 Let p be an n-bit prime. Given n logn faulty runs of the protocol
one can recover the secret s with probability at least 1

2 using O(n2) arith-
metic operations.

Proof Bob wishing to extract the secret information stored in the device first picks a random challenge t.
The same challenge will be used in all invocations of the protocol. Since the device cannot possibly store all
challenges given to it thus far, it cannot possibly know that Bob is always providing the same challenge t. The
attack will enable Bob to determine the value t � s mod p from which the secret value s can be easily found. For
simplicity we set x = ts mod p and assume that gx mod p is known to Bob.

suppose that due to a miraculous fault, one of the bits of the register holding the value r is flipped while
the device is waiting for Bob to send it the challenge t. More precisely, when the third phase of the protocol is
executed the device finds r̂ = r+2i in the register holding r. Consequently, the device will output û = r̂+x mod p.
Bob can determine the value of i (the fault position) by trying all possible values i = 0; : : : ; n until an i satisfying

gû = g2i

grgx (mod p)

is found. Assuming a single bit flip, there is exactly one such i. The above identity proves to Bob that r̂ = r + 2i

showing that the i’th bit of r flipped from a 0 to a 1. Consequently, Bob now knows that indeed that i’th bit of
r must be 0. Similar logic can be used to handle the case where r̂ = r� 2i. In this case bob can deduce that the
i’th bit of r is 1.

More abstractly, Bob is givenx+r(1); : : : ; x+r(k) mod p for random values r(1); : : : ; r(k) (recall k = n logn).
Furthermore, Bob knows the value of some bit of each of r(1); : : : ; r(k). We claim that from this information
Bob can recover x in time O(n2). We assume the faults occur at uniformly and independently chosen locations
in the register r. It follows that with probability at least 3

4 a fault will occur in every bit position of the register

r. In other words, for every 1 � i � n there exists an r(i) among r(1); : : : ; r(k) such that the i’th bit of r(i) is
known to Bob (we regard the first bit as the LSB).

To recover x Bob first guesses the log 8n most significant bits of x. Later we show that Bob can verify
whether his guess is correct. Bob tries all possible log 8n bit strings until the correct one is found. Let X be the
integer which matches x on the most significant log 8n bits and is zero on all other bits. For now we assume that
Bob correctly guessed the value of X . Bob recovers the rest of x starting with the LSB. Inductively suppose
Bob already knows bits xi�1 : : :x2x1 of x (Initially i = 1). Let Y =

Pi�1
j=1 2jxj . To determine bit xi Bob uses

r(i), of which he knows the i’th bit and the value of x + r(i). Let b be the i’th bit of r(i). Then

xi = b� i’th bit(x + r(i) � Y �X mod p� 1)

assuming no wrap around, i.e., x + r(i)� Y �X < p� 1. Since x�X < p=8n wrap around will occur only if
r(i) > (1 � 1

8n )p. Since the r’s are independently and uniformly chosen in the range [0; p) the probability that

this doesn’t happen in all n iterations of the algorithm is more than 3
4 .
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To summarize we see that once X is guessed correctly the algorithm runs in linear time and outputs x with
probability at least 1

2 . (The reason for the 1
2 is that both all bits of r should be “covered” by faults and all ri

should not be too large. Both events are satisfied with probability at least 1
2 .) Of course, once a candidate x is

found it can be easily verified using the public data. There are O(n) possible values for X and hence the total
running time of the algorithm is O(n2). 2

We note that the attack also works in the case of multiple bit flips of the register r. As long as the number
of bit flips is constant, their exact location can be found and used by Bob. We also note that the faults we use
occur while the device is waiting for a challenge from the outside world. Consequently, the adversary knows at
exactly what time the faults should be induced.

6 Breaking other implementations of RSA

In Section 2.1 we observed that CRT based implementations of RSA can be easily broken in the presence of
hardware faults. In this section we show that using register faults it is possible to break other implementations
of RSA as well. Let N be n-bit RSA composite and s a secret exponent. The exponentiation function
x �! xs mod N can be computed using either one of the following two algorithms (we regard bit one as the
LSB and bit n as the MSB):

� Algorithm I

init y  x ; z  1.

main For k = 1; : : : ; n.
If k’th bit of s is 1 then z  z � y (mod N ).
y  y2 (mod N ).

Output z.

� Algorithm II

init z  x.

main For k = n down to 1.
If k’th bit of s is 1 then z  z2 � x (mod N ).
Otherwise, z  z2 (mod N ).

Output z.

For both algorithms given several faulty values one can recover the secret exponent in polynomial time.
Here by faulty values we mean values obtained in the presence of register faults. The attack only uses erroneous
signatures of randomly chosen messages; the attacker need not obtain the correct signature of any of the
messages. Furthermore, an attacker need not obtain multiple signatures of the same message. The following
result was the starting point of our research on fault based cryptanalysis:

Theorem 6.1 With probability at least 1
2, the secret exponent s can be extracted

from a device implementing the first exponentiation algorithm by collecting
(n=m)logn faults and O(2m � n4) arithmetic steps, for any 1 � m � n.

Proof We use the following type of faults: let M 2 ZN be a message to be signed. Suppose that at a single
random point during the computation of M s mod N a register fault occurs. That is, at a random point in the
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computation one of the bits of the register z is flipped. We denote the resulting erroneous signature by Ê. We
intend to show that an ensemble of such erroneous signatures enables one to recover the secret exponent s. Even
if other types of faulty signatures are added to the ensemble, they do not confuse our algorithm.

Let l = (n=m)logn and let M1; : : : ;Ml 2 ZN be a set of arbitrary messages. Set Ei = M s
i mod N to be

the correct signature of Mi. Let Êi be an erroneous signature of Mi. A register fault occurs at exactly one
point during the computation of Êi. Let ki be the value of k (recall k in the counter in algorithm I) at the point
at which the fault occurs. Thus, for each faulty signature Êi there is a corresponding ki indicating the time at
which the fault occurs. We may sort the messages so that 1 � k1 � k2 � : : : � kl � n. The time at which the
faults occur is chosen uniformly (among the n iterations) and independently at random. It follows that given l

such faults, with probability at least half ki+1 � ki < m for all i = 1; : : : ; m. Since we do not know where the
faults occur, the values ki are unknown to us.

Let s = snsn�1 : : : s1 be the bits of the secret exponent s. We recover a block of these bits at a time starting
with the MSBs. Suppose we already know bits snsn�1 : : : ski for some i. Initially i = l + 1 indicating that no
bits are known. We show how to recover bits ski�1ski�2 : : :sk

i�1 . We intend to try all possible bit vectors
until the correct one is found. Since even the length of the block we are looking for is unknown, we have to try
all possible lengths. The algorithm works as follows:

1. For all lengths r = 0; 1; 2; 3 : : : do:

2. For all candidate r-bit vectors uki�1uki�2 : : : uki�r do:

3. Define s0 to be the integer whose bits match those of s at all known bit positions and are zero everywhere
else. In other words, s0 =

Pn
j=ki sj2

j . Similarly, define u0 =
Pki�1

j=ki�r uj2
j .

4. Test if the current candidate bit vector is correct by checking if one of the erroneous signatures Êj ; j =
1; : : : ; l satisfies

9e 2 f0; : : : ; ng s.t.
�
Êj � 2eM s0+u0

j

�d
= Mj (mod N )

Recall that d is the public signature verification exponent. The � means that the condition is satisfied if
it holds with either a plus or minus.

5. If a signature satisfying the above condition is found output uki�1uki�2 : : :uki�r and stop . At this point
we know that ki�1 = ki � r and ski�1ski�2 : : :sk

i�1
= uki�1uki�2 : : : uki�r .

The condition at step (4) is satisfied by the correct candidate uki�1uki�2 : : : uk
i�1

. To see this recall that

Êi�1 is obtained from a fault at the ki�1’st iteration. That is, at the ki�1’st iteration the value of z was changed
to ẑ  z � 2e for some e. Notice that at this point Ei�1 = zM s0+u0

i�1 . From that point on no fault occurred and

therefore the signature Êi�1 satisfies

Êi�1 = ẑM s0+u0
i�1 = Ei�1 � 2eM s0+u0

i�1 (mod N )

When in step (4) the signature Êi�1 is corrected it properly verifies when raised to the public exponent.
Consequently, when the correct candidate is tested, the faulty signature Êi�1 guarantees that it is accepted.

We still need to show that a wrong candidate will not pass the test. Suppose some signature Êv incorrectly
causes the wrong candidateu0 to be accepted at some point in the algorithm. That is, Êv�2eM s0+u0

v = Ev mod N

even though Êv was generated by a different fault. We know that Êv = Ev�2e1M
u1
v for some e1; u1. Therefore,

Ev � 2e1M
u1
v � 2eM s0+u0

v = Ev (mod N )
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In other words, Mv is a root of a polynomial of the form a1x
u1 + a2x

u2 = 0 mod N for some a1; a2; u1; u2.
This polynomial has a unique root as long as u1 � u2 is invertible modulo N � 1. Since the message Mv

is chosen independently of the fault location (i.e. independently of e1; u1) it follows that Mv is a root with
probability 1=N . Since the test is invoked only 2mn2 times this type of mistake will happen only with negligible
probability (2mn2 � N ).

The test at step (4) takes O(n3) time and therefore the total running of this procedure is O(2mn4). 2

7 Protecting against an attack based on hardware faults

One can envision several methods of protection against the type of attack discussed in the paper. The simplest
method is for the device to check the output of the computation before releasing it. Though this extra verification
step might reduce system performance, our attack suggests that it is crucial for security reasons.

Our attack on authentication protocols such as the Fiat-Shamir scheme uses a register fault which occurs
while the device is waiting for a response from the outside world. One can not protect against this type of a fault
by simply verifying the computation. As far as the device is concerned, it computed the correct output given
the input stored in its memory. Therefore, to protect multi-round authentication schemes one must ensure that
the internal state of the device can not be effected. Consequently, our attack suggests that for security reasons
devices must protect internal memory by adding some error detection bits (e.g. CRC).

Another way to prevent our attack on RSA signatures is the use of random padding. See for instance the
system suggested by Bellare and Rogaway [1]. In such schemes the signer appends random bits to the message
to be signed. To verify the RSA signature the verifier raises the signature to the power of the public exponent
and verifies that the message is indeed a part of the resulting value. The random padding ensures that the signer
never signs the same message twice. Furthermore, given an erroneous signature the verifier does not know the
full plain-text which was signed. Consequently, our attack cannot be applied to such a system.

8 Summary

We described a general attack which makes use of hardware faults. The attack applies to several cryptosystems.
We showed that encryption schemes using Chinese remainder, e.g. RSA and Rabin signatures, are especially
vulnerable to this kind of attack. Other implementations of RSA are also vulnerable though many more faults
are necessary. The idea of using hardware faults to attack cryptographic protocols applies to authentication
schemes as well. For instance, we explained how the Fiat-Shamir and Schnorr identification protocols can be
broken using hardware faults.

Verifying the computation and protecting internal storage using parity bits defeats attacks based on hardware
faults. We hope that this paper demonstrates that these measures are necessary for security reasons.
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